Цифровой способ измерения параметров пьезоэлектрических элементов

Изобретение относится к измерительной технике. Особенностью заявленного цифрового способа измерения параметров пьезоэлектрических элементов является то, что импульсный сигнал возбуждения имеет длительность T10-τ, где τ - длительность паузы между окончанием сигнала с линейной частотной модуляцией и моментом окончания регистрации цифровых сигналов, при этом время регистрации цифровых сигналов равно Т0, определяют частоту резонанса ƒr, частоту антирезонанса ƒa и добротность Q пьезоэлемента, а также значение параллельной емкости С0 из полученного множества значений комплексной проводимости путем его дробно-рациональной аппроксимации частотной зависимостью комплексной проводимости канонической эквивалентной схемы в резонансном промежутке частот. Техническим результатом является повышение точности измерения комплексной проводимости пьезоэлектрического элемента. 1 з.п. ф-лы, 10 ил.

 

Область техники

Изобретение относится к измерительной технике и предназначено для измерения частотной характеристики комплексной проводимости, частот резонанса и антирезонанса, добротности, а также параллельной емкости в резонансном промежутке частот и на частоте, много меньшей частоты основного резонанса. Изобретение может быть использовано при испытаниях и контроле пьезоэлектрических элементов (ПЭ), а также для определения электрофизических параметров пьезоэлектрических материалов.

Уровень техники

Задача оперативного измерения характеристик пьезоэлектрических элементов и пьезопреобразователей и контроля их параметров в динамическом режиме актуальна как на стадиях разработки и производства, так и в период эксплуатации. Применяемые для этих целей системы, основанные на стандартных измерительных приборах, обладают низкой производительностью. Кроме того, из-за своих массогабаритных характеристик они непригодны для контроля характеристик преобразователей на подвижных носителях в процессе их испытаний и при проведении регламентных работ.

Известен способ определения электрофизических параметров пьезоэлектрического материала (Отраслевой стандарт OCT II 0444-87. Материалы пьезокерамические. Технические условия. - М.: Электростандарт. 1987. С 49) /1/, согласно которому определяют частоты резонанса и антирезонанса ПЭ определенных формы и размеров путем измерения напряжения на вспомогательном нагрузочном резисторе, соединенном с ПЭ последовательно. Измерительная схема содержит генератор синусоидальных сигналов, резистивный делитель, ПЭ, нагрузочный резистор, вольтметр.

Плавно изменяя частоту генератора, частоты резонанса и антирезонанса определяют соответственно по максимуму и минимуму показаний вольтметра.

Недостатком способа является низкая точность, высокая трудоемкость и продолжительность измерений.

Из уровня техники также известны средства для контроля параметров пьезопреобразователей.

Устройство для измерения импеданса многослойного пьезоэлектрического актюатора, расположенного в механической системе (WO 2012149649 (А1), МПК F02M 51/00; G01R 27/02; G01R 31/00, 2012-11-08) /2/, содержит генератор сигнала, который формирует сигнал напряжения с частотой, большей, чем резонансная частота пьезоэлектрического привода, датчик напряжения, датчик тока и компьютер. Пьезоэлектрический актюатор механически реагирует на сигналы тока и напряжения. Компьютер соединен с датчиком напряжения и датчиком тока и запрограммирован для вычисления значения импеданса по измеренным значениям напряжения и тока.

Известна автоматическая измерительная система для контроля пьезоэлектрических материалов (TW 200933163(A), МПК G01R 27/02, G01R 27/28, 2009-08-01) /3/, основанная на амплитудно-фазовом способе измерения параметров резонансной частоты, антирезонансной частоты, электромеханических характеристик. Измерительная система содержит управляющий компьютер, функциональный генератор, пьезоэлектрический элемент, плату сбора данных и дисплей.

Система мониторинга структурной целостности объектов (Structural integrity monitoring system including wireless electromechanical impedance measurement US 6768312 6 МПК G01N 29/09; G01N 29/12; кл. US 324/525; 324/509, 2004-07-27) /4/ содержит пьезоэлектрический датчик, к которому последовательно подключен резистор. Система для определения структурного состояния объекта включает: пьезоэлектрический датчик, который выполнен с возможностью крепления на объекте контроля; резистивный элемент, соединенный последовательно с пьезоэлектрическим датчиком; формирователь сигнала, измеритель падения напряжения на датчике; передатчик, который передает обработанный сигнал; и дистанционно расположенный интерфейс, который принимает переданный сигнал и выдает выходной сигнал сопротивления датчика на основе обработанного сигнала и заключение о структурном состоянии контролируемого объекта. Основной недостаток способа заключается в физической и математической некорректности метода определения импеданса.

Известен способ определения добротности пьезоэлемента (RU 2499234, 6 МПК G01H 13/00, G01H 1/06) /5/, согласно которому возбуждают колебания пьезоэлемента в области резонанса путем воздействия на него электрическим синусоидальным напряжением с переменной частотой, одновременно выделяют активную составляющую проводимости и выполняют ее дифференцирование. На частотной характеристике производной от активной составляющей проводимости измеряют частоту, соответствующую максимальному значению производной, и измеряют значение производной на частоте максимума. На частотной характеристике активной составляющей проводимости измеряют значение активной составляющей проводимости на частоте максимума производной и по формуле вычисляют добротность.

Однако дифференцирование активной составляющей проводимости при наличии шумов и помех приводит к увеличению погрешности измерений, так как любые помехи дифференцируются вместе с сигналом. Кроме того, использование информации об активной составляющей проводимости на одной частоте снижает повторяемость результатов.

Наиболее информативным является амплитудно-фазовый способ измерения частотной характеристики комплексной проводимости Y ˙ ( ƒ ) . Частотная зависимость полной (комплексной) проводимости пьезоэлемента Y ˙ ( ƒ ) , измеренная в достаточно широкой области частот, охватывающей резонансный промежуток, содержит полную информацию о механической колебательной системе ПЭ и его электрических свойствах на данной моде колебаний. Она используется для определения основных параметров ПЭ, таких, как резонансная ƒr и антирезонансная ƒа частоты, механическая добротность Q, эффективный коэффициент электромеханической связи (/1/, стр. 74-75).

В амплитудно-фазовом способе использована схема, содержащая генератор синусоидальных сигналов, частотомер, фазометр и вольтметр. Гармонический сигнал u0(t)=A0cos(2πƒt+φ0) с частотой ƒ и известной амплитудой A0 с выхода генератора подают на последовательно соединенные резистор с известной величиной сопротивления r0 и образец ПЭ, возбуждая тем самым вынужденные механические колебания ПЭ на частоте приложенного напряжения. Измерительный сигнал u(t)=A1cos(2πƒ+φ1) регистрируют в точке соединения образца с резистором и измеряют разность фаз φ=φ01 фазометром и амплитуду сигнала А1 вольтметром. Измерение частотной характеристики комплексной проводимости ПЭ проводят на каждой отдельно установленной частоте синусоидального сигнала, которая контролируется частотомером. При этом значение комплексной проводимости Y ˙ ( ƒ ) на заданной частоте ƒ определяют по формуле:

где i2= -1 - мнимая единица. Номинал нагрузочного сопротивления r0 выбирают из условия примерного равенства амплитуд напряжений на резисторе и ПЭ, т.е. r 0 | Y ˙ ( ƒ ) | 1 . Однако это условие невыполнимо в широком диапазоне частот, полностью включающем резонансный промежуток ПЭ.

Недостатки амплитудно-фазового способа заключаются в следующем:

- погрешность установки частоты, а также измерения амплитуд и разности фаз определяется временем возбуждения ПЭ, и для ее уменьшения приходится увеличивать время измерения на каждой частоте, а с ним и

время измерения в целом, что может оказаться неприемлемым в условиях выходного или входного контроля ПЭ;

- модуль проводимости ПЭ в резонансном промежутке изменяется в широких пределах (до 2-3 порядков), что требует индивидуального подбора сопротивления r0 на различных частотах, а применение резистора с фиксированным номиналом снижает точность измерений.

Наиболее близким по технической сущности к заявляемому изобретении является цифровой способ измерения параметров пьезокерамических элементов и пьезоматериалов (Н.М. Иванов, В.Л. Земляков, Ю.К. Милославский. Новые средства измерения параметров пьезокерамических элементов и пьезоматериалов. Инженерный вестник Дона. №3. 2013) /7/, принимаемый за прототип настоящего изобретения. Функциональная схема аппаратуры для реализации способа-прототипа (фиг. 1) содержит компьютер и подключенное к нему оперативное запоминающее устройство ОЗУ1, цифроаналоговый преобразователь ЦАП, фильтр нижних частот ФНЧ, измерительный четырехполюсник, содержащий последовательно соединенные резистор и ПЭ, двухканальный аналого-цифровой преобразователь АЦП1 и АЦП2, выполненный по схеме с общим задающим генератором, и буферное оперативное запоминающее устройство ОЗУ2, соединенное с компьютером. Аналоговая обработка сигналов сведена к операциям аналоговой фильтрации и усиления сигналов. Операции способа-прототипа состоят в следующем:

- формируют в ЭВМ выборку значений цифрового импульсного сигнала возбуждения sn объемом N, n∈[0, N-1], по формуле

где А - амплитуда цифрового сигнала, Fd - частота дискретизации, ƒ0 и ƒ1 - заданные минимальная и максимальная границы частотного диапазона, в котором выполняются измерения; преобразуют значения цифрового импульсного сигнала возбуждения sn в аналоговый импульсный сигнал возбуждения с напряжением u0(t), мгновенная частота которого линейно возрастает от ƒ0 до ƒ1 в течение длительности импульса. Напряжение u0(t) подают на измерительный четырехполюсник, содержащий последовательно соединенные резистор и ПЭ;

- подают напряжение u0(t) вместе с измерительным напряжением u1(t), снимаемым в точке соединения резистора и ПЭ, на вход двухканального аналого-цифрового преобразователя (АЦП), и далее через буферное запоминающее устройство, в управляющую ЭВМ, где они подвергаются дискретному преобразованию Фурье, в результате чего получаются два комплексных массива длиной 1+N/2 каждый, соответствующие значениям U ˙ 0 ( ƒ ) и U ˙ ( ƒ ) на частотах ƒk=kFd/N, k∈[0, N/2];

- вычисляют значения комплексной проводимости ПЭ по формуле:

- определяют по результатам измерений емкость на низкой частоте, частоты резонанса и антирезонанса как частоты максимума и минимума модуля проводимости, ширину резонансной кривой на уровне половинной мощности и добротность ПЭ как отношение частоты резонанса к этой ширине.

Недостатки способа-прототипа заключаются в следующем:

- использование во всем резонансном промежутке единственного нагрузочного резистора, обусловленное импульсным характером возбуждающего сигнала, и, как следствие, низкая точность определения частоты антирезонанса и добротности;

- равенство длительности регистрации измерительного сигнала и длительности импульса возбуждающего сигнала, которое не позволяет регистрировать отклик ПЭ после завершения возбуждающего сигнала.

Раскрытие изобретения

Техническим результатом настоящего изобретения является повышение точности измерения комплексной проводимости ПЭ за счет введения паузы между моментом завершения возбуждающего импульсного сигнала и моментом завершения регистрации измерительного сигнала, а также повышение точности определения частот резонанса, антирезонанса и добротности пьезоэлемета путем дробно-рациональной аппроксимации зависимости , которая использует всю совокупность измеренных значений комплексной проводимости ПЭ.

Технический результат достигается тем, что цифровой способ измерения параметров пьезоэлектрических элементов включает воздействие сигналом возбуждения u0(t) на пьезоэлемент, соединенный последовательно с резистором, имеющим заданное сопротивление r0, регистрацию измерительного сигнала u(t) в точке соединения пьезоэлемента с резистором, формирование в ЭВМ заданного числа N значений цифрового импульсного сигнала возбуждения с линейной частотной модуляцией, мгновенная частота которого изменяется от ƒ0 до ƒ1, где ƒ0 и ƒ1 - минимальная и максимальная частоты диапазона, в котором выполняются измерения, охватывающего резонансный промежуток для заданной моды колебаний пьезоэлемента, сформированный цифровой импульсный сигнал преобразуют в аналоговый импульсный сигнал возбуждения u0(t), синхронно преобразуют сигнал возбуждения u0(t) и измерительный сигнал u(t) в цифровую форму, восстанавливают и запоминают комплексные дискретные спектры и обоих сигналов, вычисляют и запоминают множество значений комплексной проводимости пьезоэлемента на каждой дискретной частоте ƒ в пределах изменения частоты возбуждающего сигнала.

Согласно изобретению импульсный сигнал возбуждения имеет длительность Т10-τ, где τ - длительность паузы между окончанием сигнала с линейной частотной модуляцией и моментом окончания регистрации цифровых сигналов, при этом время регистрации цифровых сигналов равно Т0, определяют частоту резонанса ƒr, частоту антирезонанса ƒa и добротность Q пьезоэлемента, а также значение параллельной емкости С0 из полученного множества значений комплексной проводимости путем его дробно-рациональной аппроксимации частотной зависимостью комплексной проводимости канонической эквивалентной схемы в резонансном промежутке частот.

Другое отличие состоит в том, что длительность паузы для регистрации полного отклика пьезоэлемента на импульсный сигнал возбуждения выбирают из условия τ>Qmax0, где Qmax - верхний предел измерения добротности.

Введение паузы между моментом завершения возбуждающего импульсного сигнала и моментом завершения регистрации измерительного сигнала позволяет регистрировать свободные колебания ПЭ, что повышает точность измерения комплексной проводимости. Повышение точности определения частот резонанса и антирезонанса, а также добротности пьезоэлемента достигается применением АЦП с числом разрядов не менее 14 и определением этих частот из параметров канонической эквивалентной схемы ПЭ, которые находят по всем измеренным значениям комплексной проводимости путем их дробно-рациональной аппроксимации, а не по значениям модуля или составляющих проводимости в отдельных частотных позициях, как в способе-прототипе.

Перечень чертежей

Фиг. 1. Функциональная схема формирования и регистрации возбуждающего u0(t) и измерительного u(t).

Фиг. 2. Блок-схема операций цифрового способа измерения параметров пьезоэлектрических элементов.

Фиг. 3. Форма возбуждающего импульсного сигнала u0(t) с линейной частотной модуляцией.

Фиг. 4. Осциллограмма сигнала измерительного напряжения u(t).

Фиг. 5. Амплитудные дискретные спектры сигналов возбуждающего u0(t) (1) и измерительного u(t) (2) напряжений.

Фиг. 6. Частотная зависимость активной составляющей измеренной комплексной проводимости Y ˙ ( ƒ ) .

Фиг. 7. Частотная зависимость реактивной составляющей измеренной комплексной проводимости Y ˙ ( ƒ ) .

Фиг. 8. Частотная зависимость модуля измеренной комплексной проводимости Y ˙ ( ƒ ) .

Фиг. 9. Каноническая эквивалентная схема пьезоэлемента, используемая для определения частоты резонанса, частоты антирезонанса, добротности и параллельной емкости в резонансном промежутке частот.

Фиг. 10. Экранная форма результатов измерения модуля | Y ˙ ( ƒ ) | (1), активной Re ( Y ˙ ( ƒ ) ) (2) и реактивной Im ( Y ˙ ( ƒ ) ) (3) составляющих комплексной проводимости и результаты их обработки.

Операции способа поясняются блок-схемой (фиг. 2). Формирование требуемого количества значений N цифрового импульсного сигнал возбуждения выполняется в ЭВМ (блок 1). В блоке 2 цифровой сигнал преобразуется в аналоговый импульсный сигнал возбуждения u0(t) длительностью T0=NΔt, где Δt - период дискретизации, с помощью цифро-аналогового преобразователя и фильтра нижних частот. Аналоговый импульсный сигнал возбуждения u0(t) подается на измерительный четырехполюсник, а измерительное напряжение u(t) регистрируется в точке соединения резистора и ПЭ. В блоке 3 сигнал возбуждения u0(t) и измерительный сигнал u(t) синхронно преобразуются в цифровые сигналы. В блоке 4 цифровые сигналы подвергаются дискретному преобразованию Фурье с использованием алгоритма БПФ, в результате чего восстанавливаются комплексные дискретные спектры U ˙ 0 ( ƒ ) и U ˙ ( ƒ ) обоих цифровых сигналов. В блоке 5 вычисляются значения комплексной проводимости Y ˙ ( ƒ j ) ПЭ на каждой дискретной частоте ƒj, которая попадает в полосу частот возбуждающего сигнала. Для определения параметров ПЭ в блоке 6 выполняется процедура дробно-рациональной аппроксимации множества значений комплексной проводимости Y ˙ ( ƒ j ) частотной зависимостью проводимости канонической эквивалентной схемы (фиг. 9), которая содержит соединенные параллельно емкость С0 и последовательную резонансную RLC-цепочку (колебательный контур). В блоке 7 по результатам процедуры дробно-рациональной аппроксимации восстанавливаются частота резонанса ƒr, частота антирезонанса ƒa, добротность Q и параллельная емкость С0.

Операции способа выполняются следующим образом.

1. Формируют в ЭВМ выборку значений цифрового импульсного сигнала возбуждения sn объемом N, n∈[0, N-1], по формуле

где А - амплитуда цифрового сигнала, Δt - период дискретизации, ƒ0 и ƒ1 - минимальная и максимальная границы частотного диапазона, в котором выполняются измерения, θ(t) - ступенчатая функция Хэвисайда, равная нулю при t<0, и единице в противном случае. Импульсный сигнал возбуждения имеет общую длительность T0=NΔt, которая совпадает с длительностью регистрации измерительного сигнала и сигнала возбуждения. Длительность сигнала возбуждения, в течение которой мгновенная частота сигнала пробегает значения от ƒ0 до ƒ1, равна Т10-τ, где τ - длительность паузы, в течение которой напряжение сигнала возбуждения равно нулю. Пауза вводится для регистрации сигнала отклика ПЭ после прекращения подачи возбуждающего напряжения, т.е. отклика свободных колебаний ПЭ.

Длительность паузы выбирают из условия τ>Qmax0, где Qmax - верхний предел измерения добротности, для обеспечения регистрации полного отклика пьезоэлемента на импульсный сигнал возбуждения. При этом амплитуда сигнала отклика свободных колебаний ПЭ убывает не менее чем в еπ ≈ 23 раза.

2. Преобразуют значения цифрового импульсного сигнала возбуждения sn в аналоговый импульсный сигнал возбуждения с напряжением u0(t), длительность которого равна Т0, мгновенная частота линейно возрастает от ƒ0 до ƒ1 за промежуток времени длительностью Т1, а в пределах паузы амплитуда возбуждающего сигнала равна нулю. Напряжение u0(t) подают на измерительный четырехполюсник, содержащий последовательно соединенные резистор и ПЭ. Форма возбуждающего импульсного сигнала u0(t) с линейной частотной модуляцией показана на фиг. 3.

3. Преобразуют напряжение u0(t) и измерительное напряжение u(t), которое регистрируют в точке соединения резистора и ПЭ, в отсчеты цифрового импульсного сигнала возбуждения U0(nΔt) и отсчеты цифрового измерительного сигнала U(nΔt) с помощью двухканального АЦП, каналы которого работают строго синхронно от единого задающего генератора. Осциллограмма сигнала измерительного напряжения u(t) приведена на фиг. 4. Провал на фиг. 4 соответствует прохождению мгновенной частотой импульсного сигнала возбуждения окрестности частоты резонанса ПЭ. На осциллограмме видны также затухающие колебания ПЭ после прекращения воздействия возбуждающего напряжения.

4. Преобразуют цифровые сигнал возбуждения U0(nΔt) и измерительный сигнал U(nΔt) в отсчеты сигналов комплексных дискретных спектров U ˙ 0 ( ƒ k ) , U ˙ ( ƒ k ) , ƒk=k/(NΔt), k∈[0, N/2]. Для этого используют алгоритм БПФ. Число отсчетов N задают, исходя из требуемого разрешения Δƒ=1/(NΔt) дискретного Фурье-анализа по частоте. Амплитудные дискретные спектры | U ˙ 0 ( ƒ k ) | и | U ˙ ( ƒ k ) | представлены на фиг. 5, из которой следует, что сигнал u0(t) имеет близкий к равномерному спектр в заданном диапазоне частот (ƒ0, ƒ1), за пределами которого его значения малы, а спектр сигнала u(t) имеет глубокий провал на частоте резонанса.

5. Вычисляют значения комплексной проводимости ПЭ на частотах ƒj, попадающих в интервал (ƒ0, ƒ1), по формуле:

Характерные частотные зависимости активной составляющей Re ( Y ˙ ( ƒ ) ) , реактивной составляющей Im ( Y ˙ ( ƒ ) ) и модуля | Y ˙ ( ƒ ) | комплексной проводимости иллюстрируются фиг. 6, 7, 8 соответственно.

6. Сформированные массивы значений комплексной проводимости Y ˙ j = Y ˙ ( ƒ j ) и частот ƒj поступают в блок дробно-рациональной аппроксимации измеренных значений Y ˙ j частотной зависимостью комплексной проводимости канонической эквивалентной схемы Y ˙ 0 ( ƒ ) (фиг. 9), которая состоит из соединенных параллельно емкости С0 и последовательной резонансной RLC-цепочки. Этой эквивалентной схемой ПЭ описывается в резонансном промежутке частот (Пьезоэлектрические резонаторы. Справочник. Под ред. П.Е. Кандыбы и П.Г. Позднякова. - М.: Радио и связь. 1992. С 42) /8/. Комплексная проводимость канонической эквивалентной схемы Y ˙ 0 ( ƒ ) вычисляется по формуле:

где С0, ƒ r 2 = 2 π ( L C ) 1 , , Q = R 1 L / C - соответственно параллельная емкость, частоты резонанса и антирезонанса, добротность канонической эквивалентной схемы, R, C, L - эквивалентные параметры (соответственно активное сопротивление, емкость и индуктивность) динамической ветви канонической эквивалентной схемы. Задачу дробно-рациональной аппроксимации решают методом итерированного веса (Н.Н. Калиткин. Численные методы. - М.: Наука. 1978. С 64) /9/. Для определения частот ƒr, ƒa, добротности Q и параллельной емкости С0 выполняют, согласно методу итерированного веса, следующие действия.

1. Задают значение переменной с и полагают с1=с.

2. Задают малые (~10-5÷10-8) числа ε1 и ε2.

3. Задают значения массива ρj=1.

4. Задают значения вектора ξ: ξ0=0, ξ1=0, ξ2=0.

5. Вычисляют массив значений y ˙ j = 2 π i ƒ j c .

6. Формируют матрицу A ˙ с элементами

7. Формируют вектор b ˙ с элементами b j = ρ j ƒ j 2 ( Y ˙ j y ˙ j ) .

8. Формируют матрицу Re ( A ˙ H A ˙ ) , где знак (·)H обозначает эрмитово сопряжение.

9. Формируют вектор Re ( A ˙ H b ˙ ) .

10. Находят трехмерный вектор х, решая систему трех линейных уравнений с тремя неизвестными Re ( A ˙ H A ˙ ) x = Re ( A ˙ H b ˙ ) .

11. Вычисляют вектор F ˙ с компонентами

12. Определяют новое значение переменной с:

13. Вычисляют новые значения массива ρ j = | ƒ j 2 i ƒ j x 0 x 2 | 1 .

14. Проверяют условия |х-ξ|/|х|>ε1 и |с-с1|/с>ε2.

15. Полагают с1=с, ξ=х и возвращаются к п. 5, если условия выполняются.

16. Завершают процесс, считая результат достигнутым, если условия не выполняются.

17. Определяют частоту резонанса ƒ r = x 2 , частоту антирезонанса , добротность Q = x 2 / x 0 и параллельную емкость С0=с в резонансном промежутке частот.

Начальное значение переменной с находят из дополнительных измерений параллельной емкости С на низкой частоте при возбуждении ПЭ отрезком гармонического сигнала, которые также выполняют заявляемым способом, поскольку радиоимпульс является частным случаем сигнала с линейной частотной модуляцией при совпадающих значениях ƒ01=F его начальной и конечной частот. Значение проводимости Y ˙ ( F ) на частоте заполнения радиоимпульса F определяют по формуле (5), а параллельную емкость на низкой частоте рассчитывают по формуле C = Im ( Y ˙ ( F ) ) / 2 π F и полагают c=ηC, где η∈[0.7, 1].

Таким образом, повышение точности измерения параметров ПЭ достигается за счет использования цифрового способа определения комплексной проводимости при возбуждением ПЭ импульсным сигналом с линейной частотной модуляцией, длительность которого меньше длительности регистрации измерительного сигнала и сигнала возбуждения. Измеренная частотная зависимость комплексной проводимости используется для извлечения из всех ее отсчетов частот резонанса, антирезонанса и добротности ПЭ методом дробно-рациональной аппроксимации, в отличие от прототипа, в котором длительности возбуждения ПЭ и регистрации измерительного сигнала совпадают, а характеристические частоты и добротность определяются по отдельным значениям модуля комплексной проводимости.

Заявляемый способ реализован в автоматизированном измерительном комплексе, который размещается в корпусе типа чемодана и состоит из измерительного блока и персональной ЭВМ. Пример экранной формы с результатами измерений модуля | Y ˙ ( ƒ ) | , активной Re ( Y ˙ ( ƒ ) ) и реактивной Im ( Y ˙ ( ƒ ) ) составляющих комплексной проводимости и результаты их обработки представлен на фиг. 10. Экспериментальный образец измерительного комплекса успешно прошел испытания.

Источники информации

1. Отраслевой стандарт OCT II 0444-87. Материалы пьезокерамические. Технические условия. - М.: Электростандарт, 1987.

2. WO 2012149649 (А1), МПК F02M 51/00; G01R 27/02; G01R 31/00, 2012-11-08.

3. TW 200933163 (А), МПК G01R 27/02, G01R 27/28, 2009-08-01.

4. US 6768312, 6 МПК G01N 29/09; G01N 29/12; кл. US 324/525; 324/509, 2004-07-27.

5. RU 2499234, 6 МПК G01H 13/00, G01H 1/06, опубл. 20.11.013.

6. Пьезокерамические преобразователи. Справочник. Под ред. С.И. Пугачева. - Л.: Судостроение. 1984. С 144-147.

7. Н.М. Иванов, В.Л. Земляков, Ю.К. Милославский. Новые средства измерения параметров пьезокерамических элементов и пьезоматериалов. Инженерный вестник Дона. Т. 26. №3. 2013 - прототип.

8. Пьезоэлектрические резонаторы. Справочник. Под ред. П.Е. Кандыбы и П.Г. Позднякова. - М.: Радио и связь. 1992. С 42.

9. Н.Н. Калиткин. Численные методы. - М.: Наука, 1978. С 64.

1. Цифровой способ измерения параметров пьезоэлектрических элементов, включающий воздействие сигналом возбуждения u0(t) на пьезоэлемент, соединенный последовательно с резистором, имеющим заданное сопротивление r0, регистрацию измерительного сигнала u(t) в точке соединения пьезоэлемента с резистором, формирование в ЭВМ заданного числа N значений цифрового импульсного сигнала возбуждения с линейной частотной модуляцией, мгновенная частота которого изменяется от ƒ0 до ƒ1, где ƒ0 и ƒ1 - минимальная и максимальная частоты диапазона, в котором выполняются измерения, охватывающего резонансный промежуток для заданной моды колебаний пьезоэлемента, сформированный цифровой импульсный сигнал преобразуют в аналоговый импульсный сигнал возбуждения u0(t), синхронно преобразуют сигнал возбуждения u0(t) и измерительный сигнал u(t) в цифровую форму, восстанавливают и запоминают комплексные дискретные спектры и обоих сигналов, вычисляют и запоминают множество значений комплексной проводимости пьезоэлемента на каждой дискретной частоте ƒ в пределах изменения частоты возбуждающего сигнала, отличающийся тем, что импульсный сигнал возбуждения имеет длительность T10-τ, где τ - длительность паузы между окончанием сигнала с линейной частотной модуляцией и моментом окончания регистрации цифровых сигналов, при этом время регистрации цифровых сигналов равно Т0, определяют частоту резонанса ƒr, частоту антирезонанса ƒa и добротность Q пьезоэлемента, а также значение параллельной емкости С0 из полученного множества значений комплексной проводимости путем его дробно-рациональной аппроксимации частотной зависимостью комплексной проводимости канонической эквивалентной схемы в резонансном промежутке частот.

2. Способ по п. 1, отличающийся тем, что для регистрации полного отклика пьезоэлемента на импульсный сигнал возбуждения длительность паузы выбирают из условия τ>Qmax0, где Qmax - верхний предел измерения добротности.



 

Похожие патенты:

Изобретение относится к электроизмерительной технике, а конкретно к измерению электрических параметров двухполюсников, используемых в качестве датчиков физических процессов (температуры, давления, уровня жидких и сыпучих сред и др.) на промышленных объектах и транспортных средствах.

Изобретение относится к промышленной электронике, автоматике, информационно-измерительной технике и может быть использовано для контроля и определения параметров двухполюсников.

Изобретение относится к измерительной технике, в частности к устройствам для измерения активного сопротивления, и может быть использовано в средствах для измерения неэлектрических величин резистивными датчиками.

Изобретение относится к технике измерений относительной электрической проводимости и солености жидкостей (например, морской воды) и может быть использовано в метрологии в качестве образцовых средств, а также для измерения активных проводимостей и сопротивлений. Технический результат - повышение точности измерения и расширение функциональных возможностей.

Изобретение относится к контрольно-измерительной технике, автоматике, управлению и промышленной электронике. Измеритель параметров двухполюсников содержит последовательно соединенные генератор питающих импульсов, четырехполюсник с двухполюсником объекта измерения и двухполюсником с уравновешивающими элементами, неинвертирующий повторитель напряжения, инвертирующей первый усилитель с коэффициентом усиления, равным двум, первый двухвходовой аналоговый сумматор, на один из входов которого подается сигнал с выхода генератора импульсов, а на другой вход - с выхода первого инвертирующего усилителя, с выхода сумматора сигнал усиливается вторым усилителем и подается на входы двух схем выборки и хранения, сигналы с выхода каждой из двух схем выборки и хранения поступают соответственно на два входа второго двухвходового аналогового сумматора, сигнал со второго сумматора усиливается третьим усилителем и через разделительный конденсатор подается на нуль-индикатор.

Изобретение относится к технике измерения электрических параметров нелинейных элементов цепей с температурозависимой вольт-амперной характеристикой, в частности полупроводниковых приборов, и может быть использовано на выходном и входном контроле их качества.

Изобретение относится к области энергетики, а именно к измерению параметров обмоток трансформаторов. Сущность заявляемого изобретения состоит в том, что измерение параметров трехфазных двухобмоточных трансформаторов при коротком замыкании производится вначале при схеме соединения первичной обмотки в треугольник, а затем - в звезду.

Изобретение относится к метрологии. Измеритель содержит генератор, мост, нуль-детектор.

Изобретение относится к электроизмерительной технике, в частности к измерениям внутреннего сопротивления аккумуляторной батареи. Устройство измерения внутреннего сопротивления для пакетированной батареи включает в себя компонент источника питания переменного тока для подачи переменного тока на батарею, состоящую из множества пакетированных элементов генерирования энергии, посредством подключения к объекту измерения.

Изобретение относится к измерительной технике и, в частности, к контролю выходного напряжения и сопротивления изоляции аккумуляторных батарей. Устройство контроля аккумуляторной батареи содержит аккумуляторную батарею, преобразователь постоянного напряжения, выполненный по схеме автогенератора с трансформаторной обратной связью, источник тока, сдвоенный транзисторный оптрон, операционный усилитель, два резистора и дополнительный индикатор, причем величина сопротивления R первого резистора установлена равной R=E/2J, где E - номинальное напряжение аккумуляторной батареи J - величина тока, вырабатываемого источником тока.

Изобретение относится к электроизмерительной технике и может быть, в частности, использовано для измерения приращения сопротивлений удаленных тензорезисторов или терморезисторов в многоканальных измерительных системах, работающих в условиях действия интенсивных промышленных помех. Многоканальный преобразователь приращения сопротивления резистивных датчиков в напряжение содержит «n» резистивных датчиков, «n» первых, «n» вторых, «n» третьих и «n» четвертых проводов, четыре группы ключевых элементов по «n» ключевых элементов в каждой, источник опорного напряжения, два равных по величине опорных резистора, три операционных усилителя и сумматор. Технический результат заключается в повышении помехозащищенности многоканального преобразователя и преобразовании приращения сопротивления резистивных датчиков в напряжение. 1 ил.

Изобретение относится к электроизмерительной технике, а именно к измерению электрических параметров двухполюсников. Устройство содержит первый блок задания схемы замещения, преобразователь ток-напряжение, масштабный усилитель, аналогово-цифровой преобразователь, блок управления измерением, определитель параметров двухполюсников, эталона, генератор синусоидального напряжения, блок управления по частоте, блок управления режимами, блок коммутации, 4n измерительные клеммы, экранированную кабельную линию связи, блок переключения, блок сравнения, учитывающий блок и ключ. Технический результат заключается в повышении точности измерения. 5 ил.

Изобретение относится к измерению и контролю составляющих полного сопротивления и может быть использовано для измерения напряжения на контактах полюсов и измерения внутреннего сопротивления гальванических элементов, аккумуляторов различных типов и батарей на их основе. Способ осуществляется с помощью устройства, содержащего микроконтроллер (1), генератор (2), фильтр нижних частот (элемент защиты от помех) (3), управляемый источник тока (4), первый умножитель (5), фильтр нижних частот (элемент защиты от помех) (6), измерительную схему (7), второй умножитель (8), фильтр нижних частот (9), измеритель тока (10), анализируемый ЭХИП (11). Генератор (2) имеет два выхода, первый из которых является выходом первого синусоидального напряжения, измерительную схему (7), подключенную к анализируемому ЭХИП (11). К выходу измерительной схемы подключен фильтр (6), выход которого подключен к первому входу первого умножителя (5). Ко второму выходу генератора (2) подключен третий вход первого (5) и второго (8) умножителей, выходы которых подключены к измерительным входам микроконтроллера (1). Кроме того, ко второму выходу генератора (2) подключен фильтр (3), выход которого подключен к управляемому источнику тока (4), который задает величину тока, протекающего через анализируемый ЭХИП (11). Второй выход анализируемого ЭХИП (11) подключен к измерителю тока (10) выход которого через фильтр (9), подключен ко второму умножителю (8). С помощью данного устройства определяют активную и реактивную составляющие сигнала, подают их на измерительные входы микроконтроллера, который по четырем сигналам производит вычисление активной и реактивной составляющей полного сопротивления анализируемого ЭХИП. Технический результат заключается в повышении точности измерения составляющих полного сопротивления ЭХИП, что повышает достоверность определения дефектов ЭХИП. 2 н.п. ф-лы, 1 ил.

Изобретение относится к измерительной технике и, в частности, к технике измерения параметров объектов в виде пассивных двухполюсников с сосредоточенными параметрами, имеющих многоэлементную схему замещения. Устройство содержит генератор тестовых импульсов напряжения, имеющих форму функции n-й степени, дифференциальный преобразователь «ток-напряжение», (n + 1) регулируемый резистор, один из выводов первого регулируемого резистора соединен с выходом генератора импульсов, а другой – со вторым входом преобразователя «ток-напряжение», n аналоговых коммутаторов, входы которых подключены к выводам второго, третьего и т. д., …, (n+1)-го регулируемого резистора, выходы коммутаторов соединены с входами дифференциального преобразователя «ток-напряжение», n-каскадный дифференциатор на дифференцирующих RC-звеньях, вход первого звена подключен к выходу преобразователя «ток-напряжение»; (n+1) нуль-индикатор, входы первого, второго и т. д.,… n-го нуль-индикатора соединены соответственно с выходами n-го, (n-1)-го, и т. д., …, первого RC-звена дифференциатора, вход (n+1)-го нуль-индикатора соединен с выходом дифференциального преобразователя «ток-напряжение»; дополнительно введен второй дифференциатор на n последовательно соединенных дифференцирующих RC-звеньях и n повторителей напряжения, причем все дифференцирующие RC-звенья второго дифференциатора имеют равные постоянные времени RC, но различные значения сопротивления резистора и емкости конденсатора, вход первого звена второго дифференциатора подключен к выходу генератора тестовых импульсов, входы повторителей напряжения соединены с выходами RC-звеньев второго дифференциатора, а к выходам повторителей напряжения подключены свободные выводы второго, третьего и т.д., …, (n+1)-го регулируемого резистора. Технический результат заключается в повышении устойчивости работы устройства формирования образцовых сигналов и устранение погрешностей уравновешивания из-за задержек различных составляющих компенсационного тока. 2 ил.

Изобретение относится к области термометрии и может быть использовано для контроля технологических параметров в производственных процессах. Передатчик (12) температуры процесса выполнен по меньшей мере с одним датчиком (32) температуры, имеющим множество проводов. Передатчик (12) температуры включает в себя схему (26) измерения, выполненную с возможностью соединения по меньшей мере с одним датчиком (32) температуры для обеспечения индикации электрического параметра по меньшей мере одного датчика (32) температуры. Контроллер (30) соединен со схемой (26) измерения для получения индикации и подачи выходного сигнала температуры процесса. Источник (28) тока подает тестовый ток в множество проводов одновременно. Схема (70) диагностики измеряет отклик напряжения на каждом проводе для того, чтобы обеспечить диагностическую индикацию датчика температуры. Технический результат – повышение точности и достоверности диагностики датчиков температуры. 3 н. и 17 з.п. ф-лы, 8 ил.

Изобретение относится к устройствам измерительной техники, в частности к первичным преобразователям, и может быть использовано в калориметрии, тензометрии, датчиках силы и давления. Сущность его заключается в том, что преобразователь приращения сопротивления в напряжение содержит мост, состоящий из сопротивлений R1, R2, R3, R4 и сопротивления R5, два источника питания, два операционных усилителя, при этом инвертирующий вход первого операционного усилителя «заземлен», неинвертирующий вход подключен к точке соединения сопротивлений R3, R4, а его выход - к сопротивлению R5, другой конец сопротивления R5 вместе с точкой соединения сопротивлений R1, R2 подключены к инвертирующему входу второго операционного усилителя, неинвертирующий вход которого «заземлен» вместе с «заземлениями» обоих источников питания. Заявленное изобретение обеспечивает при реализации технический результат, заключенный в повышении точность преобразования приращения сопротивления в напряжение посредством обеспечения строгой линейной зависимости между ∆ R4 и UВых. 1 ил.

Изобретение относится к измерительной технике и заключается в получении численных значений модуля z и фазового угла ϕ комплексного сопротивления линейного пассивного двухполюсника. Для достижения необходимого результата при относительно простом алгоритме решения задачи в способе по изобретению используют операцию деления мгновенных значений соответствующим образом формируемых двух одночастотных синусоидальных электрических величин с периодом повторении Т, при этом делимым является первый вспомогательный синусоидальный сигнал, у которого согласно способу амплитуда линейно связана с амплитудой приложенного к линейному пассивному двухполюснику синусоидального напряжения, в то время как в аргумент функции синуса первого вспомогательного синусоидального сигнала, как и в известном способе [RU №2534376], вводят изменяемый по величине фазовый угол θ, причем в качестве делителя используют синусоидальный сигнал с идентичными протекающему через линейный пассивный двухполюсник синусоидальному току параметрами, при этом в результате деления формируют второй вспомогательный сигнал, который является несинусоидальной периодической функций времени с разрывами в моменты времени, когда мгновенное значение сигнала делителя пересекает ось времени, причем во втором вспомогательном сигнале наблюдают двуполярные выбросы, форма которых в местах разрывов второго вспомогательного сигнала и при малой разности вводимого в вычислительный процесс фазового угла θ и фазового угла ϕ комплексного сопротивления приближается к форме «иглообразных» двуполярных импульсов малой длительностью, причем по мере стремления разности углов θ и ϕ к нулю их амплитуда начинает уменьшаться. При уменьшении амплитуд «иглообразных» двуполярных выбросов ниже предписанного значения или их исчезновении, что имеет место при равенстве текущего значения вводимого в вычислительный процесс изменяемого фазового угла θ и фазового угла ϕ комплексного сопротивления , изменение фазового угла θ прекращают и его численное значение принимают за фазовый угол ϕ комплексного сопротивления , причем после прекращения изменения значения фазового угла θ на интервале времени, равном периоду Т, для второго вспомогательного сигнала вычисляют среднее значение и результат это действия считают численным значением модуля z комплексного сопротивления линейного пассивного двухполюсника. Способ может быть использован как при создании измерительного прибора, обеспечивающего получение информации о величине модуля z и фазового угла ϕ комплексного сопротивления линейного пассивного двухполюсника, так и при создании измерительного органа релейной защиты и автоматики с двумя подводимыми электрическими величинами, например с функцией определения места повреждения (ОМП) на линии электропередачи. Технический результат, который достигается при реализации заявленного технического решения , заключается в повышении технического уровня и возможностей измерительного устройства, его упрощении за счет того, что согласно заявленному способу в его программируемом измерительно-вычислительном блоке осуществляется деление двух одночастотных синусоидальных сигналов. 4 ил.

Изобретение относится к электроэнергетике и может быть применено для оперативного получения сведений о грозовой обстановке и интенсивности грозовой деятельности на трассах высоковольтных воздушных линий электропередач (ВЛ). Система мониторинга грозовых разрядов на воздушных линиях электропередачи, включающая минимум два регистратора грозовых перенапряжений, установленных с двух концов контролируемой линии, каждый из регистраторов снабжен приемником сигналов точного времени и выполнен с возможностью фиксации значений текущего времени и записи с преобразованием в цифровую форму выходного сигнала соответствующего датчика, каждый регистратор подключен первым входом к первому датчику грозовых перенапряжений, характеризуется тем, что минимум один регистратор содержит второй и последующий входы, соединенные со вторым и последующими датчиками грозовых перенапряжений, подключенными к соответствующим воздушным линиям. Датчики грозовых перенапряжений могут выполняться в виде трансформаторов тока в цепях подключения фильтров присоединения технологической ВЧ-связи к разделительным конденсаторам. Система может дополнительно содержать средство цифровой обработки, связанное информационными каналами с регистраторами. Изобретение может с успехом применяться при производстве систем мониторинга событий, в том числе грозовых разрядов на воздушных линиях электропередач. Технический результат - улучшение массогабаритных характеристик - достигается совмещением функционала нескольких устройств в одном без потери функциональных возможностей. Технический результат - повышение надежности системы - достигается тем, что снижается количество элементов, в частности регистраторов, каждый из которых обладает ненулевой вероятностью выхода из строя, необходимых для контроля нескольких объектов (ВЛ). Технический результат - повышение надежности передачи информации - достигается снижением количества информационных каналов (линий связи) с регистраторами. 2 з.п. ф-лы, 1 ил.

Изобретение относится к электроэнергетике и может быть использовано при мониторинге электрических режимов в электроэнергетических системах. Сущность: в опытах короткого замыкания определяют напряжения короткого замыкания и потери активной мощности короткого замыкания. Затем активные сопротивления лучей схемы замещения формируют по выражениям: индуктивные сопротивления схемы замещения формируют по выражениям: где uкВ-С, uкВ-Н, uкС-Н - напряжения короткого замыкания по парам обмоток, отмеченных в индексах, для автотрансформатора uкВ-Н, uкС-Н приведены к его номинальной мощности, о.е., ΔPкВ-С, ΔPкВ-Н, ΔPкС-Н - значения потерь активной мощности при коротком замыкании по парам обмоток, отмеченных в индексах, для автотрансформатора ΔPкВ-Н, ΔPкС-Н приведены к его номинальной мощности, Вт, UВном, UСном, UНном - номинальные напряжения высокой, средней и низкой сторон трансформатора, автотрансформатора, В, Sт.ном - номинальная мощность трансформатора, ВА. Коэффициенты трансформации ветвей среднего и низкого напряжения схемы замещения формируют по выражениям: Технический результат: исключение погрешностей при определении параметров трехлучевой схемы замещения трехобмоточных трансформаторов. 8 табл., 4 ил.

Изобретение относится к электроэнергетике и может быть использовано при мониторинге электрических режимов в электроэнергетических системах. Сущность: в опытах короткого замыкания определяют напряжения короткого замыкания и потери активной мощности короткого замыкания. Формируют схему замещения треугольник. Определяют активные сопротивления ветвей схемы замещения треугольник по выражениям: индуктивные сопротивления ветвей схемы замещения треугольник формируют по выражениям: где uкВ-С, uкВ-Н, uкС-Н - напряжения короткого замыкания по парам обмоток, отмеченных в индексах, для автотрансформатора uкВ-Н, uкС-Н приведены к его номинальной мощности, о.е., ΔРкВ-С, ΔРкВ-Н, ΔРкС-Н - значения потерь активной мощности при коротком замыкании по парам обмоток, отмеченных в индексах, для автотрансформатора ΔРкВ-Н, ΔРкС-Н приведены к его номинальной мощности, Вт, UВном, UСном, UНном - номинальные напряжения высокой, средней и низкой сторон трансформатора, автотрансформатора, В, Sт.ном - номинальная мощность трансформатора, ВА. Коэффициенты трансформации ветвей схемы замещения определяют по выражениям: Технический результат: исключение методологической погрешности. 3 ил.
Наверх