Способ лазерной обработки неметаллических пластин

Использование: для отжига и легирования пластин из полупроводниковых, керамических и стеклообразных материалов. Сущность изобретения заключается в том, что поверхность обрабатываемого материала облучают импульсом лазерного излучения, при этом материал предварительно нагревают до температуры, рассчитываемой по соотношению где σПР - предел прочности материала на растяжение, Па; с0 - скорость звука в материале, м/с; К - модуль всестороннего сжатия, Па; α - коэффициент линейного расширения материала, К-1. Технический результат: уменьшение максимальных растягивающих напряжений и исключение откольного разрушения материалов со стороны облучаемой поверхности. 1 ил.

 

Изобретение относится к области технологических процессов и может быть использовано для отжига и легирования пластин из полупроводниковых, керамических и стеклообразных материалов.

Известен способ обработки неметаллических материалов, применяемый для аморфизации кремния и заключающийся в облучении их поверхности импульсом лазерного излучения с плотностью энергии, достаточной для достижения поверхностью температуры плавления материала [1].

Известен также способ обработки неметаллических материалов, применяемый для отжига ионно-легированного кремния, заключающийся в облучении пластины импульсом лазерного излучения с плотностью энергии, достаточной для достижения поверхностью пластины температуры отжига [2].

Известен также способ обработки неметаллических материалов, заключающийся в облучении их поверхности одиночным лазерным импульсом прямоугольной формы [3].

Обрабатываемые материалы обладают, как правило, объемным поглощением на длине волны воздействующего лазерного излучения. Недостатком указанных способов является то, что возникающие в материале термоупругие напряжения могут привести к разрушению материала вследствие откола со стороны облучаемой поверхности.

Известен также способ обработки неметаллических материалов [4], заключающийся в облучении их поверхности импульсом лазерного излучения, временная форма которого описывается соотношением

где q(t) - плотность мощности лазерного излучения, Вт/м2;

b1 и b2 - константы, характеризующие фронт и спад лазерного импульса и определяемые из условия

qmax - максимальное значение плотности мощности лазерного излучения в импульсе, Вт/м2;

е - основание натурального логарифма;

- плотность энергии лазерного излучения, Дж/м2;

τ - длительность лазерного импульса, с;

t - текущее время от начала воздействия, с.

При этом плотность энергии в импульсе должна быть достаточной для достижения поверхностью материала температуры отжига и рассчитывается по соотношению

где Tf - температура отжига материала, К;

Т0 - начальная температура материала, К;

с - удельная теплоемкость материала, Дж/(кг·К);

ρ - плотность материала, кг/м3;

R - коэффициент отражения материала на длине волны лазерного излучения;

χ - показатель поглощения материала на длине волны лазерного излучения, м-1.

В [4] показано, что при воздействии импульса лазерного излучения, описываемого соотношением (1), в неметаллических материалах возникают наименьшие, по сравнению с другими временными формами импульсов, максимальные растягивающие напряжения и существует минимальная область в плоскости параметров, характеризующих лазерный импульс и свойства материала, в которой происходит откольное разрушение материала со стороны облучаемой поверхности.

Этот способ выбран в качестве прототипа. Недостатком указанного способа является то, что возникающие в материале термоупругие напряжения могут привести к разрушению материала вследствие откола со стороны облучаемой поверхности.

Техническим результатом изобретения является уменьшение максимальных растягивающих напряжений в обрабатываемых материалах и исключение откольного разрушения материалов со стороны облучаемой поверхности, что приведет к повышению выхода годных изделий в технологическом процессе обработки.

Технический результат достигается способом лазерной обработки неметаллических материалов, заключающимся в облучении их поверхности импульсом лазерного излучения, временная форма которого описывается соотношением

где q(t) - плотность мощности лазерного излучения, Вт/м2;

b1 и b2 - константы, характеризующие фронт и спад лазерного импульса и определяемые из условия:

qmax - максимальное значение плотности мощности лазерного излучения в импульсе, Вт/м2;

е - основание натурального логарифма;

- плотность энергии лазерного излучения, Дж/м2;

τ - длительность лазерного импульса, с;

t - текущее время от начала воздействия, с,

а плотность энергии в импульсе рассчитывают по соотношению

где Tf - температура отжига материала, К;

Т0 - начальная температура материала, К;

с - удельная теплоемкость материала, Дж/(кг·К);

ρ - плотность материала, кг/м;

R - коэффициент отражения материала на длине волны лазерного излучения;

χ - показатель поглощения материала на длине волны лазерного излучения, м-1,

материал предварительно нагревают до температуры, рассчитываемой по соотношению

где σПР - предел прочности материала на растяжение, Па;

с0 - скорость звука в материале, м/с;

К - модуль всестороннего сжатия, Па;

α - коэффициент линейного расширения материала, К-1.

Сущность способа лазерной обработки неметаллических материалов состоит в следующем.

Пластину из неметаллического материала предварительно нагревают, например, в муфельной печи до температуры Т0, определяемой по уравнению (3). Затем воздействуют на пластину одиночным импульсом лазерного излучения с плотностью энергии, рассчитываемой по уравнению (2). При этом лазер должен работать в режиме моделированной добротности и формировать импульс, временная форма которого описывается уравнением (1). При легировании материалов в формуле (2) для определения требуемой плотности энергии лазерного импульса вместо значения температуры отжига необходимо подставлять значение температуры плавления материала.

В [3] показано, что максимальные растягивающие напряжения, возникающие в материале, описываются уравнением

где х - координата, отсчитываемая от поверхности материала вглубь, м.

В [4, 5] показано, что максимальные растягивающие напряжения, возникающие при воздействии лазерного импульса, описываемого соотношением (1), имеют минимальное значения по сравнению с напряжениями, возникающими при воздействии лазерных импульсов других временных форм, и рассчитываются по уравнению

Если максимальные растягивающие напряжения превысят предел прочности материала на растяжение, произойдет откольное разрушение материала со стороны облучаемой поверхности. Анализ уравнения (5) показывает, что минимальная плотность энергии, приводящая к отколу материала, имеет место тогда, когда e-2χx стремится к 0. Из (5) найдем минимальную плотность энергии в лазерном импульсе, приводящую к разрушению материала термоупругими напряжениями

Разделив (6) на (2) и поставив условие WT/Wf≥1, после несложных математических преобразований получим

Проведем анализ неравенства (7). Левая часть неравенства является константой, характеризующей свойства материала. Правая часть неравенства - функция безразмерного параметра χс0τ. Если неравенство выполняется, то температура отжига (плавления) материала достигается при меньшей плотности энергии, чем разрушения материала термоупругими напряжениями. В противном случае разрушение материала термоупругими напряжениями произойдет при меньшей плотности энергии, чем требуется для достижения поверхностью материала температуры отжига (плавления). Если левая часть неравенства больше 1, то области откольного разрушения материала не существует при любых значениях параметра χс0τ. Это условие выполняется для кварцевых стекол и оптической керамики КО-6.

На фиг. 1 представлено графическое решение неравенства (7) для некоторых материалов. Видно, что для оптического стекла К8 и Ge левая часть неравенства равна 0,23 при Т0=300 К и откольное разрушение возможно при значении параметра χс0τ<1,4. Для GaAs левая часть неравенства равна 0,3 при Т0=300 К и откольное разрушение возможно при значении параметра χс0τ<1,2. Для типичных неметаллических материалов с0~5·103 м/с, χ~20 см-1 и при τ~5-10-8 с (характерная длительность импульса излучения лазера, работающего в режиме модулированной добротности) безразмерный параметр χс0τ будет составлять ~1.

Анализ неравенства (7) показывает, что уменьшение разности (Tf0) приводит к увеличению левой части неравенства. Из уравнения (7) найдем значение температуры Т0, до которой необходимо нагреть материал, чтобы неравенство (7) выполнялось

Например, для оптического стекла К8 при χс0τ=1 для выполнения условия (7) необходимо предварительно нагреть материал до температуры Т0≥545 К. Исходные данные для расчетов по оптическому стеклу К8 взяты из [3, 6].

Естественно, после нагрева материала до температуры Т0 плотность энергии лазерного излучения, необходимая для достижения поверхностью температуры отжига будет меньше и рассчитывается по уравнению (2).

Таким образом, вышеописанные отличия заявляемого способа лазерной обработки неметаллических материалов от прототипа позволяют снизить растягивающие напряжения в материале и исключить откольное разрушение со стороны облучаемой поверхности.

Литература

1. Боязитов P.M. и др. Аморфизация и кристаллизация кремния субнаносекундными лазерными импульсами. Тезисы докладов VIII Всесоюзной конференции по взаимодействию оптического излучения с веществом. Ленинград, 11-18 марта 1988 г., с.24.

2. Кузменченко Т.А. и др. Лазерный отжиг ионно-легированного кремния излучением с длиной волны 2,94 мкм. Тезисы докладов VIII Всесоюзной конференции по взаимодействию оптического излучения с веществом. Ленинград, 11-18 марта 1988 г., с. 29.

3. Бакеев А.А., Соболев А.П., Яковлев В.И. Исследования термоупругих напряжений, возникающих в поглощающем слое вещества под действием лазерного импульса. ПМТФ. - 1982. - №6. - с. 92-98.

4. Атаманюк В.М., Коваленко А.Ф., Левун И.В., Федичев А.В. Способ обработки неметаллических материалов. Патент RU 2211753 С2, опубл. 10.09.2003, бюл. №25.

5. Коваленко А.Ф. Экспериментальная установка для исследования влияния параметров лазерного импульса на разрушение неметаллических материалов. Приборы и техника эксперимента. - 2004. №4. - С. 119-124.

6. ГОСТ 13659-88. Стекло оптическое бесцветное. Физико-химические характеристики. - М.: Изд-во стандартов, 1988, 48 с.

Способ лазерной обработки неметаллических материалов, заключающийся в облучении их поверхности импульсом лазерного излучения, временная форма которого описывается соотношением

где q(t) - плотность мощности лазерного излучения, Вт/м2;
b1 и b2 - константы, характеризующие фронт и спад лазерного импульса и определяемые из условия

qmах - максимальное значение плотности мощности лазерного излучения в импульсе, Вт/м2;
е - основание натурального логарифма;
- плотность энергии лазерного излучения, Дж/м2;
τ - длительность лазерного импульса, с;
t - текущее время от начала воздействия, с,
а плотность энергии в импульсе рассчитывают по соотношению

где Tf - температура отжига материала, К;
Т0 - начальная температура материала, К;
с - удельная теплоемкость материала, Дж/(кг·К);
ρ - плотность материала, кг/м3;
R - коэффициент отражения материала на длине волны лазерного излучения;
χ - показатель поглощения материала на длине волны лазерного излучения,
м-1,
отличающийся тем, что материал предварительно нагревают до температуры, рассчитываемой по соотношению

где σПP - предел прочности материала на растяжение, Па;
с0 - скорость звука в материале, м/с;
К - модуль всестороннего сжатия, Па;
α - коэффициент линейного расширения материала, К-1.



 

Похожие патенты:

Использование: для лазерного отжига пластин из полупроводниковых, керамических и стеклообразных материалов. Сущность изобретения заключается в том, что способ лазерной обработки неметаллических материалов заключается в облучении их поверхности импульсом лазерного излучения, формируют лазерный импульс, плотность энергии которого на облучаемой поверхности пластины определяется по представленному соотношению.

Изобретение может быть использовано для лазерного пробития сквозных отверстий в пластинах из полупроводниковых, керамических и стеклообразных материалов. Способ обработки неметаллических пластин согласно изобретению заключается в облучении их поверхности лазерным импульсом с минимальной расходимостью.

Изобретение относится к области технологических процессов и может быть использовано для лазерного отжига пластин из полупроводниковых, керамических и стеклообразных материалов.

Изобретение относится к области нанотехнологий, в частности к получению наноструктур на поверхности полупроводника. Способ модификации полупроводниковой пленки согласно изобретению заключается в том, что воздействуют на полупроводниковую пленку непрерывным лазерным излучением с энергией кванта превосходящей ширину запрещенной зоны в диапазоне мощности от 5 до 10 Вт, при диаметре лазерного пучка на поверхности пленки от 30 до 100 мкм, так чтобы интенсивность воздействия не превышала 106 Вт/см2, при сканировании поверхности пленки со скоростью от 40 до 160 мкм/с.

Изобретение относится к микроэлектронике, оптической и оптоэлектронной технике. Cпособ получения рельефа на поверхности светоизлучающих кристаллов полупроводниковых светодиодов локальными эрозионными воздействиями на поверхность, при этом в соответствии с изобретением, эрозия производится оптико-термическим действием импульсного лазерного излучения, проникающего в кристалл, с глубиной поглощения в кристалле, близкой к глубине эрозии, и длительностью лазерных импульсов, меньшей времени распространения тепловой волны нагревания кристалла на глубину эрозии, причем энергия импульса лазерного излучения не менее приводящей к процессу поверхностного испарения кристалла.

Изобретение относится к оптике. Способ изготовления дифракционной решетки заключается в формировании на поверхности исходной подложки элементов заданной структуры дифракционной решетки путем ионной имплантации через поверхностную маску, при этом имплантацию осуществляют ионами металла с энергией 5-1100 кэВ, дозой облучения, обеспечивающей концентрацию вводимых атомов металла в облучаемой подложке 3·1020-6·1022 атомов/см3, плотностью тока ионного пучка 2·1012-1·1014 ион/см2с в оптически прозрачную диэлектрическую или полупроводниковую подложку.

Изобретение относится к области материалов полупроводниковой электроники и может быть использовано для создания элементов спинтронных устройств, сочетающих источник и приемник поляризованных спинов носителей заряда в тройной гетероструктуре ферромагнитный полупроводник/немагнитный полупроводник/ферромагнитный полупроводник.

Изобретение относится к области технологических процессов и может быть использовано для скрайбирования полупроводниковых, керамических и стеклообразных материалов.

Изобретение относится к области электронной промышленности и может быть использовано в технологии микро- и наноэлектроники для получения атомарно-гладких поверхностей и совершенных эпитаксиальных структур на разориентированных поверхностях образцов.

Изобретение относится к технологии получения ферромагнитных полупроводниковых материалов. .

Изобретение относится к области технологических процессов и может быть использовано для лазерного отжига пластин из полупроводниковых, керамических и стеклообразных материалов. Техническим результатом изобретения является исключение разрушения пластин термоупругими напряжениями в процессе обработки и повышение выхода годных пластин. В способе лазерной обработки неметаллических пластин, заключающемся в облучении их поверхности импульсом лазерного излучения с плотностью энергии, зависящей от температуры отжига, начальной температуры пластины, удельной теплоемкости и плотности материала пластины, а также показателя поглощения материала пластины на длине волны лазерного излучения, при этом осуществляют предварительный нагрев пластины до определенной температуры. 1 ил.

Использование: для лазерного отжига пластин из полупроводниковых, керамических и стеклообразных материалов. Сущность изобретения заключается в том, что в способе лазерной обработки неметаллических пластин, заключающемся в облучении их поверхности импульсом лазерного излучения с плотностью энергии, зависящей от температуры отжига, начальной температуры пластины, удельной теплоемкости и плотности материала пластины, а также показателя поглощения материала пластины на длине волны лазерного излучения, предварительно рассчитывают критерий термопрочности пластины и при его невыполнении перед воздействием лазерного импульса нагревают пластину до температуры, зависящей от толщины пластины, механических, теплофизических и оптических свойств материала пластины. Технический результат: обеспечение возможности исключения разрушения пластин термоупругими напряжениями в процессе обработки и повышения выхода годных пластин. 1 ил.

Изобретение относится к области технологических процессов и может быть использовано для лазерного отжига пластин из полупроводниковых, керамических и стеклообразных материалов. Предложен способ лазерной обработки неметаллических пластин, заключающийся в измерении толщины пластины h и показателя поглощения χ материала пластины на длине волны лазерного излучения, расчете безразмерного параметра χh и при условии χh<4 разделении исходного лазерного пучка на два пучка равной энергии и воздействии одновременно на обе поверхности пластины с плотностью энергии, определяемой по уравнению, связывающему температуру отжига пластины, ее начальную температуру, удельную теплоемкость и плотность материала пластины, коэффициент отражения материала пластины, толщину пластины и показатель поглощения материала пластины на длине волны лазерного излучения. Предварительно рассчитывают условие термопрочности пластины и при его невыполнении перед воздействием лазерного импульса нагревают пластину до температуры, зависящей от толщины пластины, механических, теплофизических и оптических свойств материала пластины. Технический результат - исключение разрушения пластин термоупругими напряжениями в процессе обработки и повышение выхода годных пластин. 2 ил.

Использование: для лазерного отжига пластин из полупроводниковых, керамических и стеклообразных материалов. Сущность изобретения заключается в том, что способе лазерной обработки неметаллических пластин, заключающемся в облучении их поверхности импульсом лазерного излучения с плотностью энергии, зависящей от температуры отжига, начальной температуры пластины, удельной теплоемкости и плотности материала пластины, а также показателя поглощения материала пластины на длине волны лазерного излучения и возвращении назад в пластину при помощи диэлектрического зеркала излучения, вышедшего через ее тыльную поверхность, предварительно рассчитывают условие термопрочности пластины и, при его невыполнении, перед воздействием лазерного импульса нагревают пластину до температуры, зависящей от толщины пластины, механических, теплофизических и оптических свойств материала пластины. Технический результат: обеспечение возможности исключения разрушения пластин термоупругими напряжениями в процессе обработки и повышение выхода годных пластин. 2 ил.

Изобретение относится к способу лазерной пробивки сквозного отверстия в неметаллической пластине, например, из полупроводниковых, керамических и стеклообразных материалов. Осуществляют разделение лазерного пучка на два и воздействие на обе стороны пластины пучками с равной плотностью энергии. Плотность энергии рассчитывают по соотношению, связывающему удельную энергию сублимации материала Q, коэффициент отражения материала пластины R и показатель поглощения материала χ на длине волны воздействующего лазерного излучения. Сначала лазерным пучком воздействуют на одну поверхность пластины с плотностью энергии, определяемой по следующему соотношению а воздействие на обе стороны пластины осуществляют с плотностью энергии, отличной от величины плотности энергии предыдущего воздействия. Упомянутую плотность энергии определяют по следующему соотношению где е - основание натурального логарифма; h - толщина пластины, aχh>3,87. Техническим результатом изобретения является снижение энергетических затрат при лазерной пробивке сквозных отверстий в пластинах из неметаллических материалов. 2 ил.
Наверх