Теплообменник радиально-спирального типа (варианты)

Изобретение относится к аппаратам для проведения теплообменных процессов и может быть использовано в теплообменниках радиально-спирального типа. Теплообменник радиально-спирального типа содержит вертикальный корпус с патрубками подвода и отвода теплоносителей, снабжен коллекторами для первого теплоносителя. Внутри корпуса установлены один над другим два или более блоков теплообменных элементов. Каждый блок сформирован из вертикально установленных теплообменных элементов. Каждый теплообменный элемент выполнен полым с образованием внутреннего радиально-спирального щелевого канала для первого теплоносителя. Теплообменные элементы расположены друг к другу с образованием наружных вертикальных щелевых каналов для перемещения в аксиальном направлении второго теплоносителя. Блоки теплообменных элементов выполнены в форме прямой призмы. Радиально-спиральные щелевые каналы теплообменных элементов каждого блока выполнены из металлических профилированных листов. Щелевые каналы смежных установленных один над другим блоков для протока первого теплоносителя соединены между собой таким образом, что движение теплоносителя в одном из блоков направлено от оси теплообменного блока к периферии, а в смежном блоке - от периферии к оси. Теплообменник радиально-спирального типа может быть выполнен из теплообменных элементов, попарно соединенных между собой так, что движение первого теплоносителя по радиально-спиральным щелевым каналам направлено от оси теплообменного блока к периферии и далее по смежным в паре элементам - от периферии к оси. Технический эффект: упрощение конструкции теплообменника радиально-спирального типа, а также увеличение удельной теплообменной поверхности в единице его объема за счет возможности заполнения объема теплообменника блоками теплообменных элементов. 2 н.п. ф-лы, 12 ил.

 

Изобретение относится к аппаратам для проведения теплообменных процессов и может быть использовано в промышленности, на транспорте, в быту для передачи теплоты от одного теплоносителя к другому, а также для формирования теплообменной зоны в реакционных, абсорбционных и ректификационных аппаратах при подаче или отводе тепла от технологического потока.

Традиционно процесс теплообмена осуществляют в теплообменниках, в которых передача теплоты от одного теплоносителя к другому осуществляется через стенку из теплопроводящего материала, которая служит поверхностью теплообмена.

Известен аппарат для проведения теплообменных и диффузионных процессов, содержащий цилиндрический корпус с патрубками для ввода и вывода реагента и теплоносителя, блок теплообменных элементов, вертикально установленных внутри корпуса последовательно один за другим с образованием кольцевого ряда вокруг продольной оси корпуса, и каждый из них выполнен полым с двумя изогнутыми противоположными боковыми стенками, кривизна поверхностей которых уменьшается в направлении от продольной оси корпуса к его стенке, причем теплообменные элементы размещены на равных друг от друга расстояниях с образованием между ними наружных спиралеобразных каналов для перемещения потоков реагента, сообщенных с центральным и периферийным кольцеобразными каналами, соединенными с камерами ввода и вывода реагента, сообщенными соответственно с патрубками ввода и вывода реагента, а внутренние полости теплообменных элементов, служащие каналами для перемещения потоков теплоносителя, сообщены с камерами ввода и вывода теплоносителя, соединенными соответственно с патрубками ввода и вывода теплоносителя, аппарат дополнительно снабжен размещенными внутри корпуса распределительным и выпускным коллекторами, каждый из которых образован двумя коаксиально установленными вдоль продольной оси корпуса обечайками, кольцеобразная полость между которыми ограничена в осевом направлении верхней и нижней крышками и сообщена с внутренними полостями теплообменных элементов посредством щелевидных прорезей, выполненных на одних из горизонтально расположенных торцевых стенках теплообменных элементов, и примыкающей к ним одной из крышек соответствующего коллектора, при этом кольцеобразная полость распределительного коллектора служит камерой ввода теплоносителя, а кольцеобразная полость выпускного коллектора является камерой вывода теплоносителя и, кроме того, у каждого теплообменного элемента указанные прорези выполнены в непосредственной близости от его вертикальных стенок, а полость центрального канала для перемещения потоков реагента ограничена вертикальными торцевыми стенками теплообменных элементов, близкорасположенными от продольной оси корпуса, а полость периферийного кольцеобразного канала для перемещения потока реагента заключена между внутренней поверхностью стенки корпуса и удаленными от продольной оси корпуса вертикальными торцевыми стенками теплообменных элементов.

Преимущественное выполнение аппарата, когда распределительный коллектор размещен в камере вывода реагента, а прорези, посредством которых его кольцеобразная полость сообщена с внутренними полостями теплообменных элементов, выполнены в нижних торцевых стенках теплообменных элементов в непосредственной близости от вертикальных торцевых стенок, близрасположенных от продольной оси корпуса и в верхней крышке коллектора, при этом выпускной коллектор размещен в камере ввода реагента, а прорези, посредством которых его кольцеобразная полость сообщена с внутренними полостями теплообменных элементов, выполнены в верхних торцевых стенках теплообменных элементов в непосредственной близости от их вертикальных торцевых стенок, удаленных от продольной оси корпуса, и в нижней крышке коллектора, кроме того, в нижней и верхней крышках распределительного коллектора выполнены центральные отверстия, образующие вместе с полостью его внутренней обечайки сквозной канал, сообщенный с центральным каналом для перемещения потока реагента и с камерой его вывода;

когда аппарат дополнительно снабжен устройством для распределения реагента по наружным стенкам теплообменных элементов, установленным над распределительным коллектором, размещенным в камере ввода реагента, а прорези, посредством которых кольцеобразная полость распределительного коллектора сообщена с внутренними полостями теплообменных элементов, выполнены в верхних торцевых стенках теплообменных элементов в непосредственной близости от их вертикальных торцевых стенок, удаленных от продольной оси корпуса, при этом выпускной коллектор размещен в камере вывода реагента, а прорези, посредством которых кольцеобразная полость выпускного коллектора сообщена с внутренними полостями теплообменных элементов, выполнены в торцевых стенках теплообменных элементов в непосредственной близости от их вертикальных торцевых стенок, близрасположенных от продольной оси корпуса;

когда аппарат дополнительно снабжен, по меньшей мере, двумя вертикально установленными внутри корпуса блоками теплообменных элементов с распределительными и выпускными коллекторами;

аппарат дополнительно снабжен направляющими элементами, горизонтально установленными во внутренних и наружных каналах теплообменных элементов на расстоянии друг от друга по высоте каналов;

каждый наружный спиралеобразный канал имеет в плоскости, перпендикулярной продольной оси корпуса, постоянную ширину, см. RU Патент №2075020, МПК 6 F28D 7/04, F28D 9/00, 1997.

Недостатками известного аппарата для проведения теплообменных и диффузионных процессов являются:

- сложность конструкции;

- недостаточная удельная поверхность теплообмена, приходящаяся на единицу объема теплообменника;

- для прокачки первого теплоносителя последовательно через несколько блоков необходимо выводить теплоноситель за пределы корпуса через патрубок отвода предыдущего блока и возвращать его во внутреннюю полость корпуса через патрубок подвода теплоносителя последующего блока, что значительно усложняет конструкцию и приводит к дополнительной потере давления потока и увеличению расхода энергии на его прокачку через теплообменник.

Наиболее близким по технической сущности является теплообменник радиально-спирального типа, содержащий вертикальный цилиндрический корпус с патрубками подвода и отвода теплоносителей, внутри которого установлены один над другим два или более блоков теплообменных элементов с образованием периферийного кольцеобразного и центрального цилиндрического распределительных коллекторов, каждый блок сформирован из вертикально установленных примыкающих друг к другу теплообменных элементов, сваренных между собой вертикальными швами и образующих кольцевой ряд вокруг вертикальной оси корпуса, каждый теплообменный элемент выполнен полым и представляет собой две сваренные по двум горизонтальным сторонам стенки с дистанционирующими выступами, имеющие в поперечном сечении форму спирали Архимеда и образующие во внутренней полости радиально-спиральный щелевой канал для одного из теплоносителей, а теплообменные элементы прилегают друг к другу, образуя наружные вертикальные щелевые каналы для перемещения в аксиальном направлении второго теплоносителя, причем внутренние полости спиралевидных теплообменных элементов всех блоков сообщаются с периферийным и центральным распределительными коллекторами, а между смежными блоками теплообменных элементов поочередно в периферийном и центральном распределительных коллекторах установлены горизонтальные перегородки, которые разделяют каждый из распределительных коллекторов на отдельные изолированные полости и, препятствуя движению потока теплоносителя вдоль распределительного коллектора, направляют его после истечения из внутренних полостей теплообменных элементов одного блока во внутренние полости теплообменных элементов последующего блока. Преимущественное выполнение:

когда каждый последующий из установленных в корпусе блоков выполнен с противоположным по сравнению с предыдущим блоком направлением кривизны теплообменных элементов;

когда блоки выполнены с теплообменными элементами, предпочтительно имеющими кривизну, которая обеспечивает закрутку потока теплоносителя, перемещающегося в радиально-спиральном направлении, против часовой стрелки в теплообменнике, предназначенном для использования в северном полушарии Земли, а по часовой стрелке - в южном полушарии,

см. RU Патент №2348882, МПК F28D 9/04 (2006.01), 2009.

Недостатками известного теплообменника являются:

- сложность конструкции, вызванная сложностью изготовления и монтажа блоков теплообменных элементов внутри теплообменника;

- недостаточная удельная теплообменная поверхность в единице объема из-за наличия периферийных коллекторов внутри теплообменных блоков, которые занимают часть полезного объема теплообменника.

Задачей изобретения являются упрощение конструкции теплообменника радиально-спирального типа, увеличение удельной теплообменной поверхности в единице объема.

Техническая задача по первому варианту решается тем, что теплообменник радиально-спирального типа, содержащий вертикальный корпус с патрубками подвода и отвода теплоносителей, снабжен коллекторами для первого теплоносителя, внутри корпуса установлены один над другим два или более блоков теплообменных элементов, каждый блок сформирован из вертикально установленных теплообменных элементов, каждый теплообменный элемент выполнен полым с образованием внутреннего радиально-спирального щелевого канала для первого теплоносителя, теплообменные элементы расположены друг к другу с образованием наружных вертикальных щелевых каналов для перемещения в аксиальном направлении второго теплоносителя, согласно изобретению блоки теплообменных элементов выполнены в форме прямой призмы, радиально-спиральные щелевые каналы теплообменных элементов каждого блока выполнены из металлических профилированных листов, при этом щелевые каналы смежных установленных один над другим блоков для протока первого теплоносителя соединены между собой таким образом, что движение теплоносителя в одном из блоков направлено от оси теплообменного блока к периферии, а в смежном блоке - от периферии к оси.

Техническая задача по второму варианту решается тем, что теплообменник радиально-спирального типа, содержащий вертикальный корпус с патрубками подвода и отвода теплоносителей, снабжен коллекторами для первого теплоносителя, внутри корпуса установлены блоки теплообменных элементов, каждый блок сформирован из вертикально установленных теплообменных элементов, каждый теплообменный элемент выполнен полым с образованием внутреннего радиально-спирального щелевого канала для первого теплоносителя, теплообменные элементы расположены друг к другу с образованием наружных вертикальных щелевых каналов для перемещения в аксиальном направлении второго теплоносителя, согласно изобретению блоки теплообменных элементов выполнены в форме прямой призмы, радиально-спиральные щелевые каналы теплообменных элементов каждого блока выполнены из металлических профилированных листов, при этом теплообменные элементы блока попарно сварены между собой так, что движение первого теплоносителя по радиально-спиральным щелевым каналам направлено от оси теплообменного блока к периферии и далее по смежным в паре элементам - от периферии к оси.

Решение технической задачи позволяет упростить конструкцию теплообменника радиально-спирального типа, увеличить удельную теплообменную поверхность в единице объема за счет возможности заполнения объема теплообменника блоками теплообменных элементов.

Заявляемый радиально-спиральный теплообменник по первому варианту изображен на Фиг. 1-6.

Радиально-спиральный теплообменник содержит корпус 1 с патрубками подвода 2 и отвода 3 первого теплоносителя, патрубками подвода 4 и отвода 5 для перемещения в аксиальном направлении второго теплоносителя. Теплообменник снабжен распределительным коллектором 6 и выходным коллектором 7 для подачи и отвода первого теплоносителя. В корпусе 1 вдоль вертикальной оси установлены один над другим два блока 8 теплообменных элементов 9. Блоки 8 теплообменных элементов выполнены в форме прямой призмы. Каждый блок сформирован из вертикально установленных теплообменных элементов 9. Каждый теплообменный элемент 9 выполнен полым с образованием внутреннего радиально-спирального щелевого канала 10 для первого теплоносителя. Теплообменные элементы расположены друг к другу с образованием наружных вертикальных щелевых каналов 11 для перемещения в аксиальном направлении второго теплоносителя. Радиально-спиральные щелевые каналы теплообменных элементов каждого блока выполнены из металлических профилированных листов. Радиально-спиральные щелевые каналы 10 смежных установленных один над другим блоков для протока первого теплоносителя соединены между собой таким образом, что движение теплоносителя в одном из блоков направлено от оси теплообменного блока к периферии, а в смежном блоке - от периферии к оси.

Два или более блоков теплообменных элементов, установленных один над другим, могут быть распределены в вертикальном корпусе по его сечению, см. Фиг. 3, 4. На фиг. 5 изображен блок теплообменных элементов в аксонометрии, а на фиг. 6 - теплообменный элемент.

Заявляемый радиально-спиральный теплообменник по второму варианту изображен на Фиг. 7-12.

Радиально-спиральный теплообменник содержит корпус 1 с патрубками подвода 2 и отвода 3 первого теплоносителя, патрубками подвода 4 и отвода 5 для перемещения в аксиальном направлении второго теплоносителя. Теплообменник снабжен распределительным коллектором 6 и выходным коллектором 7 для первого теплоносителя. В корпусе 1 вдоль вертикальной оси установлены блоки 8 теплообменных элементов 9 (Фиг. 9). Блок 8 теплообменных элементов выполнен в форме прямой призмы. Каждый блок сформирован из вертикально установленных теплообменных элементов 9. Каждый теплообменный элемент 9 выполнен полым с образованием внутреннего радиально-спирального щелевого канала 10 для первого теплоносителя. Теплообменные элементы расположены друг к другу с образованием наружных вертикальных щелевых каналов 11 для перемещения в аксиальном направлении второго теплоносителя. Радиально-спиральные щелевые каналы теплообменных элементов каждого блока выполнены из металлических профилированных листов. При этом теплообменные элементы 9 блока 8 попарно сварены между собой так, что движение первого теплоносителя по радиально-спиральным щелевым каналам 10 направлено от оси теплообменного блока к периферии и далее по смежным в паре элементам - от периферии к оси.

Блоки теплообменных элементов могут быть установлены один над другим и распределены в вертикальном корпусе по его сечению, см. Фиг. 9, 10. На фиг. 11 изображен блок теплообменных элементов в аксонометрии, а на фиг. 12 - пара теплообменных элементов, сваренных между собой.

Теплообменник по первому варианту работает следующим образом.

Поток первого теплоносителя через патрубок 2 поступает в распределительный коллектор 6, проходит через радиально-спиральные щелевые каналы 10 теплообменных элементов 9 верхних блоков 8, при этом движение первого теплоносителя направлено от оси теплообменного блока к периферии. Далее теплоноситель поступает в радиально-спиральные щелевые каналы 10 теплообменных элементов 9 смежных блоков 8, движение первого теплоносителя направлено от периферии к оси. Затем теплоноситель поступает в выходной коллектор 7 и через патрубок 3 выводится из теплообменника.

Одновременно второй теплоноситель поступает в теплообменник через патрубок 4 и аксиально перемещается вверх, проходя последовательно через наружные вертикальные щелевые каналы 11 теплообменных блоков 8, после чего выводится из теплообменника через патрубок 5.

При прохождении потоков теплоносителей по соответствующим внутренним радиально-спиральным и наружным вертикальным щелевым каналам через стенки теплообменных элементов осуществляется передача тепла от более нагретого теплоносителя к менее нагретому.

Теплообменник по второму варианту работает следующим образом.

Поток первого теплоносителя через патрубок 2 поступает в распределительный коллектор 6, проходит через внутренние радиально-спиральные щелевые каналы 10 теплообменных элементов 9 блоков 8, при этом движение первого теплоносителя по радиально-спиральным щелевым каналам направлено от оси теплообменного блока к периферии и далее по смежным в паре элементам - от периферии к оси. Затем теплоноситель поступает в выходной коллектор 7 и через патрубок 3 выводится из теплообменника.

Одновременно второй теплоноситель поступает в теплообменник через патрубок 4 и аксиально перемещается вверх, проходя последовательно через наружные вертикальные щелевые каналы 11 теплообменных блоков 8, после чего выводится из теплообменника через патрубок 5.

При прохождении потоков теплоносителей по соответствующим внутренним радиально-спиральным и наружным вертикальным щелевым каналам через стенки теплообменных элементов осуществляется передача тепла от более нагретого теплоносителя к менее нагретому.

Каждый блок теплообменных элементов по первому и второму вариантам выполнен неразборным и герметичным.

Для увеличения механической прочности щелевые каналы теплообменных элементов могут содержать дистанционирующие выступы или элементы.

Размер теплообменных блоков может быть выбран в соответствии с размерами вертикального корпуса, а также технологических люков, предназначенных для монтажа блоков теплообменных элементов при формировании теплообменной зоны внутри реакторов и колонных аппаратов. Распределение блоков теплообменных элементов по сечению и/или один над другим позволяет значительно увеличить удельную теплообменную поверхность в единице объема.

Блоки теплообменных элементов могут быть снабжены фланцами для упрощения монтажа.

Таким образом, заявляемая совокупность признаков по первому и второму вариантам позволяет упростить конструкцию теплообменника радиально-спирального типа и увеличить удельную теплообменную поверхность в единице его объема за счет возможности заполнения объема теплообменника блоками теплообменных элементов.

1. Теплообменник радиально-спирального типа, содержащий вертикальный корпус с патрубками подвода и отвода теплоносителей, снабжен коллекторами для первого теплоносителя, внутри корпуса установлены один над другим, два или более блока теплообменных элементов, каждый блок сформирован из вертикально установленных теплообменных элементов, каждый теплообменный элемент выполнен полым с образованием внутреннего радиально-спирального щелевого канала для первого теплоносителя, теплообменные элементы расположены друг к другу с образованием наружных вертикальных щелевых каналов для перемещения в аксиальном направлении второго теплоносителя, отличающийся тем, что блоки теплообменных элементов выполнены в форме прямой призмы, радиально-спиральные щелевые каналы теплообменных элементов каждого блока выполнены из металлических профилированных листов, при этом щелевые каналы смежных установленных один над другим блоков для протока первого теплоносителя соединены между собой таким образом, что движение теплоносителя в одном из блоков направлено от оси теплообменного блока к периферии, а в смежном блоке - от периферии к оси.

2. Теплообменник радиально-спирального типа, содержащий вертикальный корпус с патрубками подвода и отвода теплоносителей, снабжен коллекторами для первого теплоносителя, внутри корпуса установлены блоки теплообменных элементов, каждый блок сформирован из вертикально установленных теплообменных элементов, каждый теплообменный элемент выполнен полым с образованием внутреннего радиально-спирального щелевого канала для первого теплоносителя, теплообменные элементы расположены друг к другу с образованием наружных вертикальных щелевых каналов для перемещения в аксиальном направлении второго теплоносителя, отличающийся тем, что блоки теплообменных элементов выполнены в форме прямой призмы, радиально-спиральные щелевые каналы теплообменных элементов каждого блока выполнены из металлических профилированных листов, при этом теплообменные элементы блока попарно сварены между собой так, что движение первого теплоносителя по радиально-спиральным щелевым каналам направлено от оси теплообменного блока к периферии и далее по смежным в паре элементам - от периферии к оси.



 

Похожие патенты:

Изобретение относится к области теплотехники. Пластинчатый теплообменник (2) содержит первую рамную пластину (4), вторую рамную пластину (6) и пакет (24) теплообменных пластин (26).

Изобретение относится к теплотехнике и может быть использовано в рекуператорах тепла. Оребренный рекуператор в периферийной зоне пакета содержит, по меньшей мере, один модуль, а в центральной - по меньшей мере, один, но другой модуль, при этом в модуле, образующем периферийную зону пакета, каналы имеют в поперечном сечении размеры, отличные от размеров поперечного сечения каналов у модуля, образующего центральную зону пакета.

Изобретение относится к теплотехнике и может использоваться в пластинчатых теплообменниках. Пластинчатый теплообменник содержит каналы потока, по которым первый и второй потоки текут в параллельном или встречном потоке, причем каналы потока сформированы для первой среды между отдельными пластинами (1), соединенными вместе для формирования в каждом случае пары (Р) пластин, и для второй среды между парами (Р) пластин, соединенных вместе для формирования пакета (S) пластин, отдельные пластины (1) в пределах входной области (Е) содержат направляющие лопатки (2), которые образованы штампованными выпуклостями и выступают в канал потока, причем направляющие лопатки (2) характеризуются дугообразной формой с участком (21) притока, выровненным, по существу, параллельно направлению основного потока, и участком (22) оттока, выровненным под углом к участку (21) притока.

Изобретение относится к теплотехнике и может быть использовано в пластинчатых теплообменниках. В пластинчатом теплообменнике, содержащем каналы потока, по которым первый и второй потоки текут в параллельном или встречном потоке, причем каналы потока сформированы для первой среды между отдельными пластинами (1), соединенными вместе для формирования в каждом случае пары (P) пластин, и для второй среды между парами (P) пластин, соединенных вместе для формирования пакета (S) пластин, отдельные пластины (1) в пределах входной области (E) содержат направляющие лопатки (2), которые образованы штампованными выпуклостями и выступают в канал потока, причем направляющие лопатки (2) характеризуются дугообразной формой с участком (21) притока, выровненным по существу параллельно направлению основного потока, и участком (22) оттока, выровненным под углом к участку (21) притока.

В теплообменнике (12), включающем уложенные друг над другом в виде штабеля пары пластин (29), причем между обеими пластинами (30, 31) одной пары пластин (29) образовано первое проточное пространство для пропуска первой текучей среды, второе проточное пространство (21) для пропуска второй текучей среды, причем второе проточное пространство (21) образовано между двумя соседними парами пластин (29), впускное отверстие (32) для впуска первой текучей среды, выпускное отверстие (33) для выпуска первой текучей среды, пластины (30, 31) имеют по меньшей мере одно удлиненное отверстие, в частности по меньшей мере одно удлиненное щелевое отверстие, для уменьшения напряжений в пластинах (30, 31).

Изобретение относится к теплотехнике и может быть использовано в теплообменных аппаратах. Кожухопластинчатый теплообменник содержит корпус с двумя крышками, пакет пластин, установленный в корпусе, и патрубки подвода и отвода теплоносителей.

Изобретение относится к теплотехнике и может использоваться при изготовлении пластинчатых теплообменников. Пластинчатый теплообменник блочного типа содержит пакет (30) теплообменных пластин, которые включают первую теплообменную пластину (51) и вторую теплообменную пластину (52).

Изобретения могут быть использованы в химической промышленности. Изотермический химический реактор (1) с паровым охлаждением имеет вертикальный корпус (2) и содержит пластинчатый теплообменник (8), погруженный в слой катализатора (7), патрубок (10) впуска воды и пароотводный патрубок (11), систему труб для распределения воды (12) по испарительным каналам пластин (9, 9A) теплообменника (8) и сбора с них потока пара.

Изобретение относится к теплообменнику (102) пластинчатого типа, содержащему: теплообменный узел (104); торцевые панели (106) и соединительные элементы (107) торцевых панелей, посредством которых присоединены торцевые панели (106).

Изобретение относится к области теплотехники и может использоваться в тепломассообменных аппаратах воздушного охлаждения. Тепломассообменный аппарат, включающий теплообменные блоки, ороситель, вентиляторы, накопитель воды, циркуляционный насос, распределитель воздуха и каплеотбойную секцию, отличающийся тем, что теплообменные блоки выполнены из попарно соединенных параллельных теплопередающих пластинчатых элементов, образующих внутренний узкий канал для охлаждаемого продукта и внешние широкие каналы для водовоздушного потока, снабженные профилированными перегородками для отбоя жидкости и полками для накопления жидкости, обеспечивающими режим капельного орошения теплопередающей поверхности.

Изобретение относится к области кондиционирования и вентиляции воздуха, в частности к пластинчатым теплообменникам, предназначенным для обеспечения теплообмена между приточным и вытяжным воздухом. Пакет пластинчатого теплообменника содержит уложенные в пакет чередующиеся пластины, которые образуют каналы для прохождения рабочих сред. Пластины содержат центральные участки и боковые треугольные участки. Центральный участок одной из чередующихся пластин выполнен гофрированным. Центральный участок другой из чередующихся пластин выполнен гофрированным с плоскими участками. Между пластинами в области центрального участка образуются сплошные каналы для рабочих сред. 3 з.п. ф-лы, 4 ил.

Изобретение относится к способам и устройствам для нагревания и охлаждения вязких материалов, таких как фаршевая эмульсия, используемая для производства пищевых и других продуктов. Устройство представляет собой теплообменник, содержащий первую пластину, соединенную с ней вторую пластину, а также первую и вторую дистанционные прокладки, размещенные между первой и второй пластинами. Первая пластина, вторая пластина, первая дистанционная прокладка и вторая дистанционная прокладка образуют по меньшей мере один канал с регулируемой температурой, предназначенный для пропускания продукта через теплообменник. Технический результат - снижение возможности закупоривания каналов теплообменника. 4 н. и 19 з.п. ф-лы, 4 ил.

Настоящее изобретение относится к способу получения пластинчатого теплообменника, содержащего каналы потока, по которым текут первый и второй потоки, причем каналы потока сформированы для первой среды между отдельными пластинами (1), соединенными вместе для формирования в каждом случае пары (P) пластин, и для второй среды между парами (Р) пластин, соединенными вместе для формирования пакета (S) пластин. Для экономически эффективного производства пластин с встречным потоком, а также пластин с перекрестным потоком на одной производственной установке, в настоящем изобретении предлагается, чтобы отдельные пластины (1) производили в каждом случае из непрессованной заготовки пластины, причем вначале выполняют переоборудование рабочего инструмента при помощи взаимозаменяемых элементов пресс-формы для получения пластин с перекрестным потоком или пластин с встречным потоком, и затем заготовку пластины прессуют посредством переоборудованного инструмента в пластину с перекрестным потоком или пластину с встречным потоком, тем самым формируя соответствующие грани (12) и/или контактные поверхности (13), а также поперечные сечения (Z1, Z2, A1, A2) притока и оттока. 3 н. и 3 з.п. ф-лы, 3 ил.

Предлагаются средство (40) крепления для крепления прокладки к пластине теплообменника, прокладочное средство (6) и узел (2) для теплообменника. Средство крепления выполнено с возможностью взаимодействия с краевым участком (26, 28) пластины (4) теплообменника для закрепления прокладки (38) на первой стороне (8) пластины теплообменника. Оно содержит первый соединительный элемент (42), второй соединительный элемент (44) и перемычку (46). Первая часть (48) первого соединительного элемента выполнена с возможностью взаимодействия с прокладкой, в то время как вторая часть (52) первого соединительного элемента находится во взаимодействии с перемычкой. Первая часть (50) второго соединительного элемента выполнена с возможностью взаимодействия с прокладкой, в то время как и вторая часть (54) второго соединительного элемента находится во взаимодействии с перемычкой. Средство крепления отличается тем, что оно дополнительно содержит множество пальцев (60, 62, 64), выполненных между первым и вторым соединительными элементами. Соответствующая соединительная часть (66, 68, 70) каждого пальца находится во взаимодействии с перемычкой, а пальцы выполнены с возможностью продолжаться от перемычки по направлению к прокладке. По меньшей мере один из пальцев выполнен с возможностью взаимодействия с первой стороной (8) пластины теплообменника и по меньшей мере другой из пальцев выполнен с возможностью взаимодействия со второй, противоположной, стороной пластины теплообменника. 3 н. и 14 з.п. ф-лы, 8 ил.

Предложена прокладка (11) для размещения на пластине (8) теплообменника и узел теплообменника. Прокладка содержит кольцевой участок (52), расположенный для охватывания отверстия (24) пластины теплообменника. Внутренний край (56) кольцевого участка прокладки образует область (58), включающую в себя точку (80) отсчета, совпадающую с центральной точкой (С) самой большой воображаемой окружности (82), которая может быть установлена в пределах области. Прокладка отличается тем, что область имеет форму, образованную несколькими угловыми точками воображаемой плоской геометрической фигуры (72), из которых, по меньшей мере, одна смещена от дуги (92) окружности, и таким же количеством плавно изогнутых линий (74, 76, 78), соединяющих угловые точки, из которых первая угловая точка (66) из угловых точек расположена на первом расстоянии (d1) от точки отсчета, вторая (68) из угловых точек расположена ближе всего к первой угловой точке в направлении по часовой стрелке и на втором расстоянии (d2) от точки отсчета и третья (70) из угловых точек расположена ближе всего к первой угловой точке в направлении против часовой стрелки и на третьем расстоянии (d3) от точки отсчета. 2 н. и 4 з.п. ф-лы, 5 ил.

Настоящее изобретение относится к области лабораторных теплофизических измерений и, в частности, к определению тепловых, аэродинамических и гидравлических параметров рекуперативных теплообменных аппаратов различных типов, выполняемых в ходе учебной подготовки специалистов в области теплотехнического оборудования, испытаний теплообменных аппаратов с целью определения их основных параметров. Предлагаемая экспериментальная установка для изучения теплообменных аппаратов позволит проводить теплотехнические и гидравлические испытания различных теплообменных аппаратов с целью выявления их реальных параметров и характеристик. Также экспериментальная установка для изучения теплообменных аппаратов может использоваться и в учебном процессе для проведения лабораторных работ у студентов инженерных специальностей. Технический результат - полученные результаты позволят повысить точность выполняемых расчетов, а также сравнивать эффективность различных типов теплообменных аппаратов. 3 ил.

Изобретение относится к конструкции аппаратов, предназначенных для осуществления теплообмена между потоками флюидов, массообмена флюида с флюидом или твердым веществом, проведения химических процессов в условиях контроля температуры и может быть использовано в различных отраслях промышленности. Аппарат может быть использован в качестве теплообменника, массообменного аппарата, адсорбера и каталитического реактора. Аппарат состоит из корпуса с патрубками ввода/вывода флюидов, в котором установлен аксиально симметричный кольцевой теплообменный блок, состоящий из четного количества изогнутых радиально ориентированных пластин с профилирующими выступами, попеременно соединенных в аксиальном и радиальном направлении, двух наружных колец и двух внутренних крышек. Одна из крышек сообщена с патрубком ввода/вывода флюида. Теплообменный блок оснащен по меньшей мере одной перфорированной цилиндрической обечайкой, на которой расположены упоры, прилегающие к неэкранированным участкам наружной стороны пластин. Технический результат - упрощение конструкции аппарата и возможность превышения давления в любой из полостей теплообменного блока над давлением в смежной полости. 5 з.п. ф-лы, 3 ил.

Изобретение относится к тепломассообменным аппаратам, предназначенным для осуществления теплообмена между потоками флюидов и массообмена флюидов с жидкостью при контролируемой температуре, и может быть использовано в различных отраслях промышленности. Аппарат может быть использован для осуществления тепло- и массообменных процессов. Предложен аппарат, состоящий из корпуса с патрубками ввода/вывода флюидов. В аппарате установлен коаксиальный кольцевой теплообменный блок, состоящий из пластин, скрепленных друг с другом Г-образными соединениями, двух наружных колец и двух внутренних крышек, а также внутренней и наружной перфорированных цилиндрических обечаек, на которых расположены упоры, прилегающие к неэкранированным участкам наружной стороны пластин. Одна из крышек сообщена с патрубком ввода/вывода одного из флюидов. Технический результат - упрощение конструкции аппарата и возможность превышения давления в любой из полостей теплообменного блока над давлением в смежной полости. 5 з.п. ф-лы, 2 ил.

Изобретение относится к теплообменной технике и может быть использовано при создании и модернизации пластинчатых теплообменников. Матрица пластинчатого теплообменника цилиндрической формы представляет собой систему продольных концентрических кольцевых каналов прямоугольного сечения, образованных чередующимися в радиальном направлении гладкими и расположенными между ними с плотным термическим контактом дистанционирующими пластинами-турбулизаторами с двухсторонними сфероидальными выступами и впадинами с шахматной схемой расположения. При этом один из теплоносителей проходит в осевом направлении в открытых с торцевых сторон матрицы каналах, другой теплоноситель проходит в окружном направлении в замкнутых кольцевых однотипных каналах. В этих условиях обеспечивается надлежащая жесткость матрицы, а также повышение тепловой эффективности поверхности и улучшение массогабаритных показателей теплообменника. 5 ил.

Изобретение относится к теплоэнергетике. Конденсатор-испаритель содержит корпус с размещенными на нем патрубками для ввода и вывода рабочих потоков, с одним или несколькими пластинчато-ребристыми теплообменными элементами с чередующимися каналами кипения и конденсации, с коллекторами для ввода и вывода конденсирующейся среды. Каждый теплообменный элемент выполнен цельнопаяным с секционированной полостью кипения, в которой каналы каждой секции разделены между собой проставочными брусками. Достигается снижение металлоемкости. 1 з.п. ф-лы, 2 ил.
Наверх