Бесконтактный способ измерения поверхностного натяжения жидкостей

Изобретение относится к области измерительной техники, в частности к бесконтактным аэродинамическим способам контроля поверхностного натяжения жидкостей, и может найти применение в химической промышленности и энергетике. Способ измерения поверхностного натяжения жидкости заключается в формировании углубления на поверхности жидкости под действием струи газа, измерении высоты углубления, изменении интенсивности струйного воздействия, измерении высоты полученного углубления и определении поверхностного натяжения по результатам двух измерений высоты углубления. Техническим результатом является обеспечение контроля поверхностного натяжения в производственных условиях с высокой точностью вследствие снижения влияния на результат измерения плотности жидкости, что достигается за счет измерения двух различных значений высоты углубления при двух значениях силы действия газовой струи. 1 ил.

 

Изобретение относится к области измерительной техники, в частности к бесконтактным аэродинамическим способам контроля поверхностного натяжения жидкостей, и может найти применение в химической промышленности и энергетике.

Известен способ измерения вязкости жидкости (А.с. №1753369 СССР, МКИ G01N 13/02. Способ определения поверхностного натяжения жидкостей. / В.П. Астахов, М.М. Мордасов, В.П. Журавлев // Опубл. 07.08.1992. Бюл. №29), включающий формирование углубления на поверхности жидкости под действием струи газа и измерение оптическими методами параметров углубления, по которым судят о поверхностном натяжении.

Недостатками указанного способа являются невысокая точность, что обусловлено влиянием плотности жидкости на результат измерения.

Наиболее близким по технической сущности является способ измерения поверхностного измерения жидкостей (Pfund А.Н., Greenfield Е.W. Surface-tension measurements of viscous liquids // Ind. Eng. Chem. 1936. Vol. 8. No. 2. Pp. 81-82), заключающийся в формировании углубления на поверхности жидкости под действием струи газа и измерении высоты углубления, по которой судят о поверхностном натяжении.

Такие признаки прототипа, как формирование углубления на поверхности жидкости под действием струи газа и измерение параметров углубления, совпадают с существенными признаками заявляемого способа.

Недостатки прототипа связаны с использованием тонкой ламинарной струи, под действием которой на поверхности жидкости формируется углубление малого размера, высота и диаметр которого не превышают 2 мм. Ламинарная струя является нестабильной и подвержена влиянию внешних воздействий, например акустических, что может вносить погрешность в результат измерения. Малые размеры углубления для проведения точных измерений требуют применения сложных оптических методов и накладывают ограничение на размер измерительной емкости. В устройстве, реализующем способ прототипа, используется измерительная емкость шириной 10 мм с прозрачными боковыми стенками, которая, по сути, является частью измерительного устройства, так как требует тщательной очистки после проведения измерений, что уменьшает ценность такого способа, как бесконтактного. Трудоемкость этого способа находится на уровне других лабораторных способов контроля поверхностного натяжения. Увеличение размеров углубления приводит к росту влияния плотности жидкости на результат измерения и снижению точности. Необходимо принимать меры по снижению этого влияния.

Целью изобретения является повышение точности измерения и расширение сферы применения аэродинамических способов контроля поверхностного натяжения.

Сущность изобретения заключается в том, что в способе формируют углубление на поверхности жидкости под действием струи газа и измеряют высоту углубления, изменяют интенсивность струйного воздействия и измеряют высоту полученного углубления, а о поверхностном натяжении судят по результатам двух измерений высоты углубления.

При реализации предлагаемого способа на поверхности контролируемой жидкости турбулентной газовой струей, сила действия которой равна F1, формируют углубление высотой h1 и измеряют эту величину. Затем увеличивают силу действия струи до значения F2 и измеряют новое значение h2 высоты углубления. По полученным значениям h1 и h2 рассчитывают поверхностное натяжение σ жидкости.

В установившемся режиме при постоянном количестве движения газа в струе силе F, создаваемой струей газа, противодействуют выталкивающая сила Fρ и сила Fσ, создаваемая поверхностным натяжением σ жидкости, то есть

F=Fρ+Fσ,

или

где k - коэффициент формы углубления на поверхности жидкости; d - диаметр отверстия, из которого вытекает газовая струя, м; µ - коэффициент расхода; Р - избыточное давление газа перед отверстием истечения, Па; ρ - плотность жидкости, кг/м3; g - ускорение свободного падения, м/с2; V - объем углубления 2 высотой h и диаметром 2R, ограниченный сверху плоскостью недеформированной поверхности 3 жидкости 1 (см. фиг. 1), м3; R - радиус углубления 2 в плоскости недеформированной поверхности 3, м; γ - угол наклона касательной к поверхности жидкости в вертикальной осевой плоскости на уровне недеформированной поверхности 3 относительно горизонтали, рад.

Параметры V, R и sinγ зависят от высоты h углубления, однако изменяются неодинаково. Объем V значимо изменяется всегда, а величины R и sinγ - только при малых h. После достижения некоторого h0 увеличение h не приводит к существенному изменению произведения 2πRsinγ, следовательно, при выборе h2>h1>h0 можно считать, что слагаемое 2πRσsinγ в уравнении (1) остается постоянным. Тогда величина изменения Δh=h1-h2 высоты углубления зависит только от плотности ρ жидкости и изменения ΔF=F1-F2 силы действия струи. Дополнительное изменение высоты углубления от h1 до h2 позволяет скомпенсировать влияние плотности жидкости на результат измерения поверхностного натяжения и повысить точность.

Предложенный способ позволяет производить контроль поверхностного натяжения в производственных условиях с высокой точностью вследствие снижения влияния на результат измерения плотности жидкости, что достигается за счет измерения двух различных значений высоты углубления при двух значениях силы действия газовой струи.

Способ измерения поверхностного натяжения жидкости, заключающийся в формировании углубления на поверхности жидкости под действием струи газа и измерении высоты углубления, по которой судят о поверхностном натяжении, отличающийся тем, что дополнительно изменяют интенсивность струйного воздействия и измеряют высоту полученного углубления, а о поверхностном натяжении судят по результатам двух измерений высоты углубления.



 

Похожие патенты:

Изобретение относится к области микрофлюидики и может быть использовано для создания течения в капле жидкости и перемешивания жидкостей в малых объемах. Предложенный способ заключается в том, что каплю жидкости, в которой нужно создать течение, помещают на горизонтально расположенную тонкую упругую пластину со свободными краями, в которой возбуждают изгибные колебания с частотой собственных колебаний в интервале звуковых и ультразвуковых частот пьезоэлектрическим преобразователем.

Изобретение предоставляет датчик для расходомера, который может использоваться в различных устройствах для измерений параметров потока, использующих полупроводниковые либо керамические терморезисторы.

Изобретение относится к технической физике, а именно к способам и устройствам контроля физических параметров: вязкости, электропроводности, плотности, поверхностного натяжения у образцов металлических расплавов.

Настоящее изобретение касается расчета измерительной системой вязкости жидкости, подаваемой с измерительной системы на диагностический анализатор. Способ расчета вязкости жидкости в зонде, предназначенном для аспирации или дозирования, содержащий этапы, на которых: измеряют эталонное давление (Pэт., Pref), представляющее собой давление в измерительном наконечнике при отсутствии дозирования или аспирации.

Изобретения могут быть использованы в коксохимической промышленности. Способ оценки термопластичности углей или спекающих добавок включает набивку угля или спекающей добавки в емкость с получением образца, размещение слоя набивки из частиц на образце, нагрев образца с поддержанием при этом образца и слоя набивки при постоянном объеме или с приложением постоянной нагрузки на слой набивки, измерение расстояния проникновения, представляющее собой термопластичность угля, на которое расплавленный образец проникает в полости слоя набивки, и оценку термопластичности образца с использованием измеренного значения.

Изобретения могут быть использованы в коксохимической промышленности. Способ подготовки угля для получения кокса включает набивание угля в емкость для получения образца, на который помещают материал, имеющий сквозные отверстия, проходящие сверху донизу, нагревают полученный образец и измеряют расстояние проникновения, на которое расплавленный образец проникает внутрь указанных сквозных отверстий.

Изобретения относятся к измерительной технике, а именно к способам и устройствам для определения различных параметров жидкостей, в частности нефтепродуктов, хранимых или перевозимых в резервуарах, и могут быть использованы в системах определения объема и массы жидкостей.

Настоящее изобретение относится к области металлургии и машиностроения. Задачей, на решение которой направлено заявляемое изобретение, является определение вязкоупругих свойств металлов с помощью зондового акустического метода.

Изобретение относится к машиностроению, в частности к испытаниям смазочно-охлаждающих жидкостей (СОЖ), используемых при резании материалов. Способ оценки технологической эффективности смазочно-охлаждающей жидкости (СОЖ), по которому осуществляют измерение действительного коэффициента трения в течение 10-20 с применением оцениваемой СОЖ и без нее, максимальную скорость охлаждения температурного датчика в испытываемой СОЖ и на воздухе (без СОЖ) от температуры, возникающей в зоне резания, до комнатной температуры.

Изобретение относится к области приборного исследования строительных материалов путем определения их физических свойств, в частности к исследованию реологических свойств текучих сред (предельного сопротивления сдвига, вязкости, градиента скорости деформирования) и анализа материалов путем определения их текучести и может быть использовано для определения реологических свойств у различных формовочных смесей специальных бетонов, оценки этих свойств и классификации смесей по реологическим свойствам.

Изобретение относится к области технической физики, а именно к технике определения вязкостных свойств жидких сред. Вискозиметр содержит вертикальный калиброванный капилляр, заполненный исследуемой жидкостью. Внутри капилляра с зазором помещена калиброванная игла. Техническим результатом является повышение точности определения вязкостных свойств жидких сред. 2 ил.

Изобретение относится к области измерительной техники и может быть использовано для определения вязкости текучей среды. Предложены измерительное электронное устройство (20) и способ получения вязкости текучей среды потока при заданной эталонной температуре. Измерительное электронное устройство (20) содержит интерфейс (201), выполненный с возможностью обмена сообщениями, систему (204) хранения, выполненную с возможностью хранения заданной эталонной температуры (211), измеренной вязкости (214) текучей среды, измеренной температуры (215) текучей среды и данных (218) отношения температуры и вязкости, которые связывают температуру с вязкостью в заданном диапазоне температур текучей среды потока, и систему (203) обработки, соединенную с интерфейсом (201) и с системой (204) хранения. При этом система (203) обработки выполнена с возможностью получения измеренной температуры (215) текучей среды, получения измеренной вязкости (214) текучей среды и формирования вязкости (227) при эталонной температуре с использованием измеренной вязкости (214) текучей среды и данных (218) отношения температуры и вязкости, при этом сформированная вязкость (227) при эталонной температуре соответствует заданной эталонной температуре (211). Технический результат - повышение точности получаемых данных. 2 н. и 16 з.п. ф-лы, 8 ил.

Изобретение относится к области технической физики, в частности к способам измерения вязкости газов, и может найти применение в различных отраслях промышленности и в лабораторной практике. Способ измерения вязкости газов реализуется путем его отбора и заполнения им емкости, пропускания через капилляр при постоянном перепаде давления, измерения времени изменения давления в емкости на заданную величину. При этом дополнительно изменяют объем емкости, измеряют давления до и после дросселя и о вязкости газа судят по произведению давления и времени истечения газа на момент достижения давлением в емкости заданного значения. Техническим результатом является повышение точности и надежности, а также обеспечение возможности проводить анализ газовых сред при давлениях, близких к атмосферному, без использования специальных побудителей расхода газа и регуляторов. 1 ил.

Изобретение может быть использовано в нефтяной, автомобильной, авиационной, машиностроительной отраслях промышленности. С помощью устройства определяются плотность, динамическая и кинематическая вязкость жидкости. Динамическая вязкость определяется по времени набора определенного объема исследуемой жидкости, поступающей под действием постоянного разрежения, создаваемого компрессором, по трубке с известными размерными характеристиками. Кинематическая вязкость определяется по времени истечения этого объема жидкости по той же трубке под действием силы тяжести без создания разрежения. Плотность находится из отношения динамической вязкости к кинематической. Техническим результатом является упрощение и автоматизация определения вязкости и плотности жидкости. 2 н. и 1 з.п. ф-лы, 1 ил.

Капиллярное устройство для индикаторов отображения текучей среды, содержащих ограничитель текучей среды и капиллярную трубку. Ограничитель текучей среды содержит сквозное отверстие малого диаметра. Капиллярная трубка выполнена с возможностью наполнения по меньшей мере двумя несмешиваемыми текучими средами. Ограничитель текучей среды герметично соединен с, по меньшей мере, одним концом капиллярной трубки таким образом с возможностью сообщения внутренней и наружную поверхностей капиллярной трубки посредством сквозного отверстия ограничителя текучей среды. Внутренняя поверхность капиллярной трубки предварительно обработана и является маслостойкой и гидрофобной. Заявляемое устройство обеспечивает повышение степени регулируемости границы раздела или мениска между, по меньшей мере, двумя заключенными в капиллярной трубке текучими средами с предотвращением их смешивания. 3 н. и 17 з.п. ф-лы, 18 ил.

Изобретение относится к области измерительной техники, а именно в химической и нефтехимической отраслях промышленности на любых предприятиях и заводах, где вязкость изготовляемых ими продуктов является основным показателем качества. Вискозиметр состоит из стеклянного вискозиметра типа ВПЖ-4 с отсеченными по диагонали коленом и отводной трубкой, герметично соединенного с ним двухходового крана, который герметично соединен со стеклянным шприцем. При этом двухходовой кран выполнен с возможностью переключения системы на стеклянный шприц либо на атмосферу. Техническим результатом является сокращение времени определения кинематической вязкости с одновременным упрощением процедуры измерения. 2 ил.

Изобретение относится к области гидродинамики и может быть использовано при разработке теплообменных аппаратов, использующих эффект начального участка. Установка для идентификации турбулентного начального участка в каналах малого поперечного сечения содержит емкость для исследуемой ньютоновской жидкости и теплообменник, представляющий собой трубопровод, состоящий из нескольких параллельных участков, соединенных между собой. Полость упомянутой емкости соединена с входной частью полости теплообменника, при этом выходная часть полости теплообменника открывается в полость мерной емкости, установленной на высокоточных весах. Полость емкости для исследуемой жидкости дополнительно соединена с выходной полостью компрессорного агрегата, а входная часть полости мерной емкости соединена с выходным патрубком емкости для исследуемой жидкости через полость теплообменника и через полость емкости исследуемой жидкости - с полостью компрессорного агрегата. Технический результат – исключение пульсаций жидкости на замеры. 3 ил.

Изобретение относится к нефтегазовой промышленности и может применяться для исследования газогидродинамических процессов, происходящих в скважинах газоконденсатных месторождений. Техническим результатом является повышение точности и достоверности проводимых на стенде исследований. Предлагаемый стенд, включающий одну горизонтальную трубу в виде последовательно соединенных отдельных секций труб, насос, соединительные трубопроводы, запорные устройства, расходомеры, подъемные агрегаты, содержит дополнительно три горизонтальные трубы, выполненные в виде последовательно соединенных отдельных стальных секций труб, измерительные устройства, блок подачи газа. Барботер установлен на входе в одну из труб. Содержит проточный нагнетатель, вход которого подключен к блоку подачи газа, а выход - к барботеру, накопительную емкость, выход которой через насос соединен с барботером, сепаратор, вход которого соединен с выходом упомянутой трубы, выход для газа сообщен с проточным нагнетателем, а выход для жидкости - с входом накопительной емкости. Секции горизонтальных труб соединены между собой гибкими соединительными элементами. Все трубы имеют разный диаметр и установлены на подъемных агрегатах. 2 ил.

Изобретение относится к аналитической химии и представляет собой способ иммунохроматографического анализа. Иммунохроматографический тест основан на взаимодействии конъюгата специфические антитела-коллоидный маркер с определяемым соединением (антигеном) в ходе движения реагентов вдоль тест-полоски. В зависимости от наличия антигена происходит образование специфических комплексов, обеспечивающих окрашивание в аналитической линии теста. Интенсивность окрашивания, а также чувствительность теста напрямую зависят от времени инкубации пробы и коллоидного конъюгата. Значительные возможности по снижению предела обнаружения дает использование мелкопористых, «медленных» рабочих мембран. Сокращение скорости движения увеличивает время специфического взаимодействия и тем самым снижает предел обнаружения системы. Однако часто использование мелкопористых мембран влечет ряд негативных эффектов, особенно при анализе реальных, часто содержащих корпускулярные частицы проб. В таких случаях происходит забивание пор мембраны и полная остановка течения жидкости, а результаты тестирования признаются недействительными. Предложенный подход отличается тем, что для анализа используется крупнопористая мембрана, а для сокращения скорости движения жидкости в пробу вносятся специальные растворы для повышения вязкости раствора, что приводит к увеличению времени протекания вдоль мембраны. Техническим результатом является снижение предела обнаружения аналитической системы. 1 ил.
Наверх