Способ захвата цели лазерной головкой самонаведения беспилотного летательного аппарата

Предлагаемое техническое решение относится к беспилотным летательным аппаратам с лазерными головками самонаведения и может быть использовано в ракетах, размещенных на внешних подвесках авиационных носителей. Захват цели лазерной головкой самонаведения беспилотного летательного аппарата производят следующим образом: подсвечивают цель световым импульсом станции подсвета, размещенной на авиационном носителе, фотоприемным устройством, размещенным в лазерной головке самонаведения беспилотного летательного аппарата фиксируют свечение атмосферы и преобразуют в электрический ток. В устройстве формирования стробирующих импульсов формируют стробирующий импульс, открывающий усилитель лазерной головки самонаведения беспилотного летательного аппарата на время ожидаемого прихода отраженного от цели сигнала. Технический результат - использование разных авиационных носителей с разными типами БПЛА без дополнительной доработки станции подсвета цели носителя. 5 ил.

 

Предлагаемое техническое решение относится к беспилотным летательным аппаратам с лазерными головками самонаведения и может быть использовано в ракетах, размещенных на внешних подвесках авиационных носителей.

Из уровня техники известен способ захвата цели управляемой ракетой с лазерной полуактивной головкой самонаведения (RU патент №2468327 от 15.11.2011, МПК F41G 7/22), при котором в системе управления носителя выбирают отрезок времени включения лазерного целеуказателя постоянным и фиксированным относительно расстояния ракеты до цели, головка самонаведения ракеты сканирует земную поверхность в поисках подсвеченной цели, принимает отраженный сигнал и захватывает цель.

Наиболее близким к предлагаемому техническому решению и выбранный в качестве прототипа является способ захвата цели управляемой ракетой с лазерной головкой самонаведения, размещенной на авиационном носителе (RU заявка на изобретение №2007118771 от 21.05.2007, МПК F42B 15/01), в котором перед пуском ракеты системой управления вооружением носителя выбирают метод наведения ракеты на цель, анализируют помеховую обстановку и передают в вычислитель расстояние до цели. По импульсному сигналу станции подсвета цели носителя формируют команду целеуказания, в соответствии с которой формируют стробирующий импульс, отпирающий приемник отраженного сигнала только на время прихода сигнала, отраженного от цели, отстоящей от носителя на дальность Д.

В вышеперечисленных способах стробирующий импульс поступает от носителя, поэтому под каждую вновь разработанную или модернизированную авиационную ракету необходимо дорабатывать станцию подсвета носителя с соответствующими параметрами стробирующего импульса. Это приводит к снижению надежности и увеличению стоимости изготовления носителя за счет затрат на доработку станции подсвета цели носителя.

Задачей предлагаемого изобретения является устранение указанных выше недостатков и создание способа, позволяющего осуществить захват цели лазерной головкой самонаведения различных типов авиационных ракет без доработки станции подсвета цели носителя.

Поставленная задача решается за счет того, что захват цели лазерной головкой самонаведения беспилотного летательного аппарата осуществляют следующим образом: световым импульсом станции подсвета, размещенной на авиационном носителе подсвечивают цель, фотоприемным устройством, размещенным в лазерной головке самонаведения беспилотного летательного аппарата, фиксируют свечение атмосферы и преобразуют энергию оптического излучения в электрический ток, поступающий на устройство формирования стробирующих импульсов, расположенное в лазерной головке самонаведения беспилотного летательного аппарата, формируют стробирующий импульс, открывающий усилитель на время ожидаемого прихода отраженного от цели сигнала.

Сущность изобретения поясняется чертежами.

На фиг. 1 представлена структурная схема варианта устройства, реализующего предлагаемый способ; на фиг. 2 представлена циклограмма импульсов излучения (вспышки атмосферы) на выходе станции подсвета; на фиг. 3 представлена циклограмма импульсов на выходе фотоприемного устройства; на фиг. 4 представлена циклограмма импульсов на выходе устройства формирования стробирующих импульсов; на фиг. 5 представлена циклограмма сигналов на выходе усилителя.

На фиг. 1-5 обозначены:

1 - авиционный носитель;

2 - станция подсвета цели;

3 - средство формирования синхроимпульсов;

4 - средство излучения;

5 - беспилотный летательный аппарат (БПЛА);

6 - лазерная головка самонаведения (ЛГСН);

7 - фотоприемное устройство;

8 - устройство формирования стробирующих импульсов;

9 - усилитель;

10 - область светящейся атмосферы (вспышки);

11 - цель;

Тп - период излучения станции подсвета;

tотр - время прихода, отраженного от цели сигнала;

tстр - длительность стробирующего импульса (открытого состояния усилителя);

Е - энергия оптического излучения;

I - электрический ток;

U - напряжение.

Предлагаемый способ заключается в том, что станцией подсвета цели 2 авиационного носителя 1 подсвечивают цель 11 лазерным излучением. Фотоприемным устройством 7, размещенным в лазерной головке самонаведения 6 беспилотного летательного аппарата 5, фиксируют свечение (вспышку) атмосферы 10 и преобразуют энергию оптического излучения в электрический ток, в устройстве формирования стробирующих импульсов 8 формируют стробирующий импульс длительностью tстр, открывают усилитель 9 лазерной головки самонаведения 6 беспилотного летательного аппарата 5 на время tотр ожидаемого прихода отраженного от цели 11 сигнала.

Предлагаемый способ может быть реализован с помощью устройства, представленного на фиг. 1.

На авиационном носителе 1, например самолете, размещают станцию подсвета цели 2, содержащую средство формирования синхроимпульсов 3, например генератор синхроимпульсов и средство лазерного излучения 4, например мощный оптический квантовый генератор. В БПЛА 5 с ЛГСН 6 размещают фотоприемное устройство 7, устройство формирования стробирующих импульсов 8 и усилитель отраженного сигнала 9.

В качестве авиационного носителя может быть использован многофункциональный истребитель, например, СУ-35 (www.sukhoi.org).

В качестве станции подсвета цели может быть использована лазерно-прицельная система, которая используется в системах вооружения «Кайра», имеющая дальность обнаружения наземной цели до 20 км.

В качестве БПЛА с ЛГСН могут быть использованы различные ракеты класса воздух-поверхность. В качестве фотопремного устройства могут быть использованы четырехплатные или восьмиплатные диоды.

Устройство работает следующим образом: при подлете авиационного носителя 1 в зону возможных пусков БПЛА 5 средство формирования синхроимпульсов 3 формирует синхроимпульсы, запускающие средство излучения 4. Сформированный средством лазерного излучения 4 световой импульс ионизирует атмосферу до состояния свечения (вспышки). Импульс направлен на цель 11, имеет заданные длину волны и период Тп и сфокусирован до угла расхождения в диапазоне от 0,5 до 5 мин. Фотоприемное устройство 7 фиксирует свечение (вспышку) атмосферы и преобразует энергию оптического излучения в электрический ток, поступающий на устройство формирования стробирующих импульсов 8. Сформированный стробирующий импульс длительностью tстр переводит усилитель 9 лазерной головки самонаведения 6 беспилотного летательного аппарата 5, находящийся в исходном (закрытом) состоянии, в открытое состояние на время tотр. ожидаемого прихода отраженного от цели 11 сигнала. Обработка сигнала исключает возможность ложного срабатывания и обеспечивает точное наведение БПЛА 5 на цель 11.

Техническим результатом способа является возможность использования различных авиационных носителей с разными типами авиационных ракет с различными лазерными головками самонаведения без дополнительной доработки станции подсвета цели носителя.

Представленные описание и чертежи позволяют осуществить способ, что характеризует предлагаемое изобретение как промышленно применимое.

Способ захвата цели лазерной головкой самонаведения беспилотного летательного аппарата, при котором световым импульсом станции подсвета, размещенной на авиационном носителе, подсвечивают цель, при этом фотоприемным устройством, размещенным в лазерной головке самонаведения беспилотного летательного аппарата, фиксируют свечение атмосферы и преобразуют энергию оптического излучения в электрический ток, поступающий на устройство формирования стробирующих импульсов, расположенное в лазерной головке самонаведения беспилотного летательного аппарата, формируют стробирующий импульс, открывающий усилитель на время ожидаемого прихода отраженного от цели сигнала.



 

Похожие патенты:

Изобретение может быть использовано в системах управления и самонаведения летательных аппаратов, например ракет. Головка самонаведения содержит оптическую систему, выполненную с возможностью угловых отклонений относительно двух ортогональных осей подвеса по команде от двухосевой системы стабилизации и слежения, последовательно соединенные блок обнаружения и распознавания, блок выделения координат заданной точки цели и блок управления слежением, а также блок памяти и хранения эталонного изображения цели, задаваемого в виде предстартового полетного задания.

Изобретение относится к области противовоздушной обороны. Способ управления зенитной управляемой ракетой средней дальности с активной головкой самонаведения при наведении на групповую сосредоточенную цель (ГСЦ) основан на использовании зависимости статистических характеристик угловых шумов радиолокационной цели от ее линейных размеров.

Изобретение относится к способам управления движущимся объектом в случае самонаведения с использованием минимальной информации о цели. Достигаемый технический результат - возможность сближения при встречном самонаведении, когда линейная скорость цели превышает скорость объекта.

Предложен способ наведения летательных аппаратов (ЛА) на наземные объекты. В способе управление наведением на наземные объекты осуществляется одновременно в наклонной плоскости, положение которой определяется направлением земной скорости ЛА, и в вертикальной плоскости, исходя из условия обеспечения и стабилизации требуемого разрешения радиолокационных изображений наземных объектов, с использованием метода пропорционального наведения со смещением угловых скоростей линии визирования наземного объекта в обеих плоскостях управления ЛА.

Изобретение относится к системам автономной навигации летательных аппаратов (ЛА), в частности к системам навигации ЛА, включающим в свой состав бортовые радиолокационные средства, обеспечивающие приведение ЛА к наземным объектам (НО).

Изобретение относится к области приборостроения и может найти применение в системах автосопровождения заданного объекта визирования (ОВ), а также в системах самонаведения подвижных носителей с инерциальной измерительной системой.

Изобретение относится к военной технике, а более конкретно к способу управления движением летательного аппарата. Совмещение стабилизированной линии визирования производят последовательно с каждым объектом визирования.

Изобретение относится к ракетам «земля-воздух» и «воздух-воздух». .

Изобретение относится к области разработки систем управления беспилотными летательными аппаратами и может быть использовано в комплексах управляемого артиллерийского вооружения и других комплексах вооружения, в которых на конечном участке траектории осуществляется самонаведение по методу пропорциональной навигации.

Изобретение относится к области авиационной техники и может использоваться при разработке авиационных и зенитных управляемых ракет. Предложенный способ поражения цели-постановщика когерентных помех заключается в пространственном разнесении излучателя зондирующего сигнала и приемника отраженного от цели сигнала, которое достигается путем одновременного пуска функционально связанной группы как минимум из двух ракет, передатчики которых излучают на разных частотах, а приемники воспринимают частоты передатчиков соседних ракет. Это практически исключает взаимные помехи, т.к. приемники прицельно настроены на частоту излучаемого сигнала своего передатчика и находятся вне полосы частот приемника. При этом обеспечивается высокоточное наведение ракет, которые необходимо пускать по максимально расходящимся траекториям типа «клещи». Технический результат - повышение эффективности поражения цели-постановщика когерентных помех путем пуска и наведения ракет с активными радиолокационными головками самонаведения, излучающими зондирующие сигналы на разных частотах, с приемниками, настроенными на частоту передатчиков соседних ракет. 2 з.п. ф-лы, 1 ил.

Изобретение относится к области радиоуправления и может быть использовано в радиоэлектронных системах радиоуправления при ближнем наведении истребителя в наивыгоднейшую, упрежденную точку встречи, на групповую воздушную цель (ГВЦ) с дополнительным созданием условия для обеспечения требуемого линейного разрешения целей в группе в бортовой радиолокационной станции истребителя за счет эффекта радиолокационного синтезирования апертуры антенны. Технический результат - в процессе ближнего наведения истребителя в горизонтальной плоскости на групповую воздушную цель (ГВЦ) в наивыгоднейшую упреждающую точку встречи создать условия для обеспечения в его бортовой радиолокационной системе (БРЛС) требуемого линейного разрешения целей в группе на основе эффекта радиолокационного синтеза апертуры (РСА). 4 ил.

Изобретение относится к области авиационного приборостроения и может найти применение в системах автоматического управления реактивными снарядами. Технический результат - повышение эффективности систем самонаведения. Для этого реактивный снаряд (1) оснащен головкой (2) самонаведения с системой самонаведения на базе бесплатформенной навигационной системы, характеризующейся стадией захвата цели, в ходе которой она пытается обнаружить цель (C), и которая характеризуется направлением (3) визирования, причем указанное направление (3) визирования является фиксированным по отношению к реактивному снаряду (1) и направлено вдоль продольной оси (4) последнего, и указанный реактивный снаряд (1) дополнительно содержит средства (8) управления для осуществления автоматического управления указанным реактивным снарядом (1) таким образом, чтобы его продольная ось (4) во время полета в ходе стадии захвата головкой (2) самонаведения описывала окружность, радиус которой увеличивается во времени, пока цель (C) не будет обнаружена. 2 н. и 3 з.п. ф-лы, 2 ил.

Группа изобретений относится к способу и устройству для формирования траектории летательного аппарата. Для формирования траектории летательного аппарата в блок памяти передают сигналы, пропорциональные координатам, курсу и горизонтальной скорости цели, запоминают их на момент поступления, передают или вводят заданную величину промаха, сравнивают полученные сигналы, оценивают отклонения ЛА по курсу и дальности, получают поправку к текущему курсу и запоминают ее в выходном буфере, передают из буфера в систему автоматического управления курсом ЛА для отработки, обеспечивают движения ЛА по заданному радиусу вокруг цели, формируют новую траекторию при движении цели. Устройство для формирования траектории содержит коммутатор, блок памяти, два вычитающих устройства, выходной буфер, блок дальности, блок фиктивной цели, блок углового смещения, логический блок, соединенные определенным образом. Блок фиктивной цели содержит два делителя, вычислитель арксинуса, вычислитель арктангенса, устройство сравнения, умножитель, два арифметических устройства. Блок углового смещения содержит два вычислителя синуса, два умножителя, вычитающее устройство. Логический блок содержит два блока сравнения с заданной величиной, усилитель, два вычитающих устройства, пять умножителей, два делителя, два инвертора, вычислитель арктангенса, два сумматора. Обеспечивается автоматическое формирование траектории ЛА при движении цели. 2 н. и 3 з.п. ф-лы, 8 ил.

Изобретение относится к вооружению, в частности к системам огневого поражения радиоэлектронных объектов. Для поражения РЭС, функционирующих в СЧ, ВЧ и ОВЧ, на одном управляемом боеприпасе (УБП) используется два метода самонаведения: на начальных участках полета для поиска и грубого наведения на РЭС - радиосистема самонаведения; на конечном участке, после отключения наведения по РЭС, для более точного наведения - оптико-электронная система. Это позволяет существенно повысить устойчивость наведения на РЭС, увеличить дальность поражения и сократить время подготовительного периода пуска УБП. Технический результат - повышение эффективности поражения РЭС, функционирующих СЧ, ВЧ и ОВЧ диапазонах. 2 ил.

Предложен способ самонаведения движущегося объекта по информации о факте визирования цели при условии совпадения направления оси локатора с направлением вектора скорости объекта. При этом траекторию объекта формируют в виде циклически повторяющихся дугообразных отрезков, по которым объект движется с заданной (максимальной) угловой скоростью, одинаковой по модулю, но противоположной по знаку. Каждые два отрезка объединяют в цикл, который начинается и заканчивается фактом совпадения направления вектора скорости объекта с линией визирования цели, а смену знака угловой скорости внутри цикла производят по факту совпадения углов наклона относительно инерциальной системы координат линий, соединяющих объект и цель в начале цикла и в данный момент. Также предложены устройства, реализующие указанный выше способ. 4 н.п. ф-лы, 4 ил.

Изобретение относится к системам самонаведения, в частности к антеннам с механическим сканированием зеркала антенны, и может быть использовано на подвижных объектах, например, в активных радиолокационных головках самонаведения сверхзвуковых ракет на конечном участке выхода на цель. Антенное устройство с бикардановым подвесом, выполненным в виде двух кардановых подвесов, состоящих из внешней и внутренней рамок, содержит приводы поворота внешней и внутренней рамок, расположенные на неподвижном основании, сверхвысокочастотный тракт, зеркало, закрепленное на внутренней рамке первого карданова подвеса, и подвижно и консольно установленный шток, на котором закреплена вилка, кинематически связанная с бугелем (дугой), концы которого закреплены на приводе внутренней рамки. При этом ось вращения внешней рамки второго карданова подвеса проходит параллельно плоскости основания, отличающееся тем, что внутренние и внешние рамки кардановых подвесов соединены соответственно двумя тягами, установленными симметрично оси вращения штока, закрепленного на валу внешней рамки второго карданова подвеса на внешней ее стороне и по оси симметрии внешней рамки, при этом ось привода бугеля (внутренней рамки) пересекает ось вращения внешней рамки второго карданова подвеса перпендикулярно плоскости основания, а вал вилки бугеля установлен подвижно в плоскости симметрии штока под углом к оси симметрии внешней рамки второго карданова подвеса, причем вилка выполнена с возможностью ее поворота относительно оси поперечного сечения бугеля, а на валу вилки установлена пружина кручения, один конец которой закреплен на штоке, а другой на вилке. Техническим результатом является повышение плотности компоновки антенного устройства симметрично строительной оси ракеты, улучшение балансировки и увеличение поля «зрения» подвижного зеркала антенны. 8 ил.

Изобретение относится к области автоматического управления при самонаведении движущегося объекта (в дальнейшем «объект») на другой движущийся объект (в дальнейшем «цель»). Многофункциональный способ самонаведения с дискретными коррекциями траектории движущегося объекта отличается тем, что траекторию объекта формируют в виде сменяющих друг друга дуговых отрезков-полуциклов, по которым объект перемещается с постоянной по модулю, но противоположной по знаку действующей (максимально возможной) угловой скоростью. Два полуцикла объединяют в цикл, начинающийся и заканчивающийся фактом совпадения вектора линейной скорости объекта и линии визирования цели, а смену знака угловой скорости в конце начального полуцикла (то есть в середине цикла) делают по факту наступившей параллельности линий, соединяющей одномоментное нахождение объекта и цели в начальный и текущий моменты времени при условии равенства углов наклона линии максимальной чувствительности локатора и вектора линейной скорости объекта относительно инерциальной систем координат. При этом для реализации нулевого промаха проводят измерения расстояния до цели в начале и в конце каждого цикла или полуцикла траектории объекта, после чего, в текущий момент времени, производят корректирующее воздействие в виде очередного разворота с меньшей величиной угловой скорости. Технический результат данного способа заключается, при условии совпадения в момент визирования цели вектора скорости объекта и линии визирования, в следующих свойствах:- постоянный средний угол упреждения траектории объекта в случае неизменности условий сближения,- минимальный кинематический промах (при постоянстве условий сближения - нулевой),- отсутствие недопустимых перегрузок на объект в процессе самонаведения;- возможность сближения с целью на конечном участке в положениях «больше навстречу» или «больше вдогон»;- обеспечение гарантированного промаха при нештатной ситуации в положениях сближения «сверху» или «снизу»;- обход материального препятствия (преграды) в процессе самонаведения;- сближение с целью одним откорректированным дуговым отрезком с нулевым промахом в случае постоянства условий процесса самонаведения. 4 з.п. ф-лы, 15 ил.
Изобретение относится к области ракетной техники. Способ парного пуска противосамолетных ракет включает запуск первой противорадиолокационной ракеты, нацеленной на радиолокатор самолета противника или на его сигнатуру от постороннего радиолокатора, летящей по упреждающей пересекающейся траектории, а затем с перерывом вслед ей запуск второй ракеты с инфракрасной головкой самонаведения, нацеленной на сопло противорадиолокационной ракеты. Скорость противорадиолокационной ракеты равна или больше, чем у ракеты с инфракрасным самонаведением. Противорадиолокационная ракета снабжена автопилотом, автоматически включающимся при потере цели. В топливо противорадиолокационной ракеты добавлен порошок лития или меди, и/или соединение лития или меди, например нитрат лития, боргидрид лития. Противорадиолокационная ракета имеет приемник радиоизлучения с измерителем уровня принимаемого сигнала, причем данные об этом уровне перед пуском выводятся на пусковое устройство оператора или на автоматическое пусковое устройство. Ракета с инфракрасным самонаведением имеет гироскоп для сохранения горизонтали, а головка самонаведения этой ракеты размещена с наклоном вниз. Изобретение позволяет увеличить вероятность поражения цели. 5 з.п. ф-лы.

Группа изобретений относится к устройству маркировки цели и системе обработки цели. Устройство маркировки цели содержит компактный летательный блок, содержащий датчики, измеряющие параметры окружения, блок передачи данных, излучатель. Система обработки цели содержит устройство маркировки цели, автономное летательное устройство, средство для обнаружения информации позиции, средство наведения летательного устройства, средство для обработки цели. Обеспечивается надежность определения местонахождения, идентификации и назначения цели, повышение надежности наведения на цель. 2 н. и 13 з.п. ф-лы, 7 ил.
Наверх