Крыльчатка центробежного компрессора

Изобретение относится к области центробежных компрессоров и конкретнее к крыльчатке центробежного компрессора, причем эта крыльчатка имеет диск и лопатки, прикрепленные к диску на передней поверхности диска. Точка пересечения заднего края и хвоста лопатки дополнительно смещена на по меньшей мере половину толщины диска вперед по сравнению с хвостом лопатки на промежуточном диаметре Di крыльчатки, а точка пересечения заднего края и кромки лопатки также дополнительно смещена вперед по сравнению с кромкой лопатки на промежуточном диаметре Di крыльчатки. 3 н. и 6 з.п. ф-лы, 4 ил.

 

Уровень техники изобретения

Настоящее изобретение относится к области центробежных компрессоров.

Конкретнее изобретение относится к крыльчатке центробежного компрессора, имеющей диск и лопатки, прикрепленные к диску на передней поверхности диска, причем каждая из которых имеет передний край и задний край, и изобретение также относится к центробежному компрессору, включающему такую крыльчатку, и к турбинному двигателю, включающему такой центробежный компрессор. В этом контексте выражение "турбинный двигатель" обозначает машины, такие как, например: прямоточные или двухконтурные турбореактивные двигатели, турбовинтовые двигатели, турбовальные двигатели и/или турбокомпрессоры.

В описании ниже выражения "расположенный перед" и "расположенный после" определены относительно нормального направления потока текучей среды через компрессор. Выражения "передний", "задний", "аксиальный" и "радиальный" определены относительно оси вращения крыльчатки.

Центробежный компрессор обычно имеет неподвижный участок и вращательный участок, называемый "крыльчаткой" и удерживающий вращательные лопатки компрессора. При работе крыльчатка обычно вращается с высокой скоростью. В связи с этим она подвергается воздействию центробежных напряжений.

Форма крыльчатки центробежного компрессора определяется потоком текучей среды через компрессор. Обычно в таком центробежном компрессоре текучая среда входит в компрессор в направлении, которое является по существу аксиальным, т.е. параллельным оси вращения крыльчатки. Канал потока и вращательные лопатки направляют текучую среду радиально наружу таким образом, что текучая среда покидает крыльчатку в направлении, которое является по существу ортогональным оси вращения крыльчатки. В связи с этим лопатки имеют передние края, которые являются по существу радиальными, и задние края, которые являются по существу аксиальными, расположенные еще дальше от оси вращения крыльчатки в радиальном направлении и расположенные аксиально за передними краями.

Диск скрепляет вращательные лопатки вместе и прикрепляет их к валу компрессора. С этой целью каждая лопатка прикреплена к диску и расположена на передней поверхности диска. Диск также служит для определения поверхности притупления канала потока текучей среды через крыльчатку. Таким образом, диск обычно является осесимметричным и постепенно изгибается наружу в аксиальном направлении. Посредством диска и лопаток, имеющих эту форму, центробежное ускорение создает изгибающий момент на крыльчатке, стремящийся изгибать вперед периферию крыльчатки. Этот изгибающий момент непрерывно увеличивается при переходе от периферии крыльчатки по направлению к соединению между диском и валом компрессора, и становится необходимо поддерживать большие величины зазора при работе компрессора на промежуточных скоростях, тем самым ухудшая производительность машины. Для того чтобы противостоять этому моменту, обычно делались предложения по усилению диска и средства крепления крыльчатки к вращательному валу. Однако усиление вращательных участков крыльчатки компрессора таким образом приводит к очень значительному избыточному весу, так как вес, который добавляется близко к каналу потока воздуха, также будет требовать увеличения габаритов крыльчатки.

Для преодоления этого недостатка патент США № 4 060 337 предлагает исключение большого участка диска крыльчатки и соединение лопаток только в основании и на периферии. Однако такой компрессор страдает от значительного падения аэродинамической характеристики крыльчатки из-за потока со стороны нагнетания к стороне всасывания каждой лопатки.

В заявке на патент Великобритании GB 2 472 621 A сделаны предложения по соединению крыльчатки с вращательным валом с помощью двух венцов с аксиальным смещением для того, чтобы ограничивать наличие материала на крыльчатке только его функциональными зонами. Заявка на патент США US 2010/0098546 A1 предлагает создавать диск крыльчатки полой на ее периферии так, что периферийный вес крыльчатки ограничивается и размещается оптимально, тем самым позволяя оптимизировать компрессор. Тем не менее уменьшения веса, которые могут получаться этими двумя путями, затрудняются из-за трудностей изготовления конечной цельной части.

Патент Германии DE 906 975 предлагает крыльчатку, в которой диск располагается еще дальше вперед в аксиальном направлении на ее периферии, чем на промежуточном диаметре крыльчатки. Тем не менее такой диск также требует прикреплять к кромкам лопатки усиливающий диск для того, чтобы ограничивать деформацию периферии крыльчатки в аксиальном направлении, что может быть затруднительным для адаптации к существующему компрессору или к авиационному двигателю, где ограничение веса является основным приоритетом. Заявка на патент США US 2007/0077147 и патент Великобритании GB 553 747 показывают другие крыльчатки с дисками, которые выдвинуты на периферии, но которые, тем не менее, не предлагаются для решения проблемы аксиальной деформации крыльчатки при высоких скоростях.

Задача и сущность изобретения

Настоящее изобретение стремится исправить эти недостатки. В первом аспекте точка пересечения между задним краем и хвостом лопатки расположена еще дальше вперед, чем хвост лопатки на промежуточном диаметре крыльчатки. В частности, она может располагаться еще дальше вперед на по меньшей мере половине толщины диска. В дополнение, точка пересечения между задним краем и кромкой лопатки также расположена еще дальше вперед, чем кромка лопатки на промежуточном диаметре крыльчатки. Таким образом, изгибающий момент на периферии крыльчатки инвертируется, а его максимальное абсолютное значение уменьшается, тем самым ограничивая деформации крыльчатки в аксиальном направлении при поддержании хорошей аэродинамической эффективности.

Во втором аспекте на периферии крыльчатки передняя поверхность ориентирована в направлении, которое является по существу радиальным. Это служит для выпрямления потока текучей среды на выходе из крыльчатки и, таким образом, делает возможным использование традиционного радиального диффузора, расположенного после крыльчатки.

В третьем аспекте крыльчатка также включает венец, соединенный с задней поверхностью диска и пригодный для крепления к вращательному валу. В частности, венец может включать радиальный крепежный диск. Это делает возможным крепление крыльчатки к вращательному валу компрессора таким образом, который является эффективным и сравнительно легковесным.

В четвертом аспекте центробежный компрессор также имеет крышку, покрывающую лопатки так, чтобы взаимодействовать с диском для определения канала потока текучей среды между передними краями и задними краями лопаток. Таким образом, аэродинамические потери центробежного компрессора могут значительно уменьшаться путем ограничения текучей среды, перетекающей со стороны нагнетания к стороне всасывания каждой лопатки. В частности, далее крышка может включать по меньшей мере одну крепежную точку ближе к задним краям лопаток крыльчатки, чем к передним краям лопаток крыльчатки. Так как аксиальное перемещение радиальной периферии крыльчатки на высокой скорости может ограничиваться отсутствием биекции в аксиальном направлении изгиба, образованного передней поверхностью диска, аксиальное крепление крышки может располагаться ближе к периферии крыльчатки, таким образом, делая возможным ограничение зазора между крышкой и лопатками крыльчатки на периферии крыльчатки при промежуточных скоростях, тем самым увеличивая аэродинамическую эффективность. Альтернативно, крышка может быть прикреплена к лопаткам так, чтобы образовывать закрытую крыльчатку.

Краткое описание чертежей

Изобретение может быть хорошо понято, и его преимущества представлены лучше при изучении следующего далее подробного описания вариантов выполнения, представленных в качестве неограничивающих примеров. Описание относится к сопровождающим чертежам, на которых:

Фигура 1 представляет собой схематический вид в продольном сечении турбинного двигателя, включающего центробежный компрессор;

Фигура 2 представляет собой вид в продольном сечении крыльчатки для центробежного компрессора известного уровня техники;

Фигура 3 представляет собой вид в продольном сечении центробежного компрессора в первом варианте выполнения изобретения; и

Фигура 4 представляет собой вид в продольном сечении крыльчатки для центробежного компрессора во втором варианте выполнения изобретения.

Подробное описание изобретения

Турбинный двигатель и конкретнее турбовальный двигатель 1 показан схематически с целью объяснения на Фигуре 1. В направлении потока рабочей текучей среды турбовальный двигатель 1 содержит: аксиальный компрессор 2; центробежный компрессор 3; камеру 4 сгорания; первую аксиальную турбину 5; и вторую аксиальную турбину 6. В дополнение, турбовальный двигатель 1 имеет первый вращательный вал 7 и второй вращательный вал 8, коаксиальный с первым вращательным валом 7.

Второй вращательный вал 8 соединяет аксиальный компрессор 2 и центробежный компрессор 3 с первой аксиальной турбиной 5 так, что расширение рабочей текучей среды посредством первой аксиальной турбины 5, расположенной после камеры 4 сгорания, служит для приведения в движение компрессоров 2 и 3, расположенных перед камерой 4 сгорания. Первый вращательный вал 7 соединяет вторую аксиальную турбину 6 с выходом 9 мощности, размещенным после и/или перед двигателем таким образом, что последовательное расширение рабочей текучей среды во второй аксиальной турбине 6, которая расположена после первой аксиальной турбины 5, служит для приведения в движение выхода 9 мощности.

Таким образом, последовательные сжатия рабочей текучей среды в аксиальном и центробежном компрессорах 2 и 3, сопровождаемые нагреванием рабочей текучей среды в камере 4 сгорания и ее расширением во второй аксиальной турбине 6, служат для преобразования части тепловой энергии, получаемой путем сгорания в камере 4 сгорания, в механическую работу, которая извлекается с помощью выхода 9 мощности. В показанном турбинном двигателе движущая текучая среда представляет собой воздух с добавленным к нему топливом и сжигаемым в камере 4 сгорания, причем топливо может представлять собой, например, углеводород.

При работе вращательные валы 7 и 8 вращаются со скоростями от около 5000 оборотов в минуту до 60000 оборотов в минуту. Вращательные участки компрессоров 2 и 3 и турбин 5 и 6 в связи с этим подвергаются воздействию высоких уровней центробежных сил. Со ссылкой на Фигуру 2 можно увидеть, как эти центробежные силы воздействуют на крыльчатку 101 традиционного центробежного компрессора, который известен специалисту в области техники. Крыльчатка 101 имеет по существу осесимметричный диск 102, имеющий переднюю поверхность 103 и заднюю поверхность 104. Лопатки 105 закреплены с помощью хвостов 115 лопаток на передней поверхности 103 диска 102. Каждая лопатка 105 также имеет кромку 116 лопатки, удаленную от хвоста 115 лопатки, передний край 106, который ориентирован по существу радиально, и задний край 107, который ориентирован по существу аксиально и который расположен радиально наружу и аксиально за передним краем 106. Таким образом, при работе рабочая текучая среда всасывается в переднюю часть 108 крыльчатки 101 и направляется лопатками 105 к периферии 109 крыльчатки 101, следуя по каналу потока текучей среды, определенному внутри диском 102 и снаружи невращательной крышкой 110 центробежного компрессора, которая расположена близко к кромке 116 лопатки.

На ее задней поверхности диск 102 прикреплен к венцу 111, имеющему диск для крепления к вращательному валу. Таким образом, венец 111 и этот диск определяют плоскость А для передачи радиальных сил от крыльчатки 101 к вращательному валу. Из-за высокой скорости вращения крыльчатки 101 центробежные силы, приложенные к крыльчатке 101, представляют большую часть этих радиальных сил. Тем не менее, так как центробежная сила Fc пропорциональна квадрату угловой скорости вращения ω, умноженной на расстояние от оси вращения X крыльчатки 101, по формуле ω2r центробежные силы, приложенные на периферии 109 крыльчатки 101, являются преобладающими.

Таким образом, в традиционной крыльчатке 101, которая показана, центробежные силы Fc, воздействующие на периферию 109 крыльчатки 101, создают изгибающий момент MF в крыльчатке 101, стремящийся заставлять периферию 109 крыльчатки 101 наклоняться вперед. Этот изгибающий момент MF непрерывно увеличивается от периферии 109 крыльчатки 101 до соединения между диском 102 и венцом 111. Для того чтобы ограничивать изгибание крыльчатки 101, диск 102, венец 111 и диск необходимо усиливать, тем самым приводя к значительному увеличению общего веса крыльчатки 101. В дополнение, для того чтобы вмещать перемещение вперед на периферии 109 крыльчатки 101, обычно необходимо обеспечивать большую величину зазора dp на периферии крыльчатки 101 между кромками 105 лопаток и крышкой 110 при работе на менее чем полной скорости, и это приводит к высоким уровням аэродинамических потерь, или даже может быть необходимо обеспечивать весьма сложные крепежные конструкции для крышки 110 с целью заставлять крышку 110 перемещаться вперед с увеличением скорости компрессора.

Фигура 3 показывает центробежный компрессор 3 с крыльчаткой 201 в первом варианте выполнения изобретения. Эта крыльчатка 201 подобным образом имеет по существу осесимметричный диск 202 с передней поверхностью 203 и задней поверхностью 204. Как в крыльчатке, показанной на Фигуре 2, лопатки 205 закреплены с помощью хвостов 215 лопаток на передней поверхности 203 диска 202, причем каждая лопатка также имеет кромку 216 лопатки, удаленную от хвоста 215 лопатки, передний край 206 по существу радиальной ориентации и задний край 207 по существу аксиальной ориентации, расположенный радиально снаружи и аксиально за передним краем 206. По периферии крыльчатки 201 компрессор 3 имеет традиционный радиальный диффузор 212 с направляющими лопастями 213. При работе рабочая текучая среда, таким образом, всасывается через переднюю часть 208 крыльчатки 201 и направляется лопатками 205 к периферии 209 крыльчатки 201, следуя по каналу потока текучей среды, определенному внутри диском 202 и снаружи невращательной крышкой 210 для того, чтобы достигать радиального диффузора 212.

На его задней поверхности диск 202 также прикреплен к венцу 211, имеющему диск для крепления к вращательному валу. Тем не менее в этой крыльчатке 201 диск 202 изогнут так, что периферийный сегмент диска 202 наклоняется вперед от промежуточного диаметра Di, тем самым представляя переднюю поверхность 203, которая является вогнутой. В результате на периферии 209 крыльчатки 201 эта передняя поверхность 203 перемещается вперед на расстояние L относительно промежуточного диаметра Di. Это расстояние L является существенным и, в частности, оно больше половины толщины d диска 202 на периферии 209 крыльчатки 201. Вследствие этого на обращенном вперед периферийном сегменте 202с центробежные силы Fc создают изгибающий момент MF, который стремится заставлять периферийный сегмент 202c наклоняться не вперед, а в противоположном направлении, т.е. назад. Величина этого изгибающего момента MF увеличивается при переходе от периферии 209 до промежуточного диаметра Di, где она достигает локального максимума. Далее, она уменьшается по возможности до такой степени, чтобы реверсировать направление изгибающего момента MF. Таким образом, так как изгибающий момент MF не увеличивается непрерывно от периферии 209 до соединения диска 202 с венцом 211, он достигает уровней, которые значительно меньше, чем в крыльчатке 101 известного уровня техники, тем самым позволяя использовать венец 211 и крепежный диск, которые являются более легковесными. В дополнение, так как аксиальные перемещения периферии 209 крыльчатки 201 уменьшаются, зазор dp между кромками лопаток 205 на периферии крыльчатки 201 и крышкой 210 также может уменьшаться, а крышка 210 может крепиться сравнительно жестким образом в крепежной точке 214 ближе к задней части крышки 210 и, таким образом, к задним краям 207, чем к передней части крышки 210 и передним краям 206.

Дополнительное преимущество заключается в меньшем аксиальном размере крыльчатки 201, в частности в меньшем аксиальном расстоянии между впуском для рабочей текучей среды на передней части крыльчатки 201 и ее выпуском на периферии 209 крыльчатки 201. В частности, в турбинном двигателе, таком как турбовальный двигатель 1, показанный на Фигуре 1, это делает возможным перемещение передних элементов компрессора вперед в значительной степени, т.е. в показанном варианте выполнения горячие участки, такие как камера 4 сгорания и первая, и вторая аксиальные турбины 5 и 6, могут перемещаться вперед, тем самым уменьшая общий аксиальный размер турбинного двигателя.

В показанном на Фигуре 3 варианте выполнения внешний край периферийного сегмента 202с диска 202 изогнут так, чтобы перенаправлять переднюю поверхность 203 диска 202 в радиальном направлении, тем самым обеспечивая, что канал потока текучей среды возвращается к радиальному направлению так, чтобы сделать возможным использование показанного традиционного радиального диффузора 212. Тем не менее в альтернативном варианте выполнения, который показан на Фигуре 4, в котором каждый эквивалентный элемент представлен такой же ссылочной позицией, как на Фигуре 3, канал потока текучей среды не приводится обратно к радиальному направлению, тем самым облегчая изготовление крыльчатки, даже если диффузор, расположенный после крыльчатки, необходимо преобразовывать для соответствия этому.

Центробежный компрессор с крыльчаткой 201 вида, показанного на Фигурах 3 и 4, может использоваться, помимо других использований, в турбинных двигателях, таких как турбовальный двигатель 1, показанный на Фигуре 1, однако он также может использоваться в прямоточных или двухконтурных турборективных двигателях, в турбовинтовых двигателях, в турбовальных двигателях и/или в турбокомпрессорах. За счет его меньшего веса он в особенности предпочтителен в авиационном применении, таком как, например, движущееся неподвижное крыло и/или летательный аппарат с вращательным валом, с или без пилота, независимо от того, легче ли они воздуха или тяжелее воздуха. Тем не менее также могут предусматриваться другие неавиационные применения, известные специалисту в области техники, такие как, например, движущиеся наземные и/или водные суда, включая транспортные средства на воздушной подушке, генерирующие электричество, насосные станции и/или другие промышленные применения. Такой центробежный компрессор может образовывать единственную ступень системы компрессии или один или более ступеней многоэтапной системы компрессии, включая ступени, которые могут быть аксиальными, центробежными или смешанными аксиальными и центробежными, т.е. имеющими по меньшей мере одну центробежную ступень и ступень, которая является аксиальной или смешанной.

Несмотря на то, что настоящее изобретение описано со ссылкой на специальные варианты выполнения, ясно, что могут выполняться различные преобразования и изменения этих вариантов выполнения без выхода за пределы общего объема охраны изобретения, который определен формулой изобретения. В частности, индивидуальные характеристики различных показанных вариантов выполнения могут быть объединены в дополнительных вариантах выполнения. Вследствие этого описание и чертежи должны рассматриваться в иллюстрирующем, а не в ограничивающем смысле.

1. Крыльчатка (201) центробежного компрессора (3), причем крыльчатка содержит диск (202) и лопатки (205), которые прикреплены к диску (202) на передней поверхности (203) диска (202) и каждая из которых имеет хвост (215) лопатки, кромку (216) лопатки, передний край (206) и задний край (207), отличающаяся тем, что точка пересечения между задним краем (207) и хвостом (215) лопатки дополнительно смещена вперед на по меньшей мере половину толщины диска (202) по сравнению с хвостом (215) лопатки на промежуточном диаметре (Di) крыльчатки (201), а точка пересечения между задним краем (207) и кромкой (216) лопатки также дополнительно смещена вперед по сравнению с кромкой (216) лопатки на промежуточном диаметре крыльчатки (201).

2. Крыльчатка (201) по п.1, отличающаяся тем, что хвост (215) лопатки на периферии (209) крыльчатки (201) ориентирован в направлении, которое является по существу радиальным.

3. Крыльчатка (201) по п.1, отличающаяся тем, что дополнительно содержит венец (211), соединенный с задней поверхностью (204) диска (202) и пригодный для крепления к вращательному валу.

4. Крыльчатка (201) по п.3, отличающаяся тем, что венец (211) включает в себя радиальный крепежный диск.

5. Центробежный компрессор (3), включающий в себя крыльчатку (201) по п.1.

6. Центробежный компрессор (3) по п.5, дополнительно включающий в себя крышку (210), покрывающую лопатки (205) так, чтобы взаимодействовать с диском (202) для образования канала потока текучей среды между передними краями (206) и задними краями (207) лопаток (205).

7. Центробежный компрессор (3) по п.6, в котором крышка (210) включает в себя по меньшей мере одну крепежную точку (214), расположенную ближе к задним краям (207) лопаток (205) крыльчатки (201), чем к передним краям (206) лопаток (205) крыльчатки (201).

8. Центробежный компрессор (3) по п.6, в котором крышка прикреплена к лопаткам (205).

9. Турбинный двигатель, включающий в себя центробежный компрессор (3) по любому из пп.5-8.



 

Похожие патенты:

Изобретение относится к турбомашинам и может использоваться в рабочих колесах, лопаточных диффузорах и обратно-направляющих аппаратах центробежных компрессоров, нагнетателей, вентиляторов и насосов.

Группа изобретений относится к области насосостроения. Ротор центробежного нагнетателя состоит из множества рабочих дисков, плотно, без зазоров соединенных между собой торцами.

Изобретение относится к компрессоростроению. Рабочее колесо, в котором лопатки соединены с опорным кольцом, передним и задним фланцами, хвостовик лопатки защемлен межлопаточным креплением.

Изобретение относится к способу изготовления рабочих колес центробежного компрессора. Способ изготовления рабочего колеса из композиционного материала, включающий раскрой слоев материала лопаток, прессование их в пресс-форме и прессование колеса.

Изобретение относится к области турбинного машиностроения, а именно к способу изготовления рабочих колес центробежного компрессора. Способ изготовления рабочего колеса из композиционного материала, включающий раскрой слоев материала лопаток, прессование их в пресс-форме и прессование колеса.

Изобретение относится к конструкциям рабочих колес центробежных компрессоров. Способ изготовления рабочего колеса центробежного компрессора включает раскрой слоев материала лопаток, наружные поверхности опорного кольца покрывного диска выполняют эквидистантно аэродинамическим поверхностям газового тракта, аэродинамический профиль лопаток оформляют в пресс-форме, лопатки укладывают в сепаратор пресс-формы и в полостях сепаратора предварительно формируют опорное кольцо и покрывной диск, сепаратор укладывают в пресс-форму и производят прессование, при этом в матрице формируют наружные поверхности покрывного диска, в сепараторе формируют внутренние аэродинамические поверхности газового тракта покрывного диска и опорного кольца.

Изобретение относится к области вентиляторостроения, в частности к рабочим колесам центробежных вентиляторов с загнутыми вперед лопатками. Рабочее колесо содержит несущий и покрывной диски и установленные между ними загнутые вперед основные и дополнительные укороченные лопатки.

Изобретение относится к турбомашиностроению, в частности к радиальным вентиляторам, насосам, компрессорам с загнутыми назад лопатками рабочего колеса. Турбомашина содержит спиральный корпус, установленное в нем рабочее колесо, несущий и покрывной диски, расположенные между ними загнутые назад профильные лопатки (5).

Изобретение относится к вентиляторостроению. Сущность изобретения заключается в следующем.

Предложены способ и покрывающий элемент (50) для защиты рабочего колеса (14) от повреждений. Покрывающий элемент (50) содержит съемную основную часть (50), имеющую первую поверхность (52), вторую поверхность (54), противоположную первой поверхности (52) и выполненную так, что она соответствует передней поверхности (14а) рабочего колеса (14) компрессора (10), и переднюю часть (56), покрывающую всю переднюю часть рабочего колеса (14) компрессора (10), и крепежное приспособление (58, 80, 82, 84, 86), присоединенное к съемной основной части (50) и выполненное с возможностью крепления покрывающего элемента (50) к рабочему колесу (14) компрессора (10).

Изобретение относится к роторам турбомашин, используемых в авиации. Барабан ротора турбомашины выполнен в форме полого цилиндрического тела вращения вокруг продольной оси с одним и более венцами, со средствами для крепления хвостовиков лопаток, расположенных через равные промежутки по наружной поверхности, при этом барабан выполнен из металломатричного композита с перекрестной укладкой армирующих волокон, а средства для крепления хвостовиков лопаток выполнены в виде корневых элементов под сварку по форме профиля лопатки, при этом на внутренней поверхности барабана из композита выполнены наплывы, фланцы или цапфы с закладными элементами под сварку, причем наплывы расположены под корневыми элементами. Металломатричный композит сформирован сплавлением одной части намотанных, по меньшей мере, под одним углом и другой части из «свалянных» волокон из SiC, заключенных в матрицу из титанового сплава. Изобретение обеспечивает снижение массы, повышение надежности, прочности ободной части барабана, а также повышение технологичности изготовления. 1 з.п. ф-лы, 2 ил.

Изобретение относится к роторам турбомашин, используемых в авиации. Барабан ротора турбомашины, содержащий корпус в форме полого цилиндрического тела вращения вокруг продольной оси и выполненный в нем один и более венец со средствами для крепления хвостовиков лопаток, расположенных по наружной поверхности через равные промежутки в поперечном направлении, при этом корпус содержит металломатричный композит с перекрестной укладкой армирующих волокон, средства для крепления хвостовиков лопатки выполнены в виде корневого элемента под сварку по форме профиля лопатки, а металломатричный композит сформирован по всей наружной поверхности тела вращения слоем толщиной, не превышающей высоту корневого элемента. Металломатричный композит сформирован из одной части намотанных, по меньшей мере, под одним углом и другой части из «свалянных» волокон из SiC, заключенных в матрицу из титанового сплава с их последующим сплавлением. Изобретение обеспечивает снижение массы, повышение надежности, прочности ободной части барабана, а также технологичности изготовления. 1 з.п. ф-лы, 3 ил.

Изобретение относится к области турбостроения, а именно к изготовлению рабочих колес центробежных компрессоров. Рабочее колесо центробежного компрессора включает рабочие лопатки, опорное кольцо и покрывной диск, при этом опорное кольцо состоит из металлического сепаратора опорного кольца и композиционного материала, а покрывной диск состоит из металлического сепаратора покрывного диска и композиционного материала. Сепараторы опорного кольца и покрывного диска на входном диаметре имеют кольцевой экран, который защищает композиционный материал. Внутренние поверхности сепараторов выполнены по форме и размерам газового тракта. У лопатки входная кромка окантована металлической накладкой, защищающая входную кромку от удара посторонними предметами. Металлическая накладка надежно защемлена в отверстиях сепараторов опорного кольца и покрывного диска. Изобретение направлено на обеспечение высокой точности изготовления рабочего колеса и повышение прочности входных кромок лопаток. 2 н.п. ф-лы, 13 ил.

Центробежная турбомашина, содержащая корпус, роторный узел, содержащий по меньшей мере одно центробежное рабочее колесо для текучей среды, проходящей от впускной стороны рабочего колеса к его выпускной стороне, и уплотнение входного отверстия, проходящее между входным отверстием центробежного рабочего колеса и корпусом и предназначенное для предотвращения протечки текучей среды между корпусом и центробежным рабочим колесом. Указанное уплотнение имеет по меньшей мере первую часть, расположенную у впускной стороны, и последнюю часть, расположенную у выпускной стороны рабочего колеса, при этом диаметр последней части меньше диаметра первой части. Изобретение направлено на снижение протечки между корпусом и рабочим колесом турбомашины. 3 н. и 7 з.п. ф-лы, 5 ил.

Предложен центробежный компрессор для выполнения технологического процесса над влажным газом. Центробежный компрессор содержит корпус и по меньшей мере одну ступень, содержащую по меньшей мере одно рабочее колесо (100), расположенное с возможностью вращения в корпусе и имеющее ступицу (107) и лопатки (111), причем каждая лопатка рабочего колеса имеет сторону пониженного давления и сторону повышенного давления. Ступень компрессора содержит по меньшей мере одно устройство измельчения капель, выполненное с возможностью содействия измельчению капель жидкости, протекающих через ступень компрессора. Изобретение направлено на уменьшение вредных факторов от наличия капель жидкости в перекачиваемом газе. 2 н. и 28 з.п. ф-лы, 21 ил.

Заявленное техническое решение относится к области компрессоростроения, а именно к рабочим колесам центробежных компрессоров. При работе центробежного компрессора газу, поступающему в межлопаточные каналы, передается кинетическая энергия вращающегося рабочего колеса. Существующая разность давлений рабочего тела в межлопаточном канале вызывает вторичные течения, перпендикулярные к основному потоку, которые направлены от стороны давления к стороне разрежения, а также от корневой части к периферии пера лопатки рабочего колеса. Интенсивность вторичных течений зависит от величины углов лопатки βл пер и βл вт, а получение оптимального распределения данных углов вдоль меридионального контура колеса способствует снижению потерь от вихреобразования при смешивании и повышает КПД компрессора в целом. Технический результат изобретения заключается в снижении гидравлических потерь в рабочем колесе и в повышении КПД центробежного компрессора. 1 з.п. ф-лы, 3 ил.

Изобретение предназначено для использования в вентиляторостроении. Рабочее колесо содержит основной диск 1 с законцовками 7 диаметром D3=(1,01…1,02)D2 внешнего диаметра D2 лопаток 4 в точках примыкания к нему, покрывной диск 2 с законцовками 8 диаметром D4=(1,05…1,1)D2. Законцовка 8 покрывного диска 2 выполнена плоской. Загнутые назад лопатки 4 рабочего колеса расположены между основным 1 и покрывным 2 дисками. Выходная кромка 9 на участке 10 лопатки 4, примыкающем к основному диску 1, расположена на постоянном расстоянии R от оси 6 вращения рабочего колеса, а на участке 11 расстояние R плавно увеличивается по мере приближения к покрывному диску 2, вплоть до радиуса покрывного диска 2 с законцовкой 8: R=0,5D4. Обеспечивается улучшение напорно-расходной характеристики и КПД свободного колеса, канального вентилятора и вентилятора со спиральным корпусом. 1 з.п. ф-лы, 4 ил.

Блок (10) вентилятора включает в себя корпус (20) с входным отверстием (70), входным отверстием (60) вентилятора и выходным отверстием (80). Блок вентилятора дополнительно включает в себя крыльчатку (30) и электродвигатель (40). Пропускающая воздух защитная решетка (50) располагается между входным отверстием для воздуха и входным отверстием вентилятора для предотвращения касания пользователями крыльчатки (30) и удалена от входного отверстия (60) вентилятора на первое расстояние (54) и от входного отверстия (70) для воздуха - на второе расстояние так, чтобы фильтр (90) мог быть установлен между входным отверстием (70) для воздуха и пропускающей воздух защитной решеткой (50). 9 з.п. ф-лы, 7 ил.

Изобретение может использоваться в центробежных насосах, вентиляторах и компрессорах, рабочие колеса которых имеют радиальные лопаточные решетки. Изобретение минимизирует потери напора в таких лопаточных решетках за счет задания оптимальной формы средней линии лопаток. Потери напора минимизируются благодаря тому, что при рекомендуемой изобретением форме средней линии лопаток абсолютное течение рабочей среды в области решетки в радиальной плоскости происходит по дугам окружности. Рекомендуемая оптимальная форма средней линии лопаток рассчитывается в каждом конкретном случае исходя из геометрических и газодинамических параметров рабочего колеса по приведенному в изобретении соотношению. 2 ил.
Наверх