Способ активации маточного раствора

Изобретение относится к области материаловедения и может быть использовано в различных областях науки и техники в создании композитов различного назначения. Технический результат заключается в повышении прочности вяжущего, сокращении времени твердения, уменьшении В/Ц отношения, уменьшении времени активации. Способ активации маточного раствора заключается в следующем: ненасыщенный маточный раствор, содержащий 1,3% (по массе) портландцемента, в течение 5 минут обрабатывается ультразвуком мощностью 140 В·А (10 Вт/см2) с частотой 22 кГц, возбуждаемым пьезоэлектрическим или магнитострикционным датчиком, через волновод, установленный вертикально к поверхности раствора и опущенный на глубину 5 см, вводится в порошкообразное вяжущее, после чего перемешивается в мешалке (1000 об/мин) и разливается в формы, где остается для твердения при нормальных условиях. 2 табл.

 

Изобретение относится к области материаловедения и может быть использовано в различных областях науки и техники в создании композитов различного назначения.

Известен способ диспергирования цементных паст с использованием ультразвуковых колебаний большой мощности, где диспергирование идет за счет процесса кавитации (патент РФ №2269374, 08.04.2003. «Устройство для диспергирования жидких органических сред».

Одним из существенных недостатков использования ультразвуковых колебаний большой мощности является создание высокой интенсивности ультразвуковых колебаний во всем объеме. При воздействии на раствор ультразвуковыми колебаниями с интенсивностью, превышающей порог кавитации, излучатель ультразвука подвергается разрушительным воздействиям.

Наиболее близким по техническому назначению является патент RU 2380344 С2, МПК С04В 40/00, C02F 1/34, 04.03.2008. Главным недостатком, которого является длительная активация воды в течение 3-4 часов при мощности излучателя 9-27 Вт и частоте 100-140 кГц.

Цель изобретения - повышение прочности вяжущего, сокращение времени твердения, уменьшение В/Ц затворения, уменьшение времени активации.

Способ активации заключается в следующем: ненасыщенный маточный раствор, содержащий 1,3% (по массе) нерастворенных частиц цементного геля, помещается в цилиндрический или кубический сосуд, где обрабатывается ультразвуковым полем с частой 22 кГц, мощностью 140 В-А (10 Вт/см2), возбуждаемым пьезоэлектрическим или магнитострикционным датчиком, через волновод, устанавливаемый вертикально к поверхности раствора и опущенный на глубину 5 см, вводится в порошкообразное вяжущее, после чего перемешивается в мешалке (1000 об/мин) и разливается в формы, где остается для твердения при нормальных условиях.

На фиг. 1 представлена схема установки волновода (1 - волновод, 2 - сосуд).

Подобная схема позволяет активизировать процесс седиментации в гравитационном поле взвешенных в растворе частиц и способствует его гомогенизации.

В результате диспергации происходит увеличение на 2 порядка удельной поверхности частиц (таблица 1), соответственно локальное распределение энергии в маточном растворе принимает минимальное значение.

Таблица 1
Увеличение удельной поверхности при прогрессирующем дроблении материала при воздействии ультразвука
Размер частиц Число частиц Суммарная поверхность Удельная поверхность, отнесенная к единице объема
85 мкм 0,111·1010 600 см2 6·102 см-1
40 мкм 1,015·1010 1200 см2 6·102 см-1
20 мкм 5,86·1010 2400 см2 6·102 см-1
7,5 мкм 86,71·1010 6000 см2 6·103 см-1
2,25 мкм 176,9·1010 6 м2 6·104 см-1

Распределение Больцмана позволяет определить количество частиц на заданной высоте и, соответственно, число частиц в единице объема. Считая, что распределение числа частиц по высоте каждого слоя подчиняется закону Больцмана, а в однородном поле силы тяжести потенциальная энергия частиц зависит от высоты получим:

где Ni - количество частиц в слое; N0 - общее количество частиц; m - масса частицы; g - ускорение свободного падения; h - высота сосуда; Т - температура окружающей среды; k - постоянная Больцмана.

Считая, что частицы имеют сферическую форму получаем:

где r - радиус частиц; σ - свободная энергия; Т - температура окружающей среды; k - постоянная Больцмана.

Запишем уравнение (2) для частиц с радиусами 2,25 мкм и 7,5 мкм:

Логарифмируя уравнение (4), получаем:

Выражаем σ из уравнения (5):

Как показывает расчет, энергия уменьшается до 2,49 (эрг/см2) при норме 12-24 (эрг/см2), что способствует возрастанию диффузионных процессов и росту кристаллов гидроокиси кальция и трехкальциевого гидросиликата, которые срастаясь образуют прочный кристаллический каркас.

Произведенный расчет дает уменьшение энергии в 5 раз, следовательно, согласно закону Фика ускоряет диффузию.

Характерная особенность жидкости состоит в том, что в ней могут распространяться лишь продольные волны разряжения сжатия, соответственно колебания дисперсных частиц происходят параллельно направлению распространения волны, и деформация представляет комбинацию всестороннего сжатия (растяжения) и частичного сдвига.

В результате образуется дисперсная матрица с равномерно распределенными частицами. Введение такого раствора в порошкообразное вяжущее вызывает интенсивное взаимодействие клинкерных минералов с водой, причем в результате диффузионных процессов клинкерные зерна концентрируются около центров кристаллизации, распределенных в маточном растворе. Это способствует формированию высокоорганизованной малодефектной структуры композита.

В результате, по сравнению с обычной технологией, прочность на сжатие возрастает в 2 раза (таблица 2).

Таблица 2
Результаты испытаний на сжатие опытных образцов
Срок 3 дня 7 дней 28 дней
Разработанный метод. Прочность, МПа 25,10 43,14 62,76
Обычный метод. Прочность, МПа 13,43 19,61 30,09

В таблице 2 представлена кинетика нарастания прочности. Из нее видно, что уже на 7 сутки у образцов, изготовленных на активизированном маточном растворе, она достигает марочного значения.

Из проведенного примера следует, что предварительная ультразвуковая обработка маточного раствора затворения позволяет перевести материалы на данной вяжущем в более высокую категорию. Следовательно, описанный способ оказывает большое влияния на технику, а также экономику производства строительных материалов и изделий.

Способ активации маточного раствора, заключающийся в том, что ненасыщенный маточный раствор, содержащий 1,3% (по массе) нерастворенных частиц цементного геля, помещается в цилиндрический или кубический сосуд, где обрабатывается ультразвуковым полем с частотой 22 кГц, мощностью 140 В·А (10 Вт/см2), возбуждаемым пьезоэлектрическим или магнитострикционным датчиком, через волновод, установленный вертикально к поверхности раствора и опущенный на глубину 5 см, вводится в порошкообразное вяжущее, после чего перемешивается в мешалке (1000 об/мин) и разливается в формы, где остается для твердения при нормальных условиях.



 

Похожие патенты:

Изобретение относится к способу повторного использования абразивной пыли гипсоволоконных панелей и побочного продукта гипсокартонных изделий. Технический результат заключается в улучшении характеристики отсасывания нормального гипса для изготовления гипсоволоконных панелей.

Группа изобретений относится к области получения пенобетона. В способе получения пенобетона, включающем приготовление технологической смеси путем перемешивания концентрата пенообразователя, воды, вяжущих, заполнителя, добавок и аэрацию смеси сжатым воздухом в смесителе, получение пенобетона осуществляют непрерывно в три этапа: на первом этапе ведут перемешивание-активирование вяжущих компонентов с водой, заполнителем и добавками в смесителе-активаторе со скоростью 1500-3000 1/мин вращения рабочего органа с кавитационным эффектом до получения жидко-твердой дисперсии вяжущих в тиксотропном метастабильном состоянии с уменьшением вязкости до 50-500 Па·с, в другом смесителе-активаторе ведут перемешивание-активирование концентрата пенообразователя с добавлением воды до получения жидко-жидкой дисперсии пенообразователя в тиксотропном метастабильном состоянии с уменьшением вязкости до 10-200 Па·с, на втором этапе в смесителе-аэраторе со скоростью вращения рабочих органов 1000-1500 1/мин ведут перемешивание непрерывных потоков обеих ранее активированных дисперсий с одновременной их аэрацией сжатым воздухом при избыточном давлении 0,25-2,5 МПа, а на третьем этапе полученная в смесителе-аэраторе пеномасса непрерывно поступает в канал пеномассопровода-структурообразователя в виде диффузора, совмещающего непрерывное транспортирование пеномассы в опалубку и ее бездефектное структурирование в режиме свободного движения под действием разности давлений 0,25-2,5 МПа на входе в канал и 0,01-0,1 МПа на его выходе при ограничении максимальной линейной скорости потока и минимального времени пребывания пеномассы в канале.

Изобретение относится к производству строительных материалов и изделий, а именно к способам изготовления легких бетонных изделий с древесным наполнителем, и может быть использовано в качестве конструкционного материала при строительстве домов, технических сооружений и т.д.

Настоящее изобретение касается способной к отверждению смеси, пригодной для получения у затвердевшей смеси свойства «легкости для уборки», содержащей по меньшей мере один минеральный связующий агент, порошок, включающий в себя по меньшей мере одно соединение кремния с фторорганическими заместителями, которое инкапсулировано внутри водорастворимого полимера, причем количество соединения кремния с фторорганическим заместителем составляет от 0,001 до 8 мас.% от имеющейся смеси и при необходимости прочие добавки, а также способа ее изготовления и ее применения.

Изобретение относится к промышленности строительных материалов, а именно к составам бетонных смесей, используемых при изготовлении сборных и монолитных железобетонных изделий и конструкций.
Изобретение относится к области строительных материалов, в частности к способу изготовления декоративных и облицовочных строительных изделий, и может быть использовано для изготовления гипсополимерной декоративной облицовочной плитки, искусственного камня различной формы и размеров и других архитектурно-художественных изделий для интерьера и фасада зданий.
Изобретение относится к промышленности строительных материалов, в частности к производству теплоизоляционных, теплоизоляционно-конструкционных и конструкционных изделий.

Изобретение относится к химической технологии, а именно к технологии производства битум-полимерных композиций, и может быть использовано для контроля и прогнозирования их параметров качества в процессе производства. Способ характеризуется тем, что в кондиционном и исследуемом образцах битум-полимерной композиции измеряют величины эффективной вязкости при температурах t=20°C, t=80°C и t=150°C и градиентах скорости сдвига Dr=5,56 с-1, Dr=11,1 с-1 и Dr=16,67 с-1, через τ=5,0 сек, τ=15,0 сек, τ=30,0 сек после начала ее приложения, и предварительно определяют доверительные интервалы относительных отклонений величин эффективной вязкости кондиционной битум-полимерной композиции и комплекс параметров качества, который соответствует технологической инструкции на данный кондиционный продукт, методика определения доверительных интервалов относительных отклонений эффективной вязкости Δηэф, определяемых методами экспертной оценки, сводится в общем виде к расчету относительного ее изменения на основании заданного соотношения с последующим формированием доверительного интервала ее отклонения для данных условий получения, причем значение Δηэф предварительно рассчитывают на основе полученных экспериментальных величин эффективной вязкости кондиционной битум-полимерной композиции, а контроль параметров качества исследуемой битум-полимерной композиции проводят, сравнивая значения полученных величин относительных изменений эффективной вязкости исследуемой битум-полимерной композиции Δηэф с соответствующими доверительными интервалами относительных отклонений величин эффективной вязкости кондиционной битум-полимерной композиции, полученных при одинаковых условиях исследований композиций, на основании результатов сравнения делают вывод о соответствии исследуемой битум-полимерной композиции свойствам кондиционной битум-полимерной композиции, а именно, если полученные значения относительного изменения величин эффективной вязкости Δηэф исследуемой битум-полимерной композиции дважды подряд входят в соответствующие различные доверительные интервалы ее относительного изменения для кондиционной битум-полимерной композиции при частично или полностью различных условиях получения исходных значений эффективной вязкости, используемых для расчета Δηэф и формирования интервалов ее доверительного отклонения для кондиционной битум-полимерной композиции, значит, испытуемая битум-полимерная композиция обладает комплексом физико-механических свойств, соответствующим технологической инструкции на данный продукт, и является кондиционной битум-полимерной композицией, если полученная величина изменения эффективной вязкости Δηэф исследуемой битум-полимерной композиции не входит в имеющийся интервал доверительного ее изменения для кондиционной битум-полимерной композиции, делают вывод о несоответствии исследуемой битум-полимерной композиции свойствам кондиционной битум-полимерной композиции по комплексу физико-механических свойств.

Изобретение относится к порошкообразному диспергирующему агенту, содержащему в качестве компонента, имеющего диспергирующее действие, комбинацию (а) по меньшей мере одного представителя эфиров поликарбоновых кислот с массовым содержанием от 0.1 до 20%, (b) по меньшей мере одного представителя сложных эфиров поликарбоновых кислот с массовым содержанием от 0 до 20% и (с) по меньшей мере одного представителя незаряженных сополимеров с массовым содержанием от 0.1 до 20%, который получают комбинированной распылительной сушкой индивидуальных компонентов и который является подходящим для регулирования текучести водных химических строительных суспензий.

Изобретение относится к производству ячеистых бетонов в разных формах. Технический результат заключается в повышении коэффициента конструктивного качества изделий из ячеистого бетона, получаемых с использованием автоклавной обработки, за счет повышения однородности поровой микроструктуры межпоровых перегородок.
Изобретение относится к способу тепловлажностной обработки отформованных бетонных изделий, преимущественно сложной формы, например, зубатых железобетонных шпал. Способ тепловлажностной обработки железобетонных зубатых шпал заключается в том, что после схватывания бетона зубатый выступ на подошве подрельсовой зоны шпалы окружают оболочкой, установленной с зазором по периметру, и заливают водой. Поддерживают нужную температуру. Техническим результатом является повышение эффективности тепловлажной обработки.

Изобретение относится к смеси строительных материалов, используемой в качестве добавки к бетону, где смесь строительных материалов содержит пуццолановый носитель и фотокатализатор. Пуццолановый носитель и фотокатализатор присутствуют в виде сухой смеси. Фотокатализатор имеет размер первичных частиц от 2 нм до 100 нм , а пуццолановый носитель по меньшей мере на 90 мас. % состоит из летучей золы с размером зерен от 0,1 мкм до 1 мм. Носитель и фотокатализатор присутствуют в интенсивно смешанном состоянии, так что фотокатализатор присутствует, по меньшей мере, частично в распределенном состоянии на поверхности носителя. Изобретение относится также к способу получения фотокаталитической смеси. Изобретение развито в зависимых пунктах формулы изобретения Технический результат - улучшение удобоукладываемости бетонной смеси в сравнении с применением других пуццолановых носителей для катализатора. 3 н. и 8 з.п. ф-лы, 3 табл., 3 ил.

Изобретение относится к последующей обработке β-полугидратов штукатурных гипсов. Технический результат заключается в стабилизации кристаллической структуры, снижении конечной водопотребности без ухудшения механических свойств. Способ производства порошка стабилизированного β-полугидрата штукатурного гипса, включающий увлажнение прокаленного β-полугидрата с добавлением замедлителя. 5 н. и 23 з.п. ф-лы, 2 ил.

Группа изобретений относится к строительству, а именно к способу получения легкой цементирующей смеси, которая предназначена для изготовления цементно-стружечных плит и композиции для получения легкого цементирующего вяжущего вещества. Способ получения легкой цементирующей смеси, предназначенной для изготовления цементно-стружечных плит с улучшенной прочностью на сжатие и водостойкостью, включает смешивание воды, реакционноспособного порошка, 1-200 мас.ч. заполнителя, 1,5-6 мас.ч. соли щелочного металла и лимонной кислоты, 0,5-1,5 мас.ч. силиката щелочного металла, 2,0-6,0 мас.ч. вспенивающего агента и возможно необязательно стабилизатора пены, мас.ч. приведены в расчете на сухое вещество на 100 мас.ч. реакционноспособного порошка, 80 до 100 мас.% золы-уноса, причем зола-унос включает золу-унос класса C, золу-унос класса F с портландцементом типа III; и смеси золы-уноса класса C и золы-уноса класса F, необязательно, с портландцементом типа III, и необязательно реакционноспособный порошок не содержит гидравлический цемент. Композиция для получения легкого цементирующего вяжущего вещества для изготовления цементно-стружечных плит по указанному выше способу содержит смесь из: цементирующего реакционноспособного порошка, содержащего от 80 до 100 мас.% золы-уноса, 1-200 мас.ч. заполнителя, 1,5-6 мас.ч. соли щелочного металла и лимонной кислоты, 0,5-1,5 мас.ч. силиката щелочного металла, 2,0-6,0 мас.ч. вспенивающего агента, необязательно агента, стабилизирующего пену, на основе поливинилового спирта и воды, мас.ч. приведены в расчете на сухое вещество на 100 мас.ч. реакционноспособного порошка, причем отношение воды к твердой фазе цементирующего реакционноспособного порошка в смеси составляет примерно от 0,22 до 0,287:1, концентрация поливинилового спирта, в случае его наличия, в водном растворе составляет примерно от 2 до 5%, при этом зола-унос включает золу-унос класса C, золу-унос класса F с портландцементом типа III; и смеси золы-уноса класса C и золы-уноса класса F, необязательно с портландцементом типа III; плотность вяжущего вещества составляет примерно от 0,48 до 1,04 г/см3 (от 30 до 65 фунтов на кубический фут) со стабильными пузырьками микронного размера, а прочность на сжатие вяжущего вещества, измеренная через 14 дней, составляет примерно от 6,90 до 9,65 МПа (от 1000 фунт/кв.дюйм до 1400 фунт/кв.дюйм). Технический результат - повышение прочности на сжатие при пониженной массе. 2 н. и 8 з.п. ф-лы, 2 ил., 13 табл., 4 пр.

Изобретение относится к способам переработки магнезита и предназначено для получения концентратов с содержанием MgO не менее 93,0% для производства огнеупорных изделий. Технический результат заключается в повышении выхода концентрата с содержанием MgO не менее 93%, снижении пылевыноса и уменьшении энергоемкости процесса. Способ термомеханического обогащения магнезита в печах косвенного нагрева включает подачу сырого магнезита фракции 40-0 мм в печь, нагревание до температуры 680-750°С, охлаждение и отсев оксида магния от примесных материалов, согласно изобретению при нагревании процесс диссоциации магнезита протекает в неподвижном слое толщиной до 60 мм в печи косвенного нагрева в течение времени, необходимого для разложения магнезита. 2 ил., 5 табл.

Изобретение относится к гипсовым панелям с низкой плотностью и массой. Технический результат заключается в снижении массы и плотности, повышении теплоизоляционных свойств, стойкости к термоусадке, огнестойкости, водостойкости. Гипсовая панель содержит отвержденный гипсовый средний слой, расположенный между двумя облицовочными листами, сформированный из суспензии, содержащей по меньшей мере воду, строительный гипс и крахмал, причем крахмал содержится от примерно 0,3% до примерно 10% по массе от массы строительного гипса, строительный гипс содержится в количестве примерно 700 фунтов/тыс. кв.футов (примерно 3,4 кг/м2), при этом панель имеет плотность от 27 до 34 фунтов/фут3 (от 430-545 кг/м3), показатель теплоизоляции примерно 17 минут, толщина панели составляет 0,625 дюйма (1,6 см). 7 н. и 20 з.п. ф-лы, 4 ил., 8 табл.

Изобретение относится к способу производства и связанной с ним установке для производства гипсовых штукатурных продуктов для целей строительства, например для производства гипсовой плиты. Технический результат заключается в увеличении прочности гипсовых изделий. Способ и установка для производства гипсового продукта, включающие смеситель для смешивания гипса с водой и две подачи пены, вводимые в установку, при этом каждая подача пены включает пену с различным распределением пузырьков по размерам. 7 з.п. ф-лы, 9 ил., 7 табл.

Изобретение относится к составу высокопрочного бетона и может быть использовано для изготовления изделий в гражданском и промышленном строительстве, а также при возведении сооружений специального назначения. Технический результат заключается в ускорении твердения и повышении прочности при сжатии в проектном возрасте. Способ основан на влиянии наночастиц кремнезема на скорость реакций гидратации силикатов кальция, на структуру геля гидратов силикатов кальция, и, в конечном итоге, на механические характеристики бетонов. Для формирования наночастиц кремнезема в гидротермальном растворе проводят поликонденсацию молекул ортокремниевой кислоты (ОКК), поступающей при растворении алюмосиликатных минералов пород в условиях повышенных давлений и температур в недрах месторождений. Наночастицы, образующиеся после завершения поликонденсации ОКК, концентрируют с применением ультрафильтрационных мембранных фильтров. Стабильный водный золь перемешивают с суперпластификатором и вводят в воду затворения при дозах нанокремнезема по цементу 0,01-2,0 масс.% и дозах суперпластификатора по цементу 0,0-1,0 масс.%, перемешивают воду затворения с жидкими добавками золя и суперпластификатора и добавляют в систему цемент-песок при В/Ц от 0,71 до 0,25, перемешивают цементно-песчаную смесь с водой затворения. 2 ил., 6 табл.
Изобретение относится к строительству и может быть использовано для укрепления грунтовых оснований фундаментов строящихся и восстанавливаемых зданий и сооружений методом инъектирования. Технический результат заключается в обеспечении возможности увеличения подвижности укрепляющего раствора и, соответственно, объема пространства, заполняемого таким раствором через грунтовые разрывы. Способ приготовления укрепляющего раствора включает перемешивание портландцемента, воды, введение нанодобавки и обработку раствора. В качестве нанодобавки используют смесь нанодисперсных частиц двуокиси кремния разной удельной поверхности. В воду вводят указанную нанодобавку до получения коллоидного раствора заданной концентрации, который механически перемешивают и дополнительно обрабатывают ультразвуком. Далее полученный коллоидный водный раствор перемешивают с требуемым количеством воды затворения, а затем - с портландцементом. Для существенного увеличения подвижности укрепляющего раствора целесообразно использовать коллоидный водный раствор смеси нанодисперсных частиц двуокиси кремния разной удельной поверхности, с концентрацией порядка 20÷35 мас.%. 1 з.п. ф-лы, 1 табл.

Изобретение относится к горной промышленности и может быть использовано при подземной разработке месторождений с закладкой выработанного пространства твердеющими смесями на основе мелкодисперсного заполнителя, например хвостов обогащения. Способ приготовления литых твердеющих закладочных смесей на основе мелкодисперсного заполнителя включает дозированную подачу вяжущего, воды и их перемешивание, осуществляют перемешивание вяжущего в виде цемента с водой и предварительно обезвоженным в гидроциклонах мелкодисперсным заполнителем - хвостами обогащения руд размером 0,15 мм, после чего полученный раствор подвергают гомогенизации и активации в импульсном гидроударно-кавитационном устройстве с частотой импульсов 5000-6000 им/с при следующем соотношении указанных компонентов: хвосты обогащения руд - 1039-1246 кг/м3, цемент - 170-400 кг/м3 смеси, вода 500 л. Технический результат - повышение скорости твердения и увеличение прочности закладочного массива за счет повышения степени гидратации и активации компонентов закладочных смесей. 4 табл.
Наверх