Способ определения матрицы мюллера

Изобретение относится к области оптических измерений и может быть использовано для полного определения состояния поляризации света, отраженного от поверхности исследуемого образца. Для определения матрицы Мюллера, исследуемый образец освещают поляризованным световым пучком и измеряют изменение поляризации при отражении, используя разделение отраженного луча на р- и s- компоненты с разложением по амплитуде и фазе, получая на выходе четыре световых пучка с интенсивностями IΨ1, IΨ2, IΔ1, IΔ2, при этом азимутальные углы оптических элементов принимают фиксированные значения в определенных комбинациях, поляризатор фиксируют в положениях Р=0°, -45°, +45°, анализатор в амплитудном канале АΨ=0°, 45°, фазовом канале АΔ=45°, ромб Френеля R=0 и проводят измерения, соответствующие следующим конфигурациям: A: P45SR0WΨ45WΔ45; B: P45SR0WΨ0WΔ45; F: P0SR0WΨ45WΔ45; E: P0SR0WΨ0WΔ45. Изменяют состояние поляризации падающего на образец света с линейной на круговую, устанавливая в оптический тракт перед образцом фазовую пластинку в положении D=0° и проводят измерения, соответствующие конфигурациям: С: P-45D0SR0WΨ0WΔ45; D: P-45D0SR0WΨ45WΔ45, а компоненты матрицы Мюллера Sij определяют, решая систему линейных уравнений. Изобретение обеспечивает возможность полного определения состояния поляризации света, отраженного от поверхности исследуемого образца, для нахождения всех компонент матрицы Мюллера. 1 ил.

 

Изобретение относится к области оптических измерений и может быть использовано для полного определения состояния поляризации света, отраженного от поверхности исследуемого образца. Способ допускает использование стандартных приборов, измеряющих состояние поляризации, серийно выпускаемых эллипсометров, построенных на базе четырехканальной фотометрической схемы. Для реализации изобретения необходимо внести незначительные изменения в оптический тракт прибора. Более того, возможность приведения оптической схемы к первоначальному виду является неотъемлемой частью заявляемого способа, что позволяет использовать эллипсометр в штатном режиме для измерения эллипсометрических углов Ψ и Δ в любой момент физического эксперимента.

Известен Стокс-эллипсометр [KR 20030049473 (A), МПК G01J 4/00, опубл. 25.06. 2003], состоящий из немонохроматического источника света, коллиматоров, поляризационного генератора, анализирующего блока на основе ПЗС-матриц и позволяющий измерять компоненты матрицы Мюллера исследуемого образца.

Недостатками данного прибора являются невысокая разрешающая способность по спектру, а также сложность юстировки в случае использования в режиме in situ, например в качестве диагностического инструмента на высоковакуумной камере.

В изобретении [US 5757494 A, МПК G01 21/21, опубл. 26.05.1998] также существует возможность измерять матрицу Мюллера, однако присутствие вращающихся элементов существенно увеличивает время измерения, что является серьезным недостатком при исследовании динамических процессов.

Известен способ измерения состояния поляризации эллипсометром [п.м. РФ №16314, МПК G01N 21/21, опубл. 20.12.2000], сконструированным по фотометрической схеме, заключающийся в расщеплении отраженного от поверхности исследуемого образца светового пучка на две составляющие, которые измеряют соответственно амплитудные и фазовые изменения света при отражении для р- и s-поляризаций.

Недостатки этого способа заключаются в невысокой точности измерений и узком спектральном диапазоне проведения измерений, а также в невозможности измерить полное состояние поляризации (вектор Стокса) света, отраженного от исследуемого образца.

Наиболее близким техническим решением к заявляемому является способ измерения состояния поляризации эллипсометром [патент РФ №2302623, МПК: 6 G01N 21/21, опубл. 10.07.2007 (прототип)], заключающийся в том, что в конструкции также используется фотометрическая четырехканальная схема, позволяющая минимизировать количество оптических конфигураций для измерения матрицы Мюллера, что ускорит время одного эксперимента.

Технический результат заключается в возможности полного определения состояния поляризации света, отраженного от поверхности исследуемого образца (вектора Стокса) для нахождения всех компонент матрицы Мюллера.

Технический результат достигается тем, что в способе определения матрицы Мюллера, заключающемся в том, что исследуемый образец освещают поляризованным световым пучком и измеряют изменение поляризации при отражении, используя разделение отраженного луча на р- и s-компоненты с разложением по амплитуде и фазе, получая на выходе четыре световых пучка с интенсивностями IΨ1, IΨ2, IΔ1, IΔ2, при этом азимутальные углы оптических элементов принимают фиксированные значения в определенных комбинациях, поляризатор фиксируют в положениях Р=0°, -45°, +45°, анализатор в амплитудном канале AΨ=0°, 45°, фазовом канале AΔ=45°, ромб Френеля R=0 и проводят измерения, соответствующие следующим конфигурациям:

A: P45SR0WΨ45WΔ45

В: P45SR0WΨ0WΔ45

F: P0SR0WΨ45WΔ45

Е: P0SR0WΨ0WΔ45,

новым является то, что изменяют состояние поляризации падающего на образец света с линейной на круговую, устанавливая в оптический тракт перед образцом фазовую пластинку в положении D=0°, и проводят измерения, соответствующие конфигурациям:

С: P-45D0SR0WΨ0WΔ45

D: P-45D0SR0WΨ45WΔ45,

а компоненты матрицы Мюллера Sij определяют, решая следующую систему линейных уравнений:

где - интенсивности р- и s-компонент в амплитудном измерительном канале Ψ плеча анализатора, - в фазовом измерительном канале Δ для различных конфигураций оптических элементов.

Отличия заявляемого способа от наиболее близкого аналога заключаются в том, что во время проведения измерений в оптический тракт устанавливают фазовую пластинку, а также в используемом математическом аппарате при вычислении значений компонент матрицы Мюллера. Эти отличия позволяют сделать вывод о соответствии заявляемого технического решения критерию «новизна». Признаки, отличающие заявляемое техническое решение от прототипа, не выявлены в других технических решениях при изучении данной и смежной областей техники и, следовательно, обеспечивают заявляемому решению соответствие критерию «изобретательский уровень».

На фиг. 1 представлена схема стокс-эллипсометра.

Устройство для измерения матрицы Мюллера (см. фиг. 1) состоит из источника света 1 (HeNe лазер), поляризатора 2, составляющих плечо поляризатора, модуля изменения фазы 3, представляющего собой фазовую пластинку в четверть волны с возможностью выведения из оптического тракта, исследуемого образца 4. Плечо анализатора Стокс-эллипсометра состоит из ромба Френеля 5, призм Волластона 6, 7, двухплощадных фотоприемников 8, 9.

Измерение матрицы Мюллера происходит следующим образом.

Световой поток 10, испускаемый осветителем 1, линейно поляризуется поляризатором 2, проходит через модуль изменения фазы 3, и для конфигураций C, D меняет состояние поляризации с линейной на круговую, для конфигураций A, B, E, F состояние поляризации остается без изменений, затем падает на поверхность исследуемого образца 4. Падающий, линейно поляризованный (или поляризованный по кругу) световой пучок отражается от поверхности образца с изменением состояния поляризации и становится, в общем случае, эллиптически поляризованным и в таком состоянии поступает в плечо анализатора, а именно на ромб Френеля 5, который одновременно играет роль пространственного расщепителя светового пучка и фазовой пластинки, расщепляющий отраженный исследуемым образцом световой пучок на две световые компоненты, одна из которых попадает в амплитудный измерительный канал, где призма Волластона 6 разделяет входной световой пучок на р- и s-компоненты, интенсивности которых затем регистрируются двухплощадным фотоприемником 9. Другая часть светового пучка, претерпев фазовый сдвиг, попадает в фазовый измерительный канал Δ, где, проходя также через призму Волластона 7, также регистрируется фотоприемниками 8.

В итоге имеем четыре значения интенсивности IΨ1, IΨ2, IΔ1, IΔ2, из которых вычисляют значения компонент матрицы Мюллера. При проведении таких измерений оптические поляризационные элементы принимают следующие фиксированные азимутальные положения:

A: P45SR0WΨ45WΔ45

В: P45SR0WΨ0WΔ45

С: P-45D0SR0WΨ0WΔ45

D: P-45D0SR0WΨ45WΔ45

Е: P0SR0WΨ0WΔ45

F: P0SR0WΨ45WΔ45,

где введены следующие обозначения: Р - поляризатор, D - перестраиваемая фазовая пластинка, S - исследуемый образец, R - ромб Френеля, WΨ и WΔ - призмы Волластона в амплитудном и фазовом измерительных каналах соответственно.

Для того чтобы получить значение компонент матрицы Мюллера исследуемого образца, необходимо провести имитационное моделирование заявляемого Стокс-эллипсометра. Для этого записывают матрицы Мюллера оптических элементов прибора для всех приведенных конфигураций (A-F). Такие матрицы подробно описаны в монографии [У. Шерклифф. Поляризованный свет // Пер. с англ. М.: Мир, 1965]. Рассмотрим, например, конфигурацию С и составим последовательность матриц Мюллера для фазового измерительного канала и s-компоненты:

Здесь:

I. Вектор Стокса падающего неполяризованного света единичной интенсивности;

II. Матрица Мюллера для линейного поляризатора с азимутом -45°;

III. Матрица Мюллера для фазовой пластинки с азимутом 0°;

IV. Матрица Мюллера исследуемого образца (неизвестна);

V. Матрица Мюллера для ромба Френеля с азимутом 0°;

VI. Матрица для s-компоненты призмы Волластона с азимутом 45°;

Произведя последовательное (справа налево) умножение матриц, получим значение интенсивности для конфигурации С на данном канале

Аналогично получаем оставшиеся пятнадцать уравнений, составляющих систему:

решая которую, получаем компоненты матрицы Мюллера.

Преимущество заявляемого способа определения матрицы Мюллера заключается прежде всего в расширении возможностей стандартного эллипсометра для исследования образцов с оптической анизотропией. Данная оптическая схема упрощает процесс юстировки и тем самым позволяет установить прибор на сверхвысоковакуумную камеру для in situ измерений.

Способ определения матрицы Мюллера, заключающийся в том, что исследуемый образец освещают поляризованным световым пучком и измеряют изменение поляризации при отражении, используя разделение отраженного луча на р- и s-компоненты с разложением по амплитуде и фазе, получая на выходе четыре световых пучка с интенсивностями IΨ1, IΨ2, IΔ1, IΔ2, при этом азимутальные углы оптических элементов принимают фиксированные значения в определенных комбинациях, поляризатор фиксируют в положениях Р=0°, -45°, +45°, анализатор в амплитудном канале АΨ=0°, 45°, фазовом канале АΔ=45°, ромб Френеля R=0 и проводят измерения, соответствующие следующим конфигурациям:
A: P45SR0WΨ45WΔ45
В: P45SR0WΨ0WΔ45
F: P0SR0WΨ45WΔ45
Е: P0SR0WΨ0WΔ45,
где S - исследуемый образец, WΨ и WΔ - призмы Волластона в амплитудном и фазовом измерительных каналах соответственно,
отличающийся тем, что изменяют состояние поляризации падающего на образец света с линейной на круговую, устанавливая в оптический тракт перед образцом фазовую пластинку в положении D=0° и проводят измерения, соответствующие конфигурациям:
С: P-45D0SR0WΨ0WΔ45
D: P-45D0SR0WΨ45WΔ45, а компоненты матрицы Мюллера Sij определяют, решая следующую систему линейных уравнений:

где - интенсивности р- и s-компонент в амплитудном измерительном канале плеча анализатора, - в фазовом измерительном канале для различных конфигураций оптических элементов.



 

Похожие патенты:
Изобретение относится к области контроля качества высококлассных поверхностей. В заявляемом способе в качестве разряда используют поверхностный диэлектрический барьерный разряд, локализованный на поверхности одного из двух электродов, одновременно служащего столиком для исследуемого образца материала; диэлектрический барьер выполняют бездефектным и тщательно отполированным, повторяющим конфигурацию поверхности исследуемого образца, плотно прижимают к нему образец, затем приводят в соприкосновение с образцом заостренный конец второго электрода, выполненного в виде стержня из низкокоррозионного проводящего электрический ток материала; подключают питающее напряжение переменного электрического тока, при этом электрическую прочность диэлектрического барьера выбирают превышающей максимальное напряжение источника электрического питания более чем в два раза; для принятия решения о пригодности поверхности твердых материалов используют появляющееся на поверхности исследуемого образца в местах расположения дефектов слабое голубое свечение плазмы воздуха в виде ярких светящихся голубых точек; исследуемую поверхность признают пригодной при полном отсутствии светящихся голубых точек.

Изобретение относится к медицине, а именно к кардиологии, и может быть использовано для экспресс-диагностики резистентности и чувствительности к ацетилсалициловой кислоте (АСК).

Изобретение относится к области магнитных и магнитооптических измерений. Способ заключается в том, что исследуемый образец освещают линейно поляризованным световым пучком и измеряют изменение поляризации при отражении, используя разделение отраженного луча на p- и s-компоненты с разложением по амплитуде и фазе, получая на выходе четыре световых пучка.

Изобретение относится к измерительной технике, представляет собой спектральный магнитоэллипсометр и предназначено для контроля in situ производства в условиях сверхвысокого вакуума наноразмерных магнитных структур.

Изобретение относится к области in situ контроля производства в условиях сверхвысокого вакуума наноразмерных магнитных структур и может быть использовано в магнитной наноэлектронике для характеризации гетерогенных магнитных элементов в устройствах памяти, в сенсорных устройствах и т.п.

Изобретение относится к области оптического приборостроения и касается способа определения ориентации кристаллографических осей в анизотропном электрооптическом кристалле класса 3m.

Изобретение относится к области оптической локации объектов и касается измерений изменений параметров поляризации оптического излучения при прохождении оптически активного вещества.

Изобретение относится к области оптико-физических исследований состава естественных материалов, таких как шерсть и растительные волокна (лен, хлопок, шелк и др.), и может быть использован в текстильной промышленности, в зоотехнике, при археологических исследованиях, при определении качества сырья и изготовленной из него продукции.

Группа изобретений относится к медицине. При осуществлении способа облучают лазерным лучом зоны максимального скопления кровеносных сосудов.

Изобретение относится к способам определения физических свойств в твердых прозрачных средах природного происхождения и может быть использовано при решении задач анализа качества таких материалов.

Изобретение относится к области спектроскопии и касается акустооптического спектрополяриметра. Спектрополяриметр содержит телескоп и установленный после телескопа акустооптический фильтр (АО) на основе кристалла парателлурита.

Изобретение относится к области оптических измерений. Измерение оптических характеристик заключается в том, что линейно поляризованный свет направляют на образец S через поляризатор.

Изобретение относится к области оптической локации объектов и касается измерений изменений параметров поляризации оптического излучения при прохождении оптически активного вещества.

Изобретение относится к измерительной технике, в частности к устройствам для измерения поляризации света. .

Изобретение относится к оптическому приборостроению и может быть использовано для определения поляризационных характеристик лазерного излучения, в частности знака циркулярной поляризации лазерного излучения.

Изобретение относится к оптике и может быть использовано для определения систематических погрешностей измерений в поляриметрической и эллипсометрической аппаратуре.

Изобретение относится к лазерным измерениям и может быть использовано в системах, измерения поляризационных параметров оптического излучения. .

Изобретение относится к области физической оптики и может быть использовано в качестве средства исследования взаимодействия электромагнитного поля оптического диапазона волн с веществом, в частности, для исследования возбуждения вторичных электромагнитных волн в оптически прозрачных диэлектрических средах в процессе их нестационарного взаимодействия с электромагнитными волнами.

Изобретение относится к лазерным измерениям и может быть использовано в системах измерения поляризационных параметров оптического излучения. .

Изобретение относится к области технической физики и может быть использовано для измерения азимута плоскости поляризации оптического излучения. .

Изобретение относится к области оптического приборостроения и касается способа определения знака поляризации циркулярно и эллиптически поляризованного лазерного излучения. Способ включает в себя воздействие анализируемым излучением на снабженный двумя электродами пленочный фоточувствительный элемент, измерение электрического сигнала между электродами и определение знака поляризации по полярности измеренного электрического сигнала. Фоточувствительный элемент расположен облучаемым межэлектродным участком наклонно к падающему лучу лазера так, что плоскость падения луча на пленку параллельна электродам. В качестве фоточувствительного элемента используют нанокристаллическую пленку селенида меди толщиной от 50 до 500 нм. Технический результат заключается в обеспечении возможности определения знака поляризации ультрафиолетового излучения. 1 з.п. ф-лы, 3 ил.
Наверх