Способ введения добавок в полимеры

Изобретение относится к области высокомолекулярных соединений. В способе введения добавок в полимеры проводят вытяжку полимерного изделия вытянутой формы из аморфного или аморфно-кристаллического, ориентированного, неориентированного или частично ориентированного полимера в прямой водной эмульсии типа масло-в-воде, содержащей воду в качестве протяженной фазы и эмульгированную в воде физически активную жидкую среду (дисперсная фаза), не смешивающуюся с водой при температуре вытяжки. При этом количество эмульгированной физически активной жидкой среды должно быть не менее 2%. Вытяжку проводят на величину деформации не менее 2%. Изобретение позволяет упростить способ введения добавок в полимеры и расширить область его применения путем распространения на вводимые добавки, растворимые в воде, но плохо или совсем не растворимые в не смешивающихся с водой органических растворителях. 6 з.п. ф-лы, 3 пр.

 

Изобретение относится к области высокомолекулярных соединений и касается способа введения добавок в полимеры с целью придания им новых свойств. Такие модифицированные полимеры могут найти применение в текстильной промышленности, микроэлектронике, оптохимических сенсорах, системах биомедицинского назначения, а также при производстве изделий специального назначения и т.д.

Известен способ введения добавок в полимеры, в качестве которых используют краситель, путем обработки полимерных волокон (Вл) раствором красителя [Мельников Б.Н. Крашение волокон // Энциклопедия полимеров. Т. 1. С. 1135. Советская энциклопедия. Москва. 1972]. Недостатками данного способа являются его низкая скорость, поскольку он основан на самопроизвольно идущих процессах диффузии добавки в структуру полимера, а также узкая область его применения только для добавок, термодинамически совместимых с полимером.

Известен способ введения добавок в полимеры, в качестве которых используют краситель, путем вытяжки неориентированной полимерной пленки (Пл) из аморфного стеклообразного полимера в физически активной жидкой среде (ФАЖС), содержащей растворенную добавку, с последующей сушкой полимера и его отжигом, проводимыми без удержания полимера в натянутом состоянии в направлении вытяжки (патент RU 2305724, МПК D06P 7/00, 2006).

Недостатком данного способа является узкий круг вводимых добавок, поскольку существует возможность введения в полимер только функциональных маслорастворимых добавок, растворимых в ФАЖС, а кроме того этот способ может быть реализован только при вытяжке полимеров в пожароопасных и экологически опасных жидкостях, которые являются ФАЖС.

Наиболее близким к заявляемому является известный способ введения добавок (красителя) в полимеры путем вытяжки полимерного изделия вытянутой формы в виде волокна в жидкой среде, в качестве которой используют ФАЖС, содержащую растворенную добавку, и сушки полимера, осуществляемой в условиях удержания полимера в натянутом состоянии в направлении вытяжки [Guthrie R.T. Pat. USA №4001367, кл. 264-154, 1977] - прототип.

Данный способ основан на известном явлении крейзинга полимеров, происходящем в процессе растяжения полимерных изделий вытянутой формы (полимерных Пл, Вл, стержней, лент и т.д.) в специально подобранной ФАЖС, в качестве которой могут быть использованы, например, углеводороды, спирты, кетоны и т.д. В этих условиях в процессе вытяжки в полимере возникает система взаимосвязанных микроскопических пор, так называемых крейзов, заполненных окружающей полимер жидкостью. При вытяжке полимеров в ФАЖС, содержащей растворенную добавку, раствор добавки вначале заполняет образовавшиеся в полимере крейзы, затем в процессе дальнейшей вытяжки происходит коллапс возникшей в полимере структуры и полное закрытие образовавшихся пор, сопровождаемое выталкиванием более мелких молекул ФАЖС из полимера и механическим захватом более крупных молекул добавки и прочной их фиксацией по всему объему полимера.

Недостатками данного способа является узкий круг вводимых в полимер функциональных добавок и также невозможность введения в полимер водорастворимых добавок, что существенно ограничивает возможности получения нового типа нанокомпозиционных материалов с заданными функциональными свойствами, а также тот факт, что в качестве среды для проведения вытяжки используют в роли ФАЖС жидкости на основе преимущественно пожаро-, взрывоопасных и токсичных органических растворителей, что сопряжено как с трудностями проведения самого процесса вытяжки, связанными с обеспечением безопасности процесса, так и с трудностями технического характера, неизбежно возникающими в процессе утилизации достаточно больших объемов ФАЖС после окончания технологического процесса, и высокой стоимостью утилизации больших объемов ФАЖС после проведения вытяжки.

Технической задачей изобретения является упрощение известного способа введения добавок в полимеры и расширение области его применения путем его распространения на водорастворимые добавки, а также значительное снижение его пожароопасности и улучшение экологических показателей.

Указанный технический результат достигается тем, что в качестве полимера используют аморфный или аморфно-кристаллический, ориентированный, неориентированный или частично ориентированный полимер, в качестве жидкой среды, промотирующей в полимере развитие пористости по механизму крейзинга, используют прямую эмульсию типа масло-в-воде, где дисперсной фазой является ФАЖС, которая представляет собой органический растворитель, не смешивающийся с водой при температуре проведения вытяжки и который диспергирован в воде (протяженной фазе эмульсии) интенсивным перемешиванием с помощью различного рода мешалок или под воздействием ультразвука до образования стабильной эмульсии типа масло-в-воде, при этом концентрация ФАЖС в эмульсии должна составлять более 2%, а вытяжку полимера в эмульсии проводят на величину деформации не менее 2%. В качестве изделия вытянутой формы используют пленку, волокно, ленту, полое волокно или полую трубку, стержень, ориентированный полимер. При использовании в качестве изделия вытянутой формы ориентированного полимера вытяжку осуществляют в направлении, не совпадающем с направлением ориентации полимера.

В качестве исходного полимера в предложенном способе можно использовать различные полимеры, аморфно-кристаллические полимеры со степенью кристалличности не менее 10% и аморфные стеклообразные полимеры, например, такие как полиметилметакрилат, поливинилхлорид, полиэтилены (ПЭ), полипропилен, полиамиды, поливиниловый спирт, полифениленсульфид, полиэтилентерефталат (ПЭТФ) и т.д. Можно использовать как гомополимеры, так и сополимеры, а также двухкомпонентные и многокомпонентные смеси полимеров. При этом средневесовую молекулярную массу (Mw) исходных полимеров и толщину полимерных изделий вытянутой формы можно варьировать в широких пределах, например от 10000 до нескольких миллионов и от 5 до 1000 микрон соответственно.

В качестве ФАЖС можно использовать различные не смешивающиеся с водой органические жидкости, такие как высшие спирты, высшие кетоны, углеводороды, ароматические углеводороды и т.д., а также их бинарные и многокомпонентные растворы. При этом необходимо, чтобы ФАЖС не смешивалась с водой при температуре вытяжки полимера, т.е. система, состоящая из ФАЖС и водного раствора вводимой добавки, оказывалась двухфазной. Использование ФАЖС, смешивающейся с водой, не позволяет достичь целей изобретения. При этом необходимо эмульгировать ФАЖС в воде до образования однородной эмульсии, что достигается интенсивным перемешиванием магнитной мешалкой, роторной мешалкой или при обработке ультразвуком.

В качестве вводимой добавки можно использовать любые растворимые в воде красители, антипирены, антиэлектростатические вещества, антисептики, вещества медицинского назначения, наночастицы, а также смеси таких веществ и т.д.

Вытяжку полимеров можно проводить в широком интервале температур, например от температуры замерзания используемой ФАЖС и воды до температуры их кипения в том случае, если эта температура ниже температуры стеклования аморфного полимера и ниже температуры плавления аморфно-кристаллического полимера, а также ниже температуры химического разложения вводимой добавки.

Вытяжку полимеров можно осуществлять с различными скоростями, например от 1×10-2 до 1×105 мм/мин. Степень вытяжки можно варьировать в широких пределах, от 2% до разрывного удлинения полимера. При этом геометрические размеры исходного полимерного изделия вытянутой формы могут быть любыми. При вытяжке полимера на величину деформации менее 2% не удается ввести добавку в полимер.

После растяжения полимерное изделие с введенной добавкой можно подвергать сушке до полного удаления ФАЖС, а также отжигу или усадке в свободном состоянии при комнатной температуре или при повышенных температурах. Сушку полимера после вытяжки можно проводить в широком температурном интервале, например от температуры замерзания ФАЖС до температуры стеклования аморфного полимера или температуры плавления аморфно-кристаллического полимера. Сушку можно осуществлять как для полимеров, находящихся в свободном состоянии, так и в условиях удержания полимера в натянутом состоянии в направлении вытяжки. Сушку полимера можно проводить в течение различного времени в вакууме и при атмосферном давлении, причем продолжительность этого процесса зависит от температуры процесса, температуры кипения ФАЖС, химической природы полимера и от толщины используемого полимерного изделия. После сушки полученный полимер может быть подвергнут отжигу или не отжигаться.

Следует отметить, что вода и водные растворы вводимой добавки не являются ФАЖС по отношению к вытягиваемым полимерам, т.е. как в воде, так и в водном растворе вводимой добавки вытяжка полимера при любой величине деформации не сопровождается образованием в нем специфической фибриллярно-пористой структуры. Нами было экспериментально обнаружено, что фибриллярно-пористая структура формируется в полимере только тогда, когда исходный полимер был подвергнут вытяжке на величину деформации не менее 2% в ФАЖС, не смешивающейся с водой при температуре вытяжки полимера, или в водной эмульсии ФАЖС.

Преимущества предлагаемого способа иллюстрируют следующие примеры.

Пример 1

Для приготовления водной эмульсии к 100 мл воды добавляют 2 мл н-гексана, который не смешивается с водой, но является ФАЖС по отношению к ПЭ. н-Гексан не смешивается с водой при температуре вытяжки полимера и образует с ней двухфазную систему с ярковыраженной границей раздела фаз. В воде растворяют навеску красителя Родамина С. Краситель Родамин С не растворим в н-гексане. Раствор интенсивно перемешивают с помощью верхнеприводной лабораторной мешалки со скоростью вращения 1500 оборотов в минуту до образования однородной эмульсии ярко-розового цвета. В качестве полимера используют Вл на основе аморфного стеклообразного ПЭТФ толщиной 25 мкм в количестве 25-30 штук в комплексной нити. Образцы Вл с длиной растягиваемой рабочей части 10 мм закрепляют в зажимы ручного растягивающего устройства. Растягивающее устройство вместе с закрепленными Вл помещают в эмульсию и вытягивают в ней при 20°С со скоростью 5 мм/мин до величины деформации 100%. После вытяжки растягивающее устройство извлекают из эмульсии, Вл, не вынимая из зажимов растягивающего устройства, сушат при 20°С в течение 30 минут под струей сжатого воздуха. Получают Вл ПЭТФ, однородно окрашенные в ярко-розовый цвет. По прохождении 45 минут эмульсия разрушается и происходит ее расслоение на два слоя с ярковыраженной границей - верхний слой н-гексана и нижний окрашенный Родамином С слой воды, что значительно облегчает их дальнейшее разделение и рекуперацию.

Ввиду того, что краситель Родамин С не растворим в н-гексане, ввести его в Вл на основе ПЭТФ с помощью известного способа (прототипа) не удается.

Пример 2

В 100 мл воды растворяют навеску антипирена Нофлан для получения 20%-ного водного раствора. Для приготовления водной эмульсии к 100 мл воды с растворенным антипиреном Нофланом добавляют 3 мл н-гексана, который не смешивается с водой, но является ФАЖС по отношению к ПЭТФ. н-Гексан не смешивается с водой при температуре вытяжки полимера и образует с ней двухфазную систему с ярковыраженной границей раздела фаз. Затем данную двухфазную систему интенсивно перемешивают с помощью ультразвуковой обработки до образования однородной непрозрачной опалесцирующей эмульсии. В качестве полимера используют Вл на основе аморфного стеклообразного ПЭТФ толщиной 25 мкм (25-30 волокон в пучке) и длиной растягиваемой рабочей части 10 мм. Вл закрепляют в зажимы ручного растягивающего устройства. Растягивающее устройство вместе с закрепленными Вл помещают в эмульсию и вытягивают в ней при 20°С со скоростью 50 мм/мин при воздействии ультразвука до величины деформации 220%. После вытяжки растягивающее устройство извлекают из эмульсии, растянутые Вл не вынимают из зажимов растягивающего устройства и сушат при 30°С в течение 30 минут под струей сжатого воздуха. Получают Вл ПЭТФ с содержанием Нофлана 10%, определенным методом гравиметрии, что подавляет горение ПЭТФ и препятствует распространению пламени. По прохождении 45 минут эмульсия разрушается и происходит ее расслоение на два слоя с ярковыраженной границей - верхний слой н-гексана и нижний слой воды, что значительно облегчает их дальнейшее разделение и рекуперацию.

Пример 3 (контрольный, по прототипу)

Опыт проводят аналогично примеру 2, однако вытяжку Вл на величину деформации 220% осуществляют только в 200 мл насыщенного раствора Нофлана в н-гептане. Получают нить с содержанием антипирена менее 1%, что не позволяет полностью подавить горение нити и не препятствует распространению в ней пламени.

Таким образом, из примеров видно, что предлагаемый способ позволяет расширить область применения известного способа введения добавок в полимеры за счет использования широкого спектра водорастворимых добавок, не растворимых в органических не смешивающихся с водой растворителях, и позволяет получать нанокомпозиционные полимерные материалы с новым комплексом свойств при растяжении полимерных изделий в водных эмульсиях типа масло-в-воде при содержании воды до 98%, а органического растворителя, выступающего в роли ФАЖС, не менее 2%. Предлагаемый способ вытяжки полимеров в эмульсии позволяет получать нанокомпозиционные материалы с аналогичными свойствами, но при этом снизить до 500% расход пожаро-, взрывоопасных и токсичных ФАЖС, что значительно упрощает и удешевляет известный способ введения добавок в полимеры как за счет снижения пожаро- и взрывоопасности и токсичности самого процесса растяжения, так и за счет уменьшения трудностей технологического характера, сопряженных с утилизацией ФАЖС после окончания технологического процесса.

1. Способ введения добавок в полимеры путем вытяжки полимерного изделия вытянутой формы на основе аморфного или аморфно-кристаллического, ориентированного, неориентированного или частично ориентированного полимера в физически активной жидкой среде, содержащей растворенную добавку, и сушки полимера, отличающийся тем, что вытяжку полимера проводят в эмульсии типа масло-в-воде на основе физически активной жидкой среды, не смешивающейся с водой при температуре вытяжки, при этом добавку растворяют только в водной фазе эмульсии, а вытяжку проводят на величину деформации не менее 2%.

2. Способ по п. 1, отличающийся тем, что в качестве изделия вытянутой формы используют пленку.

3. Способ по п. 1, отличающийся тем, что в качестве изделия вытянутой формы используют волокно.

4. Способ по п. 1, отличающийся тем, что в качестве изделия вытянутой формы используют ленту.

5. Способ по п. 1, отличающийся тем, что в качестве изделия вытянутой формы используют полое волокно или полую трубку.

6. Способ по п. 1, отличающийся тем, что в качестве изделия вытянутой формы используют стержень.

7. Способ по п. 1, отличающийся тем, что в качестве изделия вытянутой формы используют ориентированные пленки полимера и вытяжку осуществляют в направлении, не совпадающем с направлением ориентации полимера.



 

Похожие патенты:
Изобретение относится к области высокомолекулярных соединений и может быть использовано в текстильной промышленности, микроэлектронике, оптохимических сенсорах, в качестве негорючих полимерных материалов, при производстве изделий специального назначения.

Изобретение относится к полому волокну, композиции прядильного раствора для формования полого волокна, а также к способу получения полого волокна. .
Изобретение относится к области высокомолекулярных соединений и может быть использовано в текстильной промышленности, микроэлектронике, оптохимических сенсорах, в качестве негорючих полимерных материалов, при производстве изделий специального назначения.

Изобретение может быть использовано в неорганической химии. Способ синтеза ноль-валентных наночастиц переходных металлов - железа, или кобальта, или палладия, или марганца, или платины - с ковалентно модифицированной органическими функциональными группами поверхностью включает восстановление водных растворов солей соответствующих металлов борогидридами щелочных металлов с последующим in situ взаимодействием с водными или водно-органическими растворами арендиазониевых солей.

Изобретение относится к области инкапсуляции. Описан способ получения нанокапсул антибиотиков - цефтриаксона или цефотаксима.

Изобретение относится к люминесцентным материалам для конверсии вакуумного ультрафиолетового излучения в излучение видимого диапазона, предназначенным для создания функциональных элементов фотонных приборов нового поколения, а также для контроля жесткого ультрафиолетового излучения в вакуумных технологических процессах.

Изобретение может быть использовано в биологии и медицине. Определение концентрации металла в коллоидном растворе металла в воде проводят путем определения показателя экстинкции раствора в спектральном интервале с длиной волны 195-205 нм.

Изобретение может быть использовано в биологии и медицине. Способ изготовления коллоидного раствора серебра включает проведение электроразрядов в жидкой среде и определение концентрации раствора серебра.

Изобретение относится к способу получения сверхвысокомолекулярного полиэтилена (СВМПЭ) модифицированного наноразмерными частицами оксида циркония, предназначенного для изготовления керамики, катализаторов, биомедицинских материалов.

Изобретение относится к области создания композиционных материалов на основе волокнистых наполнителей и наномодифицированного эпоксидного связующего и может быть использовано при производстве стеклопластиковых труб и других изделий, получаемых методом намотки и применяемых в тепловых сетях, системах горячего водоснабжения с сетевой водой, системах водоснабжения, с рабочей температурой до 150°С.

Изобретение относится к медицине, конкретно к области биотехнологических материалов медицинского и технического применения, и может найти использование прежде всего в качестве прекурсора костной ткани, косметики или при создании керамических изделий.

Изобретение относится к области металлургии, а именно к деформационно-термической обработке покрытий титан-никель-цирконий с эффектом памяти формы, и может быть использовано в металлургии, машиностроении и медицине.
Изобретение относится к области высокомолекулярных соединений и может быть использовано в текстильной промышленности, микроэлектронике, оптохимических сенсорах, в качестве негорючих полимерных материалов, при производстве изделий специального назначения.

Изобретение относится к области изготовления трехмерного объекта методом стереолитографии. Технический результат - обеспечение моделирования формы и размера соединительного элемента, за счет чего повышается качество изготовляемого трехмерного объекта.
Группа изобретений относится к способу для сварки моноаксиально растянутых материалов из возобновляемого сырья, а также к обвязочной ленте, которая изготовлена способом по изобретению.

Изобретение относится к области переработки вторичного сырья и предназначено для переработки отходов ПВХ (поливинилхлорида). Может быть использовано на предприятиях, перерабатывающих пластмассы и их отходы.

Изобретение относится к технологии изготовления объемного изделия по цифровой 3D-модели методом послойной печати расплавленной полимерной нитью, а именно к устройству перемещения рабочего стола по оси Z для 3D-принтера и к 3D-принтеру, содержащему такое устройство.
Наверх