Способ формирования помехоустойчивых радиосигналов

Изобретение относится к радиотехнике и может быть использовано для повышения помехоустойчивости радиосигналов в системах связи. Технический результат - повышение помехоустойчивости радиосигналов в системах связи путем увеличения ширины полосы занимаемой ими частот. Способ формирования помехоустойчивых радиосигналов основан на формировании широкополосного сигнала, для которого используют расширение спектра методом формирования псевдослучайной последовательности, и характеризуется тем, что для модуляции логических элементов псевдослучайной последовательности используют радиоимпульсы, которые получают в результате перемножения биортогональных вейвлет-функций и сигналов с линейной частотной модуляцией, у которых для модуляции логического элемента «1» и логического элемента «0» псевдослучайной последовательности задают различную скорость увеличения частоты, при этом в качестве биортогональных вейвлет-функций используют функции второй производной от функции Гаусса. 11 ил.

 

Изобретение относится к радиотехнике и может быть использовано для повышения помехоустойчивости радиосигналов (PC) в системах связи.

Известны различные способы формирования помехоустойчивых PC [патенты РФ №2231924, 2205496]. В указанных способах для формирования помехоустойчивых шумоподобных PC используют модуляцию несущего колебания псевдослучайной последовательностью (ПСП).

В известном способе [патент RU 2231924, опубликованный 27.06.2004] формируют помехоустойчивые шумоподобные радиоимпульсы (ШРИ) для передачи бинарных символов информации сложными сигналами. Известное изобретение относится к системам передачи информации и включает минимальную кодочастотную модуляцию несущей частоты путем суммирования модулированных по амплитуде и фазе колебаний квадратурных каналов, модулирующие кодовые последовательности, которых получают перекодировкой кодовой последовательности ШРИ, стробирование полученной суммы видеоимпульсом, равным длительности кодовой последовательности, формирование противоположного сигнала инверсией кода модулирующей кодовой последовательности одного из квадратурных каналов.

Недостатком данного способа является сложность его реализации, связанная с необходимостью формирования квадратурных каналов. Кроме того, в указанном способе применяется энергетически неоптимальная сигнально-кодовая конструкция, включающая амплитудно-фазовую модуляцию, что снижает эффект повышения помехоустойчивости.

В известном способе [патент RU 2205496, опубликованный 27.05.2003] формируется и обрабатывается сложный сигнал в помехозащищенных радиосистемах. Известное изобретение относится к области радиотехники и включает фазовую манипуляцию несущего колебания ПСП и сигналом информации, на приемной стороне - снятие ПСП с последующей демодуляцией в схеме Костаса, причем в качестве несущего колебания используют модифицированный полосовой шум.

Недостаток известного способа заключается в том, что повышение скрытности передаваемого PC достигается за счет снижения помехоустойчивости приемника радиолинии.

Наиболее близким аналогом по технической сущности к заявленному является способ формирования помехоустойчивых сигналов [патент RU 2412551, опубликованный 20.02.2011. Бюл. №5]. В способе-прототипе формируют помехоустойчивые сигналы на основе формирования широкополосного сигнала, для которого используют расширение спектра сигнала методом ПСП, которую модулируют двоичной фазовой манипуляцией. Причем для модуляции ПСП используют биортогональные вейвлет-функции (БВФ), при этом "0" и "1" модулируют противоположными БВФ.

Недостатком прототипа является относительно низкая помехоустойчивость, обусловленная недостаточным увеличением ширины спектра (занимаемой полосы частот) PC модулированного БВФ.

Техническим результатом заявленного способа является повышение помехоустойчивости радиосигналов за счет увеличения ширины спектра (занимаемой ими полосы частот).

Это достигается тем, что способ формирования помехоустойчивых радиосигналов, основанный на формировании широкополосного сигнала, для которого используют расширение спектра методом псевдослучайной последовательности, которую модулируют биортогональными вейвлет-функциями, отличается тем, что для модуляции логических элементов псевдослучайной последовательности используют радиоимпульсы, которые получают в результате перемножения биортогональных вейвлет-функций и сигналов с линейной частотной модуляцией, у которых для модуляции логического элемента «1» и логического элемента «0» псевдослучайной последовательности задают различную скорость увеличения частоты, причем скорость увеличения частоты в сигнале с линейной частотной модуляцией задают произвольной, но таким образом, чтобы ее значение для модуляции логического элемента «1» отличалось не менее чем в два раза по отношению к логическому элементу «0», а в качестве биортогональных вейвлет-функций используют функции второй производной от функции Гаусса.

Благодаря новой совокупности существенных признаков в заявляемом способе, заключающихся в использовании вместо БВФ радиоимпульсов, представляющих результат перемножения БВФ и сигналов ЛЧМ с различным значением скорости изменения частоты, обеспечивается увеличение ширины спектра результирующего PC.

Заявленный способ поясняется чертежами, на которых показано:

фиг. 1 - числовая бинарная ПСП 000100110101111, сформированная с помощью генератора случайных чисел;

фиг. 2 - временное представление прямой формы БВФ, представляющей вторую производную от функции Гаусса;

фиг. 3 - временное представление обратной формы БВФ, представляющей вторую производную от функции Гаусса;

фиг. 4 - временное представление сигнала с ЛЧМ для модуляции логической «1»;

фиг. 5 - временное представление сигнала с ЛЧМ для модуляции логического «0» (скорость возрастания частоты в сигнале с ЛЧМ увеличена в два раза по отношению к скорости возрастания частоты, используемой в сигнале с ЛЧМ, предназначенном для модуляции логической «1»);

фиг. 6 - временное представление радиоимпульса, построенного на основе перемножения БВФ, представляющей вторую производную от функции Гаусса, и сигнала с ЛЧМ для модуляции логической «1»;

фиг. 7 - временное представление радиоимпульса, построенного на основе перемножения БВФ, представляющей вторую производную от функции Гаусса, и сигнала с ЛЧМ для модуляции логического «0»;

фиг. 8 - элемент PC, сформированный путем модулирования числовой бинарной ПСП, представленной на фиг.1, радиоимпульсами, сформированными на основе перемножения БВФ и сигналов с ЛЧМ с различной скоростью увеличения частоты для модуляции логических «1» и «0» ПСП;

фиг. 9 - элемент PC, сформированный путем модулирования числовой бинарной ПСП, представленной на фиг. 1, сигналами на основе прямой формы БВФ для «1» и обратной формы БВФ для «0»;

фиг. 10 - модуль спектра PC, сформированного путем модулирования числовой бинарной ПСП, представленной на фиг. 1, радиоимпульсами, сформированными на основе перемножения БВФ и сигналов с ЛЧМ с различной скоростью увеличения частоты для модуляции логических «1» и «0» ПСП;

фиг. 11 - модуль спектра PC, сформированного путем модулирования числовой бинарной ПСП, представленной на фиг.1, сигналами на основе прямой формы БВФ для «1» и инверсной формы БВФ для «0».

Реализация заявленного способа объясняется следующим образом.

1. Предварительно задают числовую бинарную ПСП.

Числовая бинарная ПСП может задаваться, например, с помощью генератора случайных сигналов. Генераторы случайных сигналов известны и описаны, например, в патенте РФ №2168260 от 27.05.2001. Количество элементов в ПСП должно быть не менее двух.

В качестве примера на фиг. 1 показана числовая бинарная ПСП 000100110101111, сформированная с помощью генератора случайных чисел.

2. Формируют радиоимпульсы в результате перемножения БВФ и сигналов с ЛЧМ для модулирования логических «1» и «0» ПСП.

В качестве БВФ используют прямую или обратную (инверсную) формы функции (см. фиг. 2 и фиг. 3), которая представляет вторую производную от функции Гаусса.

Функция второй производной от функции Гаусса известна. Принцип ее формирования описан, см. Н.М. Асафьев. Вейвлет-анализ: основы теории и примеры применения // Успехи физических наук, т. 166, №11, 1996 г., с. 1152 и патент RU 2412551, опубликованный 20.02.2011 г. Бюл. №5.

Сигналы ЛЧМ (см. фиг. 4 и 5) известны и описаны, например, см. Гоноровский И.С. Радиотехнические цепи и сигналы. Учебник для вузов. Изд. 2-е, переработанное и дополненное. М.: «Советское радио», 1971 г., стр. 136-137.

При перемножении выбирают БВФ и сигналы с ЛЧМ таким образом, чтобы число временных отсчетов у БВФ и у сигналов с ЛЧМ было одинаковым.

При этом сама процедура перемножения заключается в последовательном перемножении соответствующих временных отсчетов БВФ и сигналов с ЛЧМ.

На фиг. 6 показан радиоимпульс, сформированный в результате перемножения БВФ и сигнала с ЛЧМ для модуляции логической «1». На фиг. 7 показан радиоимпульс, сформированный в результате перемножения БВФ и сигнала с ЛЧМ для модуляции логического «0».

При формировании радиоимпульсов в равной мере может использоваться как прямая, так и обратная (инверсная) форма БВФ.

3. Модулируют элемент PC.

Модуляция заключается в формировании последовательности радиоимпульсов в соответствии с логическими элементами ПСП. Вместо логических элементов «1» и «0» подставляют соответствующие радиоимпульсы с различной скоростью возрастания частоты. Процесс модуляции ПСП известен, см. патент RU 2412551 С2, опубликованный 20.02.2011. Бюл. №5.

Для примера на фиг. 8 показан элемент PC, модулированный последовательностью радиоимпульсов, в соответствии с ПСП, представленной на фиг. 1.

При модуляции элемента PC не принципиально, у какого из радиоимпульсов, предназначенных для модуляции логических «0» или «1», скорость увеличения частоты больше. Важным моментом является различие в значениях скорости увеличения частоты в сигналах с ЛЧМ.

Использование сформированных радиоимпульсов для модулирования логических элементов ПСП приводит к увеличению занимаемой PC полосы частот, т.е. к расширению спектра.

В качестве примера на фиг. 9 показан элемент PC, сформированный в соответствии со значением ПСП (см. фиг. 1) согласно способу-прототипу.

На фиг. 10 показан спектр, сформированный на основе заявляемого способа (для элемента PC на фиг. 8), а на фиг. 11 - спектр, сформированный на основе способа-прототипа (для элемента PC на фиг. 9).

Анализ полученных спектров показал увеличение ширины занимаемой полосы частот для PC, сформированного согласно заявляемому способу (см. фиг. 10 и фиг. 11). Причем чем больше различие в скорости увеличения частоты сигналов с ЛЧМ, тем сильнее расширение спектра результирующего PC.

Таким образом, благодаря новой совокупности существенных признаков в заявляемом способе обеспечивается увеличение ширины спектра для сформированного PC за счет использования для модуляции элементов последовательности ПСП радиоимпульсов с различной скоростью возрастания частоты.

Способ формирования помехоустойчивых радиосигналов, основанный на формировании широкополосного сигнала, для которого используют расширение спектра методом псевдослучайной последовательности, которую модулируют биортогональными вейвлет-функциями, отличающийся тем, что для модуляции логических элементов псевдослучайной последовательности используют радиоимпульсы, которые получают в результате перемножения биортогональных вейвлет-функций и сигналов с линейной частотной модуляцией, у которых для модуляции логического элемента «1» и логического элемента «0» псевдослучайной последовательности задают различную скорость увеличения частоты, причем скорость увеличения частоты в сигнале с линейной частотной модуляцией задают произвольной, но таким образом, чтобы ее значение для модуляции логического элемента «1» отличалось не менее чем в два раза по отношению к логическому элементу «0», а в качестве биортогональных вейвлет-функций используют функции второй производной от функции Гаусса.



 

Похожие патенты:

Изобретение относится к супергетеродинному приемнику сложных фазоманипулированных сигналов с двойным преобразованием частоты. Технический результат заключается в повышении избирательности, помехоустойчивости и достоверности приема сложных фазоманипулированных сигналов.

Изобретение относится к области радиотехники и может использоваться в радиоприемных устройствах систем радиосвязи. Достигаемый технический результат - повышение помехоустойчивости приема шумоподобных фазоманипулированных сигналов путем подавления ложных сигналов и помех.

Изобретение относится к радиотехнике и может быть использовано в системах телекоммуникации и вой передачи данных в составе радиотехнических комплексов. Технический результат - комплексное (одновременное) улучшение основных параметров квазикогерентного демодулятора, а именно: расширение полос захвата и удержания синхронного режима работы, сокращение времени вхождения в синхронный режим работы, повышение помехоустойчивости при наличии дестабилизирующих факторов, воздействующих на коэффициент петлевого усиления устройства.

Изобретение относится к радиотехнике и может быть использовано для формирования помехоустойчивых радиосигналов. Технический результат - повышение помехоустойчивости радиосигналов в системах связи за счет увеличения ширины спектра (занимаемой ими полосы частот).

Изобретение относится к радиотехнике и может быть использовано в системах телекоммуникации и цифровой передачи данных в составе радиотехнических комплексов. Технический результат - комплексное улучшение основных параметров квазикогерентного модулятора, а именно: расширение полос захвата и удержание синхронного режима работы, сокращение времени вхождения в синхронный режим работы, повышение точности и стабильности установа дискретов манипулируемой фазы при наличии дестабилизирующих факторов, воздействующих на коэффициент петлевого усиления устройства.

Изобретение относится к технике радиосвязи и может быть использовано в системах передачи данных для оценки качества канала связи. Способ оценивания отношения сигнал/шум (ОСШ) при использовании при передаче данных сигналов с фазовой модуляцией основывается на восстановлении плотности распределения вероятности случайной величины, параметром которой является ОСШ, и оценивании этого параметра по статистике амплитуд сигнала, соответствующих длительности элементарной посылки, которые доступны для измерения при приеме полезного информационного сигнала.

Изобретение относится к радиотехнике и может быть использовано в аппаратуре, предназначенной для приема и анализа фазоманипулированных (ФМн) сигналов с бинарным значением фазы.

Изобретение относится к области радиотехники, в частности к радиоприемным устройствам прямого преобразования, и может быть использовано в составе программно-определяемых радиоприемных устройств (Software Defined Radio).Технический результат заключается в увеличении степени подавления помех по зеркальному каналу при одновременном упрощении устройства.

Изобретение относится к области радиотехники и предназначено для цифровых каналов радиосвязи, подверженных воздействию селективных замираний и аддитивных помех как узкополосных (сосредоточенных по частоте), так и импульсных.

Изобретение относится к радиотехнике, в частности к радиоприемным устройствам, применяемым на линиях многоканальной цифровой связи и в системах множественного доступа, а также может быть использовано в области цифрового радиовещания и цифрового телевидения.

Изобретение относится к радиотехнике. Технический результат - расширение функциональных возможностей способа автокорреляционного приема шумоподобных сигналов путем точного и однозначного определения местоположения источника излучения сигнала, размещенного на борту летательного аппарата. Для этого устройство, реализующее предлагаемый способ, содержит измеритель 1 длительности сигнала, частотный детектор 2, счетчик 3 импульсов, арифметические блоки 4 и 19, масштабирующие перемножители 5 и 6, линии задержки 7, 10 и 14, перемножители 8, 11, 15, 22.1, 22.2 и 22.3, полосовые фильтры 9 и 12, генератор 13 пилообразного напряжения, фильтры 16, 26.1, 26.2, 26.3 нижних частот, пороговый блок 17, ключ 18, блок 20 регистрации, приемные антенны 21.1, 21.2 и 21.3, узкополосные фильтры 23.1, 23.2 и 23.3, фазовращатели 24.1 и 24.2 на 90 градусов, фазовые детекторы 25.1, 25.2 и 25.3, измерительные приборы 27.1, 27.2 и 27.3, экстремальные регуляторы 28.1, 28.2 и 28.3, блоки 29.1, 29.2 и 29.3 регулируемой задержки, корреляторы 30.1, 30.3 и 30.3, вычислительный блок 31 и указатель 32 местоположения источника излучения шумоподобных сигналов. 3 ил.

Изобретение относится к области радиосвязи и может найти применение в системах беспроводного доступа, сухопутной подвижной и спутниковой связи, призванных функционировать в условиях радиоэлектронной борьбы. Технический результат - обеспечение надежного приема сигналов с высокой структурной скрытностью в перспективных системах связи в условиях их длительной эксплуатации. Многоканальный приемник с кодовым разделением каналов для приема квадратурно-модулированных сигналов повышенной структурной скрытности содержит, в частности, первое, второе и третье коммутационные устройства, а также генератор маскирующей ортогональной кодовой последовательности, генератор канальных ортогональных кодовых последовательностей, устройство повторного обнаружения сигнала, элемент развязки и соответствующие связи между ними для обеспечения надежного приема квадратурно-модулированных сигналов, сигнально-кодовая конструкция которых изменяется в процессе эксплуатации системы связи, и повторного обнаружения сигналов при срыве синхронизации в системе. 1 з.п. ф-лы, 3 ил..

Изобретение относится к технике связи и может использоваться в системах мобильной связи. Технический результат состоит в повышении надежности связи. Для этого способ средневолновой зоновой сети двусторонней радиосвязи с временным разделением режимов приема и передачи сообщений заключается в создании средневолновой многоканальной зоновой сети двусторонней мобильной автоматической радиосвязи с временным разделением режимов приема и передачи сообщений, которая дает возможность в одной и той же ограниченной полосе частот одновременно обмениваться дискретными сообщениями большому количеству абонентов, которые удалены друг от друга на значительные расстояния и используют малогабаритные возимые и носимые антенны, не требующие высокого подъема над поверхностью Земли при проведении сеансов связи на расстояниях, не удовлетворяющих требованиям прямой видимости между антеннами передающей и приемной радиостанций. Абонентские радиостанции имеют относительно маломощные передатчики и передача сообщений с их стороны осуществляется сигналами с предельно низкой скоростью с целью повышения как помехоустойчивости каналов связи, так и с целью размещения максимального числа абонентов в полосе частот, отведенной для работы сети радиосвязи. Сигналы со стороны абонентских радиостанций передаются одновременно по параллельным каналам на частотах, удовлетворяющих требованию обеспечения взаимной ортогональности этих сигналов. Изобретение относится к области радиотехники и предназначено для одновременной двусторонней мобильной автоматической радиосвязи большого числа абонентов, использующих параллельные частотно-разнесенные радиоканалы в общей ограниченной полосе частот (например, в однополосном телефонном канале связи) для передачи дискретных сообщений на территории зоны, граница которой может находиться далеко за пределами прямой видимости между антенной базовой радиостанции и антеннами периферийных радиостанций. Базовая радиостанция имеет передатчик относительно большой мощности, который позволяет передавать сообщения на большие расстояния с высокой скоростью в режиме уплотнения по времени и с использованием обычных методов манипуляции, например методов двухпозиционной или многопозиционной фазовой манипуляции. Данная сеть радиосвязи может быть использована подразделениями МЧС для мониторинга потенциально опасных объектов, оповещения и передачи сигналов тревоги. 8 ил.

Изобретение относится к технике связи и может быть применено для приема дискретных сигналов с относительной фазовой модуляцией в системах с расширенным спектром, с псевдослучайными сигналами в условиях преднамеренных помех. Техническим результатом изобретения является повышение помехоустойчивости приема псевдослучайных сигналов в условиях преднамеренных помех. Демодулятор псевдослучайных сигналов с относительной фазовой модуляций содержит перемножитель, генератор псевдослучайной последовательности, блок синхронизации, фазовращатель, второй, третий, четвертый, пятый шестой, седьмой, восьмой перемножители, два интегратора, два суммирующих накопителя , четыре элемента задержки, автономный генератор, три инвертора, семь сумматоров, блок выбора максимального сигнала, решающий блок. 2 ил.

Изобретение относится к области передачи цифровой информации и предназначено для применения в системах цифровой связи с шумоподобными сигналами (ШПС). Технический результат - повышение скорости передачи цифровой информации. В способ передачи информации в системе связи с ШПС на передающей стороне разделяют поток передаваемых данных на блоки, содержащие по бит и по k дополнительных бит; формируют заранее заданную псевдослучайную последовательность (ПСП) с циклическим временным сдвигом (ЦВС), определяемым комбинацией из бит соответствующего передаваемого блока в соответствии с выбранным методом кодирования; над результатами формирования ПСП с ЦВС реализуют кодовую модуляцию (КМ), определяемую комбинацией из k дополнительных бит соответствующего передаваемого блока в соответствии с выбранным методом кодирования; формируют последовательность ШПС путем фазовой манипуляции высокочастотного тонального сигнала, причем манипулирующей функцией при передаче каждого блока является результат выполнения операции КМ; передают сформированную последовательность ШПС, причем входными данными операции разделения потока подлежащих передаче данных являются входные последовательности этих данных, а операция формирования ПСП с ЦВС осуществляется над результатами выполнения операции разделения потока передаваемых данных, на приемной стороне преобразуют принимаемые сигналы в электрические; определяют максимум корреляции принятого сигнала с ШПС, сформированным путем фазовой модуляции по закону заранее заданной ПСП с нулевым ЦВС, при каждой qk-й (при qk=1 … Q, причем Q=2k) альтернативе КМ; определяют комбинацию k дополнительных бит принятого данного блока данных на основе результатов определения максимума корреляции принятого сигнала с ШПС при каждой qk-й альтернативе КМ; определяют величину ЦВС применительно к той альтернативе КМ, которой соответствует указанная комбинация k дополнительных бит; определяют комбинацию бит принятого блока на основании указанного результата определения ЦВС; формируют совокупность бит принятого блока по указанным результатам определения его бит и k дополнительных бит. В способе передачи информации реализовано кодирование (и соответствующее декодирование) k бит каждого блока передаваемых данных введением КМ в каждый результат формирования ПСП с ЦВС, при этом реализация КМ к увеличению длительности каждого передаваемого не приводит. 1 з.п. ф-лы, 3 ил.
Изобретение относится к передаче цифровой информации по каналу связи с многолучевым распространением и может быть использовано в системах связи для обеспечения правильного приема переданной информации. Технический результат – повышение устойчивости канала передачи дискретных сообщений (повышение коэффициента исправного действия каналов связи), подверженных селективным замираниям, без усложнения аппаратуры связи и без связанного с этим роста энергопотребления. Для этого способ включает формирование на передающей стороне информационного сигнала как последовательность символов, состоящих из последовательности тональных импульсов, передаваемых последовательно по времени на разнесенных по частоте поднесущих, количество которых соответствует числу временных позиций на длительности одного символа, при этом частоты всех поднесущих, соответствующих символу, принадлежат такому диапазону частот, что вся последовательность тональных импульсов, составляющих этот символ, обрабатывается на приемной стороне как один тональный импульс с длительностью, равной длительности символа.
Наверх