Нагреватель для стенда теплорадиотехнических испытаний радиопрозрачных обтекателей

Изобретение относится к стендовому оборудованию для испытаний радиопрозрачных обтекателей (РПО). Нагреватель содержит каркас (1) с закрепленными на нем нагревательными панелями (3) с трубчатыми инфракрасными лампами (4), расположенными вокруг испытуемого обтекателя (5) с установленной в нем антенной (6). Панели установлены в несколько рядов вне области излучения антенны. Панели передних рядов, нагревающих носовую часть РПО, смонтированы дальше от обтекателя, чем панели предыдущих рядов. Эти панели имеют большее количество ламп, снабжены коллекторами воздушного охлаждения ламп для обеспечения их форсирования по мощности. Для предотвращения попадания охлаждающего воздуха на РПО, на панели установлены дефлекторы. Для предотвращения рассеивания излучения панелей, расположенных на большем расстоянии от РПО, на них установлены радиопрозрачные концентрирующие экраны с покрытием с высоким коэффициентом отражения. Нагреватель обеспечивает непрерывный многозонный высокотемпературный нагрев по заданному режиму и позволяет проводить непрерывно в процессе испытаний измерения радиотехнических характеристик РПО, что повышает точность измерений. 1 ил.

 

Изобретение относится к стендовому оборудованию для испытаний радиопрозрачных обтекателей (РПО), защищающих бортовую антенну скоростного летательного аппарата в полете. Предложенный нагреватель для стенда теплорадиотехнических испытаний радиопрозрачных обтекателей обеспечивает реальное распределение температуры по поверхности РПО и ее изменение по времени в соответствии с траекторией полета и позволяет одновременно и непрерывно проводить измерения радиотехнических характеристик (РТХ) исследуемого РПО. Это позволяет затем более точно скомпенсировать возникающие в полете искажения РТХ РПО.

В качестве нагревателей для стендов теплорадиотехнических испытаний радиопрозрачных обтекателей (РПО) летательных аппаратов наиболее широкое распространение получили радиационные нагреватели [Баранов А.Н. Теплопрочностные испытания летательных аппаратов // Труды ЦАГИ, 1999, вып. 2638, с. 78÷82]. Нагреватель для стенда теплорадиотехнических испытаний РПО содержит каркас с установленными на него нагревательными панелями с радиационными нагревательными элементами (НЭ) в виде трубчатых кварцевых инфракрасных ламп для нагрева поверхности РПО.

Обычно для обеспечения измерений радиотехнических характеристик (РТХ) РПО в процессе нагрева по заданному режиму, имитирующему полетный, в целях исключения искажений электромагнитного поля в конусе излучения антенны нагревательные панели в момент измерения РТХ периодически отводят на определенное расстояние или разводят на требуемый угол. Для этого нагревательные панели снабжены механизмами перемещения. Процедура перемещения массивных элементов каркаса с нагревательными панелями требует времени, в результате чего происходит остывание РПО, что приводит к ухудшению точности воспроизведения заданного температурного режима и точности измерений РТХ.

Известен нагреватель стенда испытаний РТХ РПО при нагреве RU 2525844 C1, G01S 7/40, 2006 г., на котором нагревательные панели неподвижно закреплены на каркасе вокруг поверхности РПО. В процессе испытаний РПО из зоны нагрева периодически поворачивается в горизонтальной плоскости на 180° в зону измерения РТХ. Нагреватель стенда выполнен таким образом, что на участке перемещения РПО нагревательные панели отсутствуют. Чтобы не было недогрева с этой стороны РПО вращается ±30° вокруг продольной оси. В этом случае время нахождения РПО вне зоны нагрева сокращено, но не устранено полностью.

Целью изобретения является максимальное приближение условий испытания РТХ РПО к натурным и повышение точности измерений за счет обеспечения непрерывности измерений РТХ в течение всего процесса нагрева по заданному режиму и исключения влияния нагревателей на результаты измерений.

Для достижения указанной цели нагревательные панели установлены в несколько рядов вне области излучения антенны на минимальном исходя из этого принципа расстоянии от РПО. Нагревательные панели впереди стоящих рядов смонтированы дальше от обтекателя, чем нагревательные панели предыдущих рядов. Эти нагревательные панели имеют большее количество ламп. Для обеспечения высоких температур кварцевые лампы удаленных нагревательных панелей работают в форсированном режиме. Известно [Баранов А.Н. Теплопрочностные испытания летательных аппаратов // Труды ЦАГИ, 1999, вып. 2638, с. 78÷82], что увеличение напряжения электропитания вдвое с номинальных 220 В до 440÷450 В увеличивает мощность в три раза с 2,5 кВт до 7,5 кВт. Это позволяет получать от нагревательных панелей с трубчатыми кварцевыми лампами тепловые потоки до 1000 кВт/м2 и более. Но при температурах более 1200°C кварц трубчатой колбы лампы претерпевает рекристаллизацию и становится менее прозрачным. Колба лампы быстро перегревается, и лампа выходит из строя. Для предотвращения этого на удаленные нагревательные панели установлены воздушные коллекторы для охлаждения колб ламп. Чтобы охлаждающий воздух не попадал на нагреваемый РПО, установлены дефлекторы для отвода воздуха назад за нагревательные панели. Для уменьшения рассеивания излучения на них установлены радиопрозрачные концентрирующие экраны. На поверхности концентрирующих экранов нанесены покрытия с большим коэффициентом отражения излучения кварцевых ламп. Ближе к поверхности РПО концентрирующие экраны полупрозрачны, что позволяет избежать резких перепадов температуры на поверхности РПО. Для той же цели обеспечения высоких температур нагрева в носовой части РПО, где нагревательные панели наиболее удалены, служит установленный с торца нагревателя радиопрозрачный теплоизоляционный экран.

Теплоизоляционный экран одновременно предохраняет от перегрева радиотехническую аппаратуру стенда измерения РТХ РПО, расположенную напротив РПО и воспринимающую излучение антенны.

Таким образом, нагреватель обеспечивает высокотемпературный многозонный нагрев по заданному режиму, не влияет на излучение антенны и позволяет проводить измерения РТХ РПО непрерывно в течение всего испытания, что повышает точность измерений.

На чертеже представлена схема нагревателя. Нагреватель содержит каркас 1 с установленными на нем с помощью кронштейнов 2 нагревательными панелями 3 с трубчатыми инфракрасными лампами 4. Нагревательные панели расположены вокруг РПО 5, внутри которого установлена антенна 6. Нагревательные панели расположены в три ряда по восемь панелей в ряду. Нагревательные панели двух первых рядов отодвинуты от РПО за зону излучения антенны. Они имеют больший размер и большее количество ламп. Нагревательные панели первого ряда 7 отодвинуты дальше и имеют ламп больше, чем во втором 8. А нагревательные панели второго ряда 8 отодвинуты дальше и имеют ламп больше, чем в третьем 9. На отодвинутые нагревательные панели установлены коллектора воздушного охлаждения 10 и радиопрозрачные концентрирующие экраны 11. Для отвода воздуха 12 после охлаждения ламп за нагревательные панели и предотвращения попадания его на РПО служат дефлекторы 13. На поверхности радиопрозрачных концентрирующих экранов нанесено покрытие 14 с большим коэффициентом отражения излучения ламп. Вблизи РПО концевые участки 15 концентрирующих экранов полупрозрачны. В передней части напротив РПО установлен радиопрозрачный теплоизоляционный экран 16. Нагреватель работает следующим образом.

В процессе испытания для обеспечения заданной пространственно-временной зависимости температуры РПО регулируется напряжение электропитания каждой нагревательной панели. Контроль ведется по показаниям датчиков температуры (термопар), установленных на поверхности РПО.

В течение всего процесса нагрева непрерывно работают антенна и радиотехническая аппаратура стенда, измеряются радиотехнические характеристики РПО и их зависимость от нагрева, определяется влияние РПО на работу антенны, что позволяет в дальнейшем скомпенсировать искажения РТХ РПО, возникающие в полете.

Нагреватель для стенда теплорадиотехнических испытаний радиопрозрачных обтекателей, содержащий каркас с закрепленными на нем нагревательными панелями с трубчатыми инфракрасными лампами, расположенными вокруг испытуемого обтекателя с установленной в нем антенной, отличающийся тем, что нагревательные панели установлены в несколько рядов вне области излучения антенны, нагревательные панели последующих рядов смонтированы дальше от обтекателя и имеют большее количество ламп, чем нагревательные панели предыдущих рядов, снабжены коллекторами воздушного охлаждения ламп и дефлекторами отвода воздуха, радиопрозрачными концентрирующими излучение экранами с нанесенным покрытием с высоким коэффициентом отражения и полупрозрачными концевыми участками, при этом нагреватель теплоизолирован радиопрозрачным экраном, а минимальное расстояние нагревательных панелей от обтекателя и размеры концентрирующих экранов определяются экспериментальным путем.



 

Похожие патенты:

Область использования: стендовые испытания на прочность конструкций летательных аппаратов (ЛА), например обтекателей на внешнее давление при неравномерном нагреве. Сущность: нагреватель для стенда испытаний на прочность при неравномерном нагреве содержит гибкие поверхностные нагревательные элементы (НЭ) переменного сечения из токопроводящего материала и теплоизолирующую оболочку.

Изобретение относится к аккумулятору транспортного средства. Аккумулятор транспортного средства содержит один аккумуляторный модуль, размещенный под панелью пола транспортного средства; другой аккумуляторный модуль, размещенный рядом с одним аккумуляторным модулем и имеющий высоту, превышающую высоту одного аккумуляторного модуля.

Изобретение относится к нагревательному модулю, эффективному при управлении температурой аккумуляторного модуля, изготовленного посредством пакетирования определенного числа аккумуляторных элементов.

Изобретение относится к области электротехники, а в частности к электрическим приборам и устройствам, используемым в холодное время года для отопления бытовых и производственных помещений, а также салонов и кабин подвижного состава пассажирского и индивидуального транспорта.

Изобретение относится к области теплотехники, к технологии нагрева жидких и др. .

Изобретение относится к области теплотехники, непосредственно к технологии нагрева жидких, полужидких или твердых субстанций, размещенных внутри цилиндрических неподвижных емкостей с плоским днищем, посредством их нагрева снизу, со стороны днища, снаружи.

Изобретение относится к отопителю для транспортного средства. .

Изобретение относится к области теплотехники, а непосредственно к технологии нагрева жидких субстанций внутри цилиндрических неподвижных емкостей с плоским днищем посредством нагрева днища снаружи.

Изобретение относится к нагревательным элементам. .

Изобретение относится к области электротехники, в частности к устройствам для нагрева изделий с помощью радиационного излучения. .

Изобретение относится к области инфракрасного нагрева и направлено на повьшение КПД электрообогревателя за счет увеличения доли сформированного отражателем потока.

Изобретение относится к технике инфракраснЪго электронагрева. .

Группа изобретений относится к инфракрасным устройствам для инфракрасной конверсии и радиационного нагрева от горелки, использующей подводимую к ней полностью предварительно перемешанную смесь, а также к способам его изготовления. Технический результат - исключение деформации и осевого перемещения металлических полос сотового элемента в результате чередования высоких и низких температур. Инфракрасное устройство для горелки, содержащее блок с сотовой структурой, образованный намоткой или ламинированием металлической полосы с образованием смежных слоев с каналами и имеющий расположенные противоположно друг другу первую поверхность и вторую поверхность и боковую поверхность, сопряженную с наружными краями первой и второй поверхностей, а также множество каналов от первой поверхности до второй поверхности. По первому варианту на боковой поверхности блока с сотовой структурой выполнены отверстия, через которые проложены металлические пруты, пересекающие несколько смежных слоев внутри блока с сотовой структурой, причем металлические пруты, расположены в сквозных отверстиях и зафиксированы относительно металлической полосы. По второму варианту на части первой и/или второй поверхности слои металлической полосы выполнены с выделенными фрагментами, которыми сопряжены и скреплены соседние слои металлической полосы с образованием встроенного конструктивного элемента. Также включает способы получения инфракрасного металлического нагревателя по первому и второму вариантам. 4 н. и 26 з.п. ф-лы, 4 пр., 12 ил.

Изобретение может быть использовано для лучевой термической обработки материалов, в частности для резки, сварки, гибки, изготовления отверстий. Формируют пятно контакта посредством зеркальной инфракрасной электрической лампы, неподвижно установленной в цилиндрическом корпусе, и двояковыпуклой линзы из того же стекла, что и стекло колбы лампы. Фиксируют упомянутый корпус на заданной высоте от обрабатываемой поверхности и вращают объектив с линзой до получения заданного диаметра пятна контакта луча с фиксацией объектива в заданном положении. Непрерывно бесконтактно регистрируют температуру поверхности детали в зоне пятна контакта. При постоянном диаметре пятна контакта регулируют упомянутую температуру за счет изменения напряжения питания лампы. Тепловую обработку осуществляют при перемещении детали или упомянутого пятна контакта. Способ позволяет создавать на поверхности принимаемого излучение материала или детали пятно контакта размером до 1 мм с высокой температурой и поверхностной плотностью излучения. 6 ил., 1 табл.

Изобретение относится к устройствам для получения монокристаллов тугоплавких фторидов горизонтальной направленной кристаллизацией из расплава. Устройство содержит вакуумную камеру 1 с размещенным в ней тепловым узлом 2, состоящим из углеграфитовых теплоизолирующих модулей 3, верхнего 4 и нижнего 5 нагревателей и тепловых экранов 15, графитового контейнера 6 с шихтой кристаллизуемого материала, установленного с возможностью перемещения в вакуумной камере 1, штуцеров подачи инертного газа 10 и системы вакуумирования и/или откачки газообразных продуктов 9, смотрового окна 11, при этом верхний плоский ленточный нагреватель Г-образной формы 4 и нижний ленточный нагреватель П-образной перевернутой формы 5 выполнены в виде единых с шинами графитовых моноблоков, односторонне закрепленных с водоохлаждаемыми токовводами вакуумной камеры с помощью разъемного соединения. Техническим результатом является упрощение и улучшение технологичности конструкции и надежности нагревательного узла, в том числе за счет устранения влияния термических расширений на нагреватели. 2 з.п. ф-лы, 2 ил.

Изобретение относится к области техники, связанной с выращиванием кристаллов из расплавов методом горизонтально направленной кристаллизации (ГНК), которые широко используются в качестве сцинтилляторов для детекторов ионизирующего излучения, лазерных кристаллов и элементов оптических приборов, работающих в широкой спектральной области от ультрафиолетового до среднего инфракрасного диапазона длин волн. Предложен тепловой узел установки для выращивания галоидных кристаллов методом горизонтальной направленной кристаллизации, состоящий из корпуса, внутри которого размещены центральный и отдельные углеграфитовые теплоизоляционные модули, графитового контейнера 9 с набором тепловых экранов и рамой, установленного с возможностью горизонтального перемещения внутри теплоизоляционных модулей, верхнего нагревателя Г-образной формы 2 и нижнего нагревателя перевернутой П-образной формы 3, расположенных внутри центрального теплоизоляционного модуля, смотрового окна 8, при этом центральный теплоизоляционный модуль выполнен сборно-разборным и состоит из внешнего графитового теплоизоляционного кожуха 4, внутри которого расположены диафрагмы 7, верхняя 5 и нижняя 6 секции внутренних графитовых тепловых экранов, а отдельные углеграфитовые теплоизоляционные модули выполнены в виде внутреннего графитового кожуха, окруженного внешними сборно-разборными графитовыми теплоизолирующими кассетами, каждая из которых состоит из сложенных друг над другом тепловых экранов, между которыми проложены проставки. Технический результат заключается в повышении технологичности конструкции теплового узла, позволяющего варьировать величиной температурного градиента в зоне активного роста кристалла, приводящей к получению оптически однородного кристалла. 4 з.п. ф-лы, 8 ил.
Наверх