Способ создания пассивной помехи

Изобретение относится к области радиотехники и может быть использовано при защите объектов радиоэлектронными средствами. Способ создания пассивной помехи путем имитации цели, основанный на рассеянии падающего электромагнитного поля нанесенным на объект покрытием, заключается в том, что рассеяние падающего электромагнитного поля обеспечивают нанесенным на объект материалом, обладающим индуктивным импедансом, в котором под воздействием падающего электромагнитного поля происходит формирование поверхностной волны, замедление скорости ее распространения, дифрагирование и переизлучение в пространство. Технический результат - создание радиолокационного портрета объекта с размерами, большими по сравнению с реальными размерами объекта. 1 ил.

 

Изобретение относится к области радиотехники, конкретно к способам создания пассивных имитирующих помех, и может быть использовано при защите объектов радиоэлектронными средствами.

Известен способ создания имитирующей помехи малоразмерными ложными целями, основанный на ретрансляции принятого сигнала [1, стр. 87], позволяющий увеличивать эффективную площадь рассеяния (ЭПР) носителя помехи, в качестве которого используется небольшой самолет, в несколько раз меньший по размерам, чем имитируемая цель (бомбардировщик). Недостаток данного способа заключается в необходимости использования приемной и передающей антенн, усилителя и передатчика, что приводит к высокой стоимости и увеличению массы постановщика помехи. Кроме того, этот способ не позволяет имитировать дальностные радиолокационные портреты, получаемые радиолокационными системами с широкополосными зондирующими сигналами, размер элемента разрешения по дальности для которых в несколько раз меньше линейных размеров имитируемой цели.

Известен также способ создания имитирующей помехи на основе измерения параметров зондирующего сигнала, запоминания их, последующего формирования и излучения сигнала с искаженными параметрами для имитации наличия ложной цели в удаленном от защищаемого объекта месте расположения [2, стр. 131-135]. Для осуществления данного способа формируют сигналы с ложными координатами по углам, скорости и дальности цели. Недостаток данного способа заключается в том, что, помимо передатчика помех, требуется наличие сложного разведывательного приемника, устройства генерации сверхвысокочастотного сигнала с управляемыми параметрами, системы запоминания параметров сигнала, модуляторов, антенн, что увеличивает массу, габариты и стоимость постановщика помех.

Наиболее близким к заявляемому способу является выбранный в качестве прототипа способ создания пассивной помехи, основанный на управлении рассеянием падающего электромагнитного поля [3, стр. 218-243]. Для реализации способа на поверхность объекта наносят покрытие из радиолокационного материала.

Известный способ используют для изменения эффективной площади рассеяния (ЭПР) объекта, для уменьшения или иногда для увеличения названного параметра. При этом других изменений радиолокационного портрета объекта не происходит. Отсутствует возможность создания радиолокационного портрета объекта, имитирующего изменение геометрических размеров объекта, например его длины. В этом заключается один из существенных недостатков известного способа.

Задачей изобретения является повышение эффективности имитации дальностных радиолокационных портретов целей за счет расширения диапазона реализуемых временных задержек радиолокационного сигнала, отраженного локальными центрами рассеяния цели, благодаря чему достигается имитация дальностных радиолокационных портретов целей с помощью устройства с габаритами, меньшими, чем имитируемая цель.

Поставленная задача решается тем, что в способе создания пассивной помехи путем имитации цели, основанном на рассеянии падающего электромагнитного поля нанесенным на объект покрытием, рассеяние падающего электромагнитного поля обеспечивают материалом, обладающим индуктивным импедансом, в котором под воздействием падающего электромагнитного поля происходит формирование поверхностной волны, замедление скорости ее распространения, дифрагирование и переизлучение в пространство.

Техническим результатом изобретения является возможность имитации дальностного радиолокационного портрета цели с помощью устройства, габариты которого существенно меньше, чем имитируемая цель.

Сущность изобретения поясняется на примере реализации способа создания пассивной имитирующей помехи посредством замедления скорости распространения поверхностной электромагнитной волны, возбуждаемой падающим электромагнитным полем, в замедляющей электродинамической структуре с последующим дифракционным излучением этой волны.

Схема, поясняющая предлагаемый способ создания пассивной имитирующей помехи, представлена на фиг. 1. Согласно чертежу схема содержит объект, на корпус 1 которого нанесен слой 2 материала, ограниченный передней кромкой 3 и задней кромкой 4. Материал, из которого изготовлен слой 2, обладает индуктивным импедансом. Как известно [4, стр. 28; 5, стр. 464-467], электротехнический материал, импеданс которого имеет индуктивный характер, обладает замедляющим эффектом (скорость распространения поверхностной электромагнитной волны, возбуждаемой в данном материале, меньше скорости распространения в вакууме).

Кроме того, на чертеже показаны: вектор Пойнтинга П падающей электромагнитной волны; вектор, определяющий направление распространения поверхностной электромагнитной волны Нпов; векторы напряженности магнитного поля Н1, Н2, излучаемого посредством дифракции электромагнитной волны.

Создание пассивной имитирующей помехи предложенным способом осуществляют следующим образом.

Электромагнитная волна П, падающая на корпус 1 объекта, дифрагирует на передней и задней кромках 3, 4 слоя 2, излучая электромагнитное поле с напряженностью магнитного поля Н1, Н2. Наряду с дифракцией электромагнитного поля на кромках в точках 3, 4 происходит возбуждение поверхностной волны Нпов, которая распространяется вдоль слоя 2, играющего роль линии передачи энергии. Благодаря исполнению слоя 2 из материала, импеданс которого имеет индуктивный характер, осуществляется замедление скорости распространения поверхностной волны. Указанная скорость будет меньше скорости распространения электромагнитной волны в вакууме. При достижении поверхностной волной, возбужденной в точке 3, точки 4 часть энергии дифрагирует и будет переизлучена в пространство путем формирования электромагнитного поля с напряженностью Н2.

Временной интервал, разделяющий моменты переизлучения электромагнитной волны в точках 3, 4, и соответствующее этому интервалу расстояние будет больше, чем длина замедляющей электродинамической структуры 2 и корпуса 1 объекта. Таким образом осуществляют имитацию дальностного радиолокационного портрета цели с помощью устройства, габариты которого существенно меньше по сравнению с габаритами имитируемой цели. Изменяя длину слоя 2 и величину его импеданса, задают требуемое время задержки отраженного радиолокационного импульса, тем самым имитируют объект соответствующих линейных размеров. Изменяя величину импеданса в точках 3 и 4, путем выбора материала, задают требуемую интенсивность возбуждаемой поверхностной волны и напряженности дифрагированного на них электромагнитного поля, осуществляя, таким образом, имитацию величин локальных ЭПР цели. Имитацию сложных радиолокационных целей, имеющих несколько локальных отражателей, осуществляют путем замедления поверхностной электромагнитной волны на нескольких слоях, длина которых и их реактивный импеданс подбирают таким образом, чтобы обеспечить подобие дальностных радиолокационных портретов устройства, создающего помеху, и цели.

Как следует из вышеизложенного, описанная совокупность признаков предлагаемого способа позволяет повысить эффективность имитации дальностных радиолокационных портретов целей с помощью малогабаритных устройств.

Благодаря высокой эффективности и сравнительной простоте реализации способ может найти широкое практическое применение.

Источники информации, использованные при составлении заявки

1. Палий А.И. Радиоэлектронная борьба. - 2-е изд., перераб. и доп. - М.: Воениздат, 1989. - 350 с.

2. Перунов Ю.М., Фомичев К.И., Юдин Л.М. Радиоэлектронное подавление информационных каналов систем управления оружием / Под ред. Перунова Ю.М. - М.: Радиотехника, 2003. - 415 с.

3. Великанов В.Д. и др. Радиотехнические системы в ракетной технике. - М.: Воениздат, 1974. - 340 с, (прототип).

4. Крячко А.Ф., Лихачев В.М., Смирнов С.Н., Сташкевич А.И. Теория рассеяния электромагнитных волн в угловых структурах. - СПб.: Наука, 2009. - 194 с.

5. Гольдштейн Л.Д., Зернов Н.В. Электромагнитные поля и волны. Изд. 2-е, перераб. и доп. М.: Сов. радио, 1971. - 662 с.

Способ создания пассивной помехи путем имитации цели, основанный на рассеянии падающего электромагнитного поля нанесенным на объект покрытием, отличающийся тем, что рассеяние падающего электромагнитного поля обеспечивают нанесенным на объект материалом, обладающим индуктивным импедансом, в котором под воздействием падающего электромагнитного поля происходит формирование поверхностной волны, замедление скорости ее распространения, дифрагирование и переизлучение в пространство.



 

Похожие патенты:
Изобретение относится к области радиолокации и может быть использовано при помеховом подавлении радиолокационных станций (РЛС). Достигаемый технический результат - снижение энергоемкости постановщика активной помехи, подсвечивающего совокупность пассивных отражателей и повышение эффективности подавления РЛС.

Изобретения относятся к области радиолокации и могут быть использованы для определения дальности до постановщика помех (ПП). Достигаемый технический результат - определение дальности до ПП с помощью однопозиционной радиолокационной станции (РЛС).
Изобретение относится к области радиоэлектронной борьбы и может быть использовано для защиты специальных мобильных объектов, например, от радиолокационных средств разведки и наведения оружия.

Изобретение относится к устройствам, предназначенным для имитации частотно-временной структуры радиолокационного сигнала, отраженного от подстилающей поверхности, от одной или нескольких целей, и может быть использовано, например, для имитации ложных целей и помех для защиты присутствующих целей, а также для имитации эхо-сигналов радиолокаторов и радиовысотомеров.

Изобретение относится к области защиты средств радиосвязи от управляемого оружия на основе самонаведения на источник радиоизлучения. Достигаемый технический результат - повышение эффективности защиты средства спутниковой радиосвязи от самонаводящегося на радиоизлучение элемента поражения.

Изобретение относится к области радиотехники, в частности к технике радиоэлектронного подавления космических радиолокационных станций с синтезированной апертурой антенны (РСА).
Заявляемые технические решения относятся к области радиолокации и могут быть использованы в радиолокационных станциях (РЛС) для защиты от ответных помех. Достигаемый технический результат - распознавание при обзоре пространства ответной помехи на дальностях за постановщиком помех и обеспечение возможности работы системы СДЦ.

Изобретение относится к средствам радиоподавления, применяемым для защиты объектов, вооружения и военной техники. Достигаемый технический результат изобретения - повышение эффективности устройства за счет исключения нерационального распределения энергии помехи по диапазону частот, обеспечения радиолокационного обнаружения и сопровождения по направлению кратковременно работающих РЛС с одновременной радиотехнической разведкой их излучений и повышения пропускной способности и рационального распределения мощности помехи по пространству.

Спускаемый разведывательный модуль относится к информационно-измерительной технике и может быть использован в системе освещения надводной обстановки. Достигаемый технический результат - увеличение информативности, качества информации, с возможностью многократного использования.

Изобретение относится к радиотехнике, а именно к радиоэлектронному подавлению активными помехами радиоэлектронных средств, в частности средств радиосвязи с псевдослучайной перестройкой рабочей частоты, и может быть использовано для подавления корабельных и авиационных средств радиосвязи.

Изобретение относится к области противодействия радиоэлектронным средствам (РЭС) и может быть использовано при осуществлении помехового воздействия на радиосредства различного назначения. Достигаемый технический результат - повышение точности доставки постановщика радиопомех (ПРП) в район местонахождения РЭС. Указанный результат достигается за счет того, что предварительно на пункте запуска носителей (ПЗН) производится выбор координат точки доставки передатчика радиопомех в зависимости от рельефа местности, характеристик ИРП и других условий в интересах создания эффективных помех РЭС. С ПЗН осуществляют пуск носителя, который доставляет в район нахождения РЭС передатчик оптического излучения (ПОИ), навигационный приемник и устройство передачи данных, выполненных в едином кассетном исполнении и автоматически приводящихся в рабочее состояние после фиксации в грунте. Навигационный приемник определяет свои координаты и передает их значения на ПЗН. На ПЗН для доставки ИРП в требуемую точку рассчитывают значения корректирующих сигналов отклонения полета самонаводящегося (СНН) носителя относительно ПОИ, которые вносят в систему управления траекторией полета СНН. С ПЗН осуществляют пуск СНН ИРП, который при подлете к ПОИ принимает его излучение. При этом с момента приема сигнала ПОИ СНН ИРП также осуществляет съемку подстилающего ландшафта в зоне точки доставки ИРП. При достижении определенного рубежа ПОИ выходит из поля зрения СНН, который теряет его сигнал и переходит в режим самонаведения по полученному изображению элементов постилающего ландшафта. 2 ил.

Изобретения относятся к области радиолокации и могут быть использованы для распознавания синхронной ответной помехи. Достигаемый технический результат - распознавание сигналов синхронной ответной помехи, принятых главным лучом антенны одноканальной РЛС. Указанный результат по первому варианту решается тем, что в способе радиолокационного обзора пространства, заключающемся в последовательном осмотре угловых направлений, при зондировании одного направления, путем последовательного переброса луча приемной антенны осматривают участки дальности других направлений, в которых ранее были обнаружены цели, и при обнаружении в них целей считают их ложными. Указанный результат по второму варианту решается тем, что в способе радиолокационного обзора пространства, основанном на многолучевом приеме, при зондировании выбранного направления с помощью k>1 дополнительных лучей осматривают участки дальностей других направлений, на которых ранее были обнаружены цели, и при дополнительном обнаружении целей их считают ложными. 2 н. и 1 з.п. ф-лы, 2 ил.

Изобретение относится к области радиолокации и может быть использовано для распознавания ложных сигналов, формируемых постановщиком синхронной ответной помехи. Достигаемый технический результат изобретения - распознавание ложных сигналов синхронной ответной помехи, принятых главным лучом диаграммы направленности антенны (ДНА). Указанный технический результат достигается тем, что в способе распознавания ложных сигналов, основанном на распознавании сигналов, принятых с направления боковых лепестков ДНА радиолокационной станции, формируют углодальностные пакеты сигналов, принимают решение о том, что пакет сформирован главным лучом ДНА за счет ложных сигналов синхронной ответной помехи, если обнаружен в зоне обзора коррелированный с ним углодальностный пакет сигналов, принятых в области боковых лепестков. 5 з.п. ф-лы, 1 ил.
Изобретение относится к способам уничтожения воздушной цели зенитными управляемыми ракетами (ЗУР). Для уничтожения воздушной цели излучают ложный сигнал с параметрами, аналогичными параметрам сигнала РЛС наведения ЗУР на определенной частоте, осуществляют поиск, обнаружение и измерение параметров радиоэлектронных помех противника. При обнаружении помехи создают помехи на определенных частотах с позиции РЛС и с позиции, удаленной от РЛС ЗРК на расстоянии не менее радиуса поражения РЛС самонаводящимся на радиоизлучение оружием, откуда излучают ложный сигнал. Обеспечивается повышение вероятности уничтожения воздушной цели противника. 1 з.п. ф-лы.

Изобретения относятся к области радиолокации и могут быть использованы для определения пеленга на источник непрерывной помехи. Достигаемый технический результат - повышение точности определения пеленга на источник непрерывной помехи, в том числе и при нестабильности ее уровня. Указанный результат достигается тем, что в способе определения пеленга на источник непрерывной помехи (ИНП), основанном на приеме помехи с различными значениями коэффициента усиления антенны (КУ), изменяют КУ в процессе приема путем модуляции распределения поля в раскрыве антенны, измеряют глубину модуляции принятой помехи, принимают решение о пеленге на ИНП, если глубина модуляции отличается от значения, соответствующего пеленгу, не более, чем на порог, при этом в радиолокационное устройство для осуществления способа определения пеленга на ИНП, содержащее антенну с приводом, приемник, пороговое устройство и устройство оценки угловых координат, первый выход антенного привода соединен с входом приемника, а второй соединен со вторым входом устройства оценки угловых координат, выход приемника соединен с входом порогового устройства, введены устройство определения глубины модуляции, пороговое устройство глубины модуляции, устройство модуляции распределения поля и генератор модулирующей частоты, выход порогового устройства соединен с входом устройства определения глубины модуляции, а его выход соединен с входом порогового устройства глубины модуляции, выход которого соединен с первым входом устройства оценки угловых координат, выход генератора модулирующей частоты соединен с входом устройства модуляции распределения поля, выход которого соединен с входом антенны, выход устройства оценки угловых координат является выходом устройства. 2 н. и 3 з.п. ф-лы, 3 ил.

Изобретение относится к области радиоэлектронной борьбы и может быть использовано для защиты мобильных объектов, например железнодорожных и грунтовых ракетных комплексов стратегического назначения, железнодорожных составов и автомобильных колонн при транспортировке особо охраняемых грузов от радиолокационных средств разведки и наведения оружия. Техническим результатом изобретения является расширение функциональных возможностей устройства защиты мобильных объектов от радиолокационных средств разведки и наведения оружия. Указанный технический результат достигается за счет: предварительной установки дистанционно-управляемых малогабаритных модулей помех (ММП) вдоль трассы движения мобильного объекта на расстоянии друг от друга, обеспечивающем непрерывное пребывание радиолокационного средства в зоне их действия, включения и выключения ММП в соответствии с местом нахождения мобильного объекта, при этом в пульт управления введены блок коммутации, блок определения дальности до ММП, первая и вторая схемы сравнения, выходы которых соединены со вторым и третьим входами формирователя команд управления соответственно, первый, второй, третий, четвертый и пятый выходы блока коммутации соединены с первым входом формирователя команд управления, первым входом первой схемы сравнения, первым и вторым входами блока определения дальности до ММП, вторым входом второй схемы сравнения соответственно, а второй вход первой схемы сравнения и первый вход второй схемы сравнения объединены и соединены с выходом блока определения дальности до ММП. 3 з.п. ф-лы, 1 ил.

Изобретение относится к области пассивной локации и может быть использовано при разработке комплексов радиотехнической разведки для обнаружения, классификации и последующего траекторного сопровождения воздушных и морских целей по излучению радиоэлектронных средств, передачи полученной разведывательной информации на вышестоящие автоматизированные командные пункты (КП) и КП управления войсками и управления радиопеленгаторными постами, а также в системах предупреждения воздушной угрозы и радиоэлектронной борьбы. Достигаемый технический результат изобретения - расширение диапазона частот принимаемых сигналов; сокращение времени реакции станции; увеличение количества одновременно разведываемых бортовых радиолокационных станций; расширение функциональных возможностей станции. Указанный технический результат достигается за счет выполнения антенного устройства в виде правильной призмы, имеющей N=(360°/Δβ) боковых граней, где Δβ - ширина диаграммы направленности антенны по азимуту, размещения на каждой боковой грани призмы М антенн, введения в состав станции М сумматоров и изменения режимов функционирования станции радиотехнической разведки. 3 з.п. ф-лы, 1 ил.

Изобретение относится к технике борьбы с радиоэлектронными системами и может быть использовано для активного противодействия конфликтно—устойчивым (КУ) радиоэлектронным средствам (РЭС). Достигаемый технический результат – повышение эффективности. Указанный результат достигается за счет того, что способ радиоэлектронного поражения КУ РЭС включает прием фазированной антенной решеткой (ФАР) сигналов, излучаемых поражаемым КУ РЭС, обнаружение принятых сигналов, определение направления их прихода, периода следования и дальности до поражаемого КУ РЭС, излучение ФАР помеховых сверхвысокочастотных сигналов (СВЧ-сигналов) в направлении поражаемого КУ РЭС с задержкой каждого помехового СВЧ-сигнала относительно прихода сигнала излучаемого поражаемого КУ РЭС, контроль процесса излучения сигналов поражаемого КУ РЭС, при этом до излучения помеховых СВЧ-сигналов зондируют направление прихода сигналов, излучаемых поражаемым КУ РЭС пилот-сигналом на частоте излучения помеховых СВЧ-сигналов, принимают пилот-сигнал, отраженный поражаемым КУ РЭС и измеряют амплитудно-фазовое распределение (АФР), формируемое им на элементах ФАР, далее в моменты времени tn равные, где Т - период следования сигналов поражаемого КУ РЭС; Rn - расстояние от поражаемого КУ РЭС до n-го элемента ФАР; с - скорость света, каждым n-м элементом ФАР в направление поражаемого КУ РЭС излучают помеховые СВЧ-сигналы с начальной фазой, равной комплексно-сопряженному значению измеренного АФР на n-м элементе ФАР. 2 ил.

Изобретение относится к области радиотехники и может быть использовано для создания преднамеренных радиопомех большой мощности размещаемым на высокоскоростных и высокоманевренных мобильных средствах приемным устройствам навигационной аппаратуры потребителей, работающей по сигналам глобальных навигационных спутниковых систем (ГНСС). Достигаемый технический результат – обеспечение создания радиопомех навигационной аппаратуре потребителей ГНСС. Указанный результат достигается путем применения совокупности разнесенных в пространстве передатчиков радиопомех небольшой мощности с концентрацией суммарной энергии радиопомех в заданной области пространства на заданном интервале времени, при этом пространственно-распределенный комплекс создания радиопомех навигационной аппаратуре потребителей глобальных навигационных систем с многофункциональным использованием радиоэлектронного оборудования состоит из пункта управления и станций радиопомех, выполненных и взаимосвязанных между собой определенным образом. 3 ил.

Изобретение относится к области радиолокации и может быть использовано для распознавания синхронной ответной помехи (СОП). Достигаемый технический результат - распознавание сигналов синхронной ответной помехи, формирующих ложные цели. Указанный результат достигается тем, что осмотр направлений под различными углами места осуществляют зондирующими сигналами с измененными параметрами, принимают решение об обнаружении ложных целей под всеми углами места на дальностях, на которых обнаружены сигналы с прежними параметрами и с измененными, принятыми в зоне, где прием отражений от целей маловероятен или невозможен. Указанный технический результат решается также тем, что зоной, где прием сигналов, отраженных от цели, маловероятен или невозможен, считают зоны, расположенные за пределами прямой видимости и за максимальной дальностью действия РЛС, в области теней (полутеней) и на высотах, недостижимых для реальных целей обнаруженного класса. Указанный технический результат решается также тем, что закон линейной частотной модуляции зондирующего сигнала изменяют на зеркальный, а также тем, что считают ложной целью сигналы, принятые во всем угломестном столбце на дальностях, на которых обнаружены сигналы с измененными параметрами и в пределах прямой видимости, если они коррелированы с сигналами, принятыми в зоне, где прием сигналов, отраженных от целей, маловероятен или невозможен, кроме того, сигналы считают коррелированными, если принятые с одного направления сигналы на разных дальностях имеют одинаковые уровни в режиме линейного приема сигналов и в режиме приема сигналов с ограничением или равны их автокорреляционные функции. 4 з.п. ф-лы, 3 ил.
Наверх