Способ и устройство для испарения сжиженного природного газа

Раскрыт способ для испарения криогенной жидкости. Способ включает: сжигание топлива в горелке для производства отработанного газа; смешивание атмосферного воздуха и отработанного газа для производства смешанного газа; осуществление контакта смешанного газа посредством непрямого теплообмена с криогенной жидкостью для испарения криогенной жидкости. Также способ включает в себя этапы, на которых удаляют часть смешанного газа из кожуха с помощью выпуска, расположенного между верхней по потоку теплообменной трубой и первой нижней по потоку теплообменной трубой. Эта часть смешанного газа образует обходной поток смешанного газа, который распределяют ниже по потоку от первой нижней по потоку теплообменной трубы. Использование изобретения позволяет минимизировать выбросы загрязняющих веществ, уменьшить обледенение теплообменных элементов испарителя. 4 н. и 22 з.п. ф-лы, 2 ил.

 

ОБЛАСТЬ ТЕХНИКИ, К КОТОРОЙ ОТНОСИТСЯ ИЗОБРЕТЕНИЕ

[0001] Варианты осуществления, раскрытые в материалах настоящей заявки, в целом относятся к испарителю на атмосферном воздухе или на естественной тяге для использования при испарении криогенных текучих сред, например, сжиженного природного газа (СПГ). Более точно, варианты осуществления, раскрытые в материалах настоящей заявки, относятся к гибридной системе нагрева на атмосферном воздухе/топливе для испарения СПГ.

ПРЕДПОСЫЛКИ ИЗОБРЕТЕНИЯ

[0002] Существуют ситуации, когда желательно передать тепло от атмосферного воздуха к относительно холодной жидкости для "нагрева" жидкости. Такое обстоятельство может возникнуть в отношении сжиженного природного газа.

[0003] Криогенное сжижение природного газа обычно осуществляется на практике как средство для преобразования природного газа в более подходящую форму для транспортировки. Подобное сжижение типично уменьшает объем в 600 раз и приводит к тому, что конечный продукт может быть без труда помещен на хранение или транспортирован. Также дополнительное количество природного газа желательно хранить для того, чтобы оно могло быть быстро и эффективно поставлено, когда возрастет потребность в природном газе. Одно практичное средство для транспортировки природного газа и для хранения дополнительного количества природного газа состоит в преобразовании природного газа в сжиженное состояние для хранения/или транспортировки, а затем в испарении жидкости по мере необходимости.

[0004] Природный газ обычно доступен в регионах, удаленных от тех, в которых он будет, в конечном счете, использован, и, следовательно, сжижение природного газа имеет существенное значение. Типично природный газ транспортируется через трубопровод от источника поставок непосредственно на потребительский рынок. Однако все больше становится общепринятым, что природный газ транспортируется от источника поставок, который отделен от потребительского рынка большим расстоянием, причем трубопровод в этом случае является либо недоступным, либо нецелесообразным. Это в частности справедливо для транспортировок морским флотом, где транспортировка должна быть осуществлена морскими судами. Транспортировка судами природного газа в газообразном состоянии обычно является нецелесообразной из-за значительного объема газа в газообразном состоянии, а также из-за потребности поддержания повышенного давления для значительного уменьшения объема газа. Следовательно, для того, чтобы хранить и транспортировать природный газ, объем газа типично уменьшается за счет охлаждения газа до приблизительно -240°F - приблизительно -260°F. При этой температуре природный газ преобразуется в сжиженный природный газ (СПГ), который сохраняется при давлении, близком к атмосферному. После завершения транспортировки и/или хранения СПГ, для потребления СПГ должен быть возвращен в газообразное состояние перед тем, как обеспечить природным газом конечного пользователя.

[0005] Типично регазификация или испарение СПГ достигается посредством использования различных теплопередающих текучих сред, систем и процессов. Например, в некоторых процессах, использующихся в области техники, применяются испарители, которые используют горячую воду или пар для нагревания и испарения СПГ. Эти процессы нагревания обладают недостатками, поскольку горячая вода или пар часто замерзают из-за экстремального холодных температур СПГ, что в свою очередь вызывает засорение испарителей. Для того чтобы преодолеть эти недостатки, в данной области техники в настоящее время использовались альтернативные испарители, например, открыто-панельные испарители, испарители с промежуточной текучей средой, испарители с погруженной камерой сгорания и испарители на атмосферном воздухе.

[0006] Открыто-панельные испарители типично используют морскую воду и т.п. в качестве источника тепла для противоточного теплообмена с СПГ. Подобно испарителям, упомянутым выше, открыто-панельные испарители имеют склонность к "обледенению" поверхности испарителя, что вызывает увеличенное сопротивление теплообмену. Следовательно, открыто-панельные испарители должны быть сконструированы так, чтобы иметь увеличенную теплообменную зону, что влечет за собой более высокие расходы на оборудование и увеличение места установки испарителя.

[0007] Вместо испарения СПГ прямым нагревом водой или паром, как описано выше, испарители промежуточного типа применяют промежуточную жидкость или хладагент, например, пропан, фторированный углеводород и т.п., имеющий низкую точку замерзания. Хладагент может быть нагрет при помощи воды или пара, а затем нагретый хладагент или рефрижераторная смесь пропускается через испаритель и используется для испарения СПГ. Испарители такого типа справляются со случаями обледенения и замерзания, которые являются обычными для описанных ранее испарителей, однако эти испарители с промежуточной текучей средой требуют средство для нагревания хладагента, например, бойлер или нагреватель. Эти типы испарителей также имеют недостатки, поскольку они являются очень дорогостоящими в эксплуатации из-за потребления топлива нагревающим средством, использованным для нагревания хладагента.

[0008] Одним из практических способов, в настоящее время использующихся в данной области техники для борьбы с высокой стоимостью эксплуатации бойлеров или нагревателей, является использование водонапорных башен как отдельно, так и в сочетании с нагревателями или бойлерами для нагревания хладагента, который действует для испарения СПГ. В этих системах вода подается в водонапорную башню, где температура воды повышается. Вода повышенной температуры затем используется для нагревания хладагента, например гликоля, посредством первого испарителя, который в свою очередь используется для испарения СПГ посредством второго испарителя. Эти системы также имеют недостатки в отношении разницы в плавучести между входным потоком башни и выходным потоком башни. Нагревательные башни выделяют большое количество холодного влажного воздуха или поток, который является очень тяжелым по сравнению с атмосферным воздухом. Поскольку холодный поток отводится от башни, он стремится осесть или переместиться к земле, так как он значительно тяжелее, чем атмосферный воздух. Холодный поток затем втягивается в водонапорную башню, ухудшая свойства теплообмена башни и приводя к неэффективности башни. Вышеупомянутая задача плавучести вызывает рециркуляцию холодного воздуха в водонапорных башнях, препятствуя их способности охлаждения воды и существенно ограничивая эффективность башен.

[0009] В качестве еще одной альтернативы, СПГ может быть испарен за счет нагрева атмосферным воздухом. Испарители на атмосферном воздухе естественного или принудительного типа тяги в качестве источника тепла используют атмосферный воздух, пропуская атмосферный воздух через теплообменные элементы для испарения СПГ. Однако температура природного газа на выходе испарителя может изменяться, когда изменяется погода или изменяется нагрузка на испаритель. Кроме того, из-за низкой температуры подачи СПГ (около -260°F), на нагревающей поверхности может образоваться значительное количество льда из-за влажности потока атмосферного воздуха.

СУЩНОСТЬ ЗАЯВЛЕННЫХ ВАРИАНТОВ ОСУЩЕСТВЛЕНИЯ

[0010] Было выяснено, что работа испарителей на атмосферном воздухе может быть значительно улучшена за счет использования гибридных нагревающих систем на атмосферном воздухе/топливе, как раскрыто в материалах настоящей заявки. Гибридные системы нагрева на атмосферном воздухе/топливе в своей основе используют атмосферный воздух в качестве источника тепла, который может быть обеспечен естественной или вынужденной конвекцией. В гибридных нагревающих системах, раскрытых в материалах настоящей заявки, атмосферный воздух, по мере необходимости, смешивается с топочным газом из топки, при этом тепло, подаваемое от топочного газа, может быть использовано для уменьшения, минимизации или нейтрализации влияния изменчивых внешних условий при работе испарителя. Гибридные системы нагрева могут предусматриваться для устойчивых операций по испарению при изменении погодных условий в течение дня/ночи, а также лета/зимы, могут улучшить коэффициент диапазона регулирования по сравнению с традиционными испарителями на атмосферном воздухе и могут привести к отсутствию льда или к уменьшенному образованию льда по сравнению с традиционными испарителями на атмосферном воздухе.

[0011] В одном аспекте варианты осуществления, раскрытые в материалах настоящей заявки, относятся к способу для испарения криогенной жидкости, причем способ включает: сжигание топлива в горелке для производства отработанного газа; смешивание атмосферного воздуха и отработанного газа для производства смешанного газа; осуществление контакта смешанного газа посредством непрямого теплообмена с криогенной жидкостью для испарения криогенной жидкости.

[0012] В другом аспекте варианты осуществления, раскрытые в материалах настоящей заявки, относятся к системе для испарения криогенной жидкости, причем система включает: одну или более горелки для сжигания топлива для производства отработанного газа; один или более впусков для смешивания атмосферного воздуха с отработанным газом для производства смешанного газа; и одну или более теплообменные труб для непрямого нагрева текучей среды смешанным газом.

[0013] Другие аспекты и преимущества станут очевидными из последующего описания и приложенной формулы изобретения.

КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ

[0014] Фиг. 1 представляет собой упрощенный схематичный вид гибридных систем нагрева на атмосферном воздухе/топливе согласно вариантам осуществления, раскрытым в материалах настоящей заявки.

[0015] Фиг. 2 представляет собой упрощенный схематичный вид гибридных систем нагрева на атмосферном воздухе/топливе согласно вариантам осуществления, раскрытым в материалах настоящей заявки.

ПОДРОБНОЕ ОПИСАНИЕ

[0016] В одном аспекте варианты осуществления в настоящей заявке в целом относятся к испарителю на атмосферном (окружающем) воздухе или на естественной тяге для использования при испарении криогенных текучих сред, например, сжиженного природного газа (СПГ). Более точно, варианты осуществления, раскрытые в материалах настоящей заявки, относятся к гибридной системе нагрева на атмосферном воздухе/топливе для испарения СПГ.

[0017] Обращаясь теперь к фиг. 1, проиллюстрирована гибридная система 10 нагрева на атмосферном воздухе/топливе согласно вариантам осуществления, раскрытым в материалах настоящей заявки. Система 10 нагрева может включать внешнюю оболочку или кожух 12, впуски 13 для атмосферного (окружающего) воздуха, одну или более топки 14 с топливом, подаваемым через впуск(и) 15, нагревательные элементы (катушки) 20 и выпускной канал 22. В некоторых вариантах осуществления система 10 нагрева может включать одну или более заслонки 16, распределитель 18 пара, термопару 24 и систему 26 управления.

[0018] В течение работы атмосферный (окружающий) воздух подается к каналам 13 посредством естественной (вынужденной) конвекции благодаря градиентам температуры и плотности, возникающим по причине испарения криогенной текучей среды, проходящей через нагревательные элементы 20, или посредством вынужденной конвекции, например, осуществляемой вентилятором, насосом или другим средством для обеспечения вынужденного потока пара (не показано). Расход атмосферного воздуха, проходящего через впуски 13, может быть управляемым за счет изменения скорости, например, вентилятора, или может управляться, используя заслонки 16.

[0019] Топливо обеспечивается посредством впуска 15, при этом оно сгорает в топке 14 для образования нагретого топочного газа. Воздух для топки 14 может быть обеспечен через отдельный канал (не показан) или может быть втянут в топку 14 через впуски 28, используя атмосферный воздух, текущий через впуски 13. Горячий топочный газ выходит из топки 14 из выпуски 30 и смешивается с атмосферным воздухом.

[0020] Смесь атмосферного воздуха и горячего топочного газа затем может пройти через нагревательные элементы 20 для испарения криогенной текучей среды, например, СПГ, подаваемого через элементы. После теплообмена смесь атмосферного воздуха/топочного газа может выйти из гибридной нагревательной системы 10 через выпускной канал 22.

[0021] Несмотря на то, что система нагрева фиг. 1 проиллюстрирована в горизонтальной конфигурации, также может быть использована вертикальная или другие конфигурации. Вертикальные конфигурации могут иметь направленный вверх или вниз поток. Может быть использовано любое количество нагревательных элементов 20, при этом они могут быть использованы поперек потока, параллельно потоку, против потока или в любом сочетании относительно смеси атмосферного воздуха/топочного газа.

[0022] Топочный газ и атмосферный воздух могут быть надлежащим образом смешаны перед контактом с нагревательными элементами 20. Например, турбулентность, возникающая вследствие принудительной конвекции через впуски 13, перегородки 32, направляющие поток топочного газа через выпуски 30, и/или распределитель 18 пара, может быть использована для обеспечения желаемой степени смешивания таким образом, чтобы нагревательные элементы 20 осуществляли контакт с паровой смесью, имеющей профиль с относительно равномерным распределением температур.

[0023] Как замечено выше, атмосферный воздух смешивается с топочным газом, чтобы обеспечить смешанный газ для испарения криогенной жидкости, например, СПГ. Нагрузка на испаритель (например, требования в количестве подводимого тепла в зависимости от потребностей в природном газе (ПГ) для испарителя) обеспечивается смешанным газом. В определенных условиях достаточное количество подводимого тепла может быть доступным лишь от атмосферного воздуха, а подача топлива в топку 14 может быть прекращена или уменьшена. При изменении условий,

подача топлива к топке 14 может быть увеличена для удовлетворения требуемой нагрузки на испаритель. Может быть предусмотрена запальная горелка или воспламенитель (не показан) для запуска или для периодической работы топки, когда подтверждается необходимость в увеличенном потреблении топлива.

[0024] Температура смешанного газа может отслеживаться и управляться, например, термопарой 24 или системой 26 управления. Отслеживание и управление температурой смешанного газа может быть использовано для одного или более из: определения, воздействует ли оледенение или другие факторы на теплообмен по всей длине элементов 20, испарения СПГ или получения в результате желаемого температурного напора между воздухом/топочным газом и СПГ/ПГ, минимизации образования льда на поверхностях элементов, и, особенно важно, поддержания температуры смешанного газа ниже температуры самовозгорания криогенной жидкости (например, СПГ) в случае, если в кожухе 12 возникнет какая-либо утечка.

[0025] Температура испаренной криогенной жидкости может управляться за счет регулирования температуры смешанного газа изменением расхода топлива для топки или горелки 14, за счет регулирования температуры смешанного газа изменением расхода атмосферного воздуха через один или более впуски 13, за счет регулирования расхода криогенной жидкости для одной или более теплообменных труб 20 или их сочетанием. Такое управление, отслеживание и корректировка потоков может быть осуществлена, используя систему 26 управления.

[0026] В других вариантах осуществления в зависимости от нагрузочных потребностей для испарения и условий окружающей среды часть смешанного газа может обходить одну или более из катушек испарения, например, отводиться из кожуха 12 через выпуски 40, как показано на фиг. 2, на которой те же ссылочные позиции представляют те же элементы. Отведенный смешанный газ может быть повторно введен через распределитель 42 (в обход) или может быть введен дополнительный атмосферный воздух или топочный газ, например, распределителем 42 для воздействия на температуру ПГ и общую производительность системы 10 нагрева, а также для осуществления оперативной борьбы с обледенением. Кожух 12 также может включать один или более выпусков 44 для отведения конденсированной воды, которая может аккумулироваться в системе.

[0027] Расположение и конструкция элементов 20 может воздействовать на образование льда на поверхностях нагрева и может влиять на эффективность теплообмена из-за турбулентности. Таким образом, тип (металл, диаметр, толщина и т.д.), конструкция, размещение и количество использованных катушек могут зависеть от типа конвекции атмосферного воздуха (естественного или принудительного), требуемой площади поверхности теплообмена, сезонных температурных пределов, типа доступного топлива и температур, достигаемых топочным газом, а также других факторов, известных специалистам в данной области техники. Предпочтительно выбранное размещение катушки должно обеспечить оптимизацию температурного напора между воздухом/топочным газом и СПГ/ПГ для того, чтобы добиться высокой эффективности теплообмена и в то же время минимизировать образование льда на поверхностях элементов.

[0028] Гибридные системы нагрева, как описано выше, могут быть использованы в качестве автономных узлов или могут быть сконфигурированы в модульной конструкции, в которой рядом друг с другом расположено множество гибридных систем нагрева, как описано выше, для соответствия общей желаемой теплообменной нагрузке.

[0029] Как описано выше, гибридные системы нагрева согласно вариантам осуществления, раскрытым в материалах настоящей заявки, используют как атмосферный воздух, так и топочный газ для обеспечения тепла для испарения криогенной текучей среды, например, сжиженного природного газа. Такие системы также могут быть использованы для нагрева других текучих сред, имеющих температуру, меньшую, чем у окружающей среды.

[0030] Преимущественно гибридные системы нагрева согласно вариантам осуществления, раскрытым в материалах настоящей заявки, используют окружающую среду для подачи по меньшей мере части требуемого тепла, таким образом минимизируя выбросы загрязняющих веществ по сравнению с испарителями, использующими лишь топочный газ, либо топочный газ для нагрева промежуточной текучей среды для обеспечения необходимого тепла. Системы нагрева согласно вариантам осуществления, раскрытым в материалах настоящей заявки, также могут иметь своим результатом одно или более из следующего: более устойчивое функционирование системы (меньшее воздействие от изменений погоды), меньшие затраты на эксплуатацию и технического обслуживание, меньшие капиталовложения, уменьшенное распространение обледенения, высокую тепловую эффективность, меньшее воздействие на окружающую среду и улучшенный коэффициент диапазона регулирования по сравнению с одним или более из испарителей с погруженной камерой сгорания, открыто-панельных испарителей, пламенных нагревателей с промежуточной текучей средой, и испарителей на атмосферном воздухе.

[0031] Хотя раскрытие включает ограниченное количество вариантов осуществления, специалисты в данной области техники, понимающие преимущество этого раскрытия, будут принимать во внимание, что могут быть разработаны другие варианты осуществления, которые не отступают от объема настоящего раскрытия. Соответственно, объем должен быть ограничен лишь приложенной формулой изобретения.

1. Способ для испарения криогенной жидкости, включающий этапы, на которых:
сжигают топливо в горелке для производства отработанного газа;
смешивают, внутри кожуха, с помощью одного или более впусков отработанный газ с атмосферным воздухом для производства смешанного газа, протекающего продольно от верхнего по потоку конца кожуха в нижний по потоку конец кожуха;
обеспечивают контактирование смешанного газа с множеством теплообменных труб, содержащих сжиженный природный газ, внутри кожуха, и обеспечивают теплообмен внутри кожуха между смешанным газом и сжиженным природным газом;
удаляют часть смешанного газа из кожуха с помощью выпуска, расположенного между верхней по потоку теплообменной трубой и первой нижней по потоку теплообменной трубой, упомянутая часть смешанного газа образует обходной поток смешанного газа; и
распределяют поток смешанного газа ниже по потоку от первой нижней по потоку теплообменной трубы.

2. Способ по п. 1, в котором атмосферный воздух вводят посредством по меньшей мере одной из принудительной и естественной конвекции.

3. Способ по п. 1, дополнительно содержащий по меньшей мере один из этапов:
регулирование температуры смешанного газа за счет изменения расхода топлива для горелки; и
регулирование температуры смешанного газа за счет изменения расхода атмосферного воздуха для смешивания.

4. Способ по п. 2, дополнительно содержащий по меньшей мере один этап из:
регулирование температуры смешанного газа за счет изменения расхода топлива для горелки; и
регулирование температуры смешанного газа за счет изменения расхода атмосферного воздуха для смешивания.

5. Способ по п. 1, дополнительно содержащий этап, на котором управляют температурой испаренной криогенной жидкости по меньшей мере одним из:
регулирование температуры смешанного газа за счет изменения расхода топлива для горелки;
регулирование температуры смешанного газа за счет изменения расхода атмосферного воздуха для смешивания; и
регулирование расхода криогенной жидкости.

6. Способ по п. 2, дополнительно содержащий этап, на котором управляют температурой испаренной криогенной жидкости по меньшей мере одним из:
регулирование температуры смешанного газа за счет изменения расхода топлива для горелки;
регулирование температуры смешанного газа за счет изменения расхода атмосферного воздуха для смешивания; и
регулирование расхода криогенной жидкости.

7. Система испарения криогенной жидкости, содержащей сжиженный природный газ, содержащая:
одну или более горелок для сжигания топлива для
производства отработанного газа;
один или более впусков для смешивания, внутри кожуха, отработанного газа с атмосферным воздухом для производства смешанного газа, протекающего продольно от верхнего по потоку конца кожуха в нижний по потоку конец кожуха;
множество теплообменных труб внутри кожуха, причем множеством теплообменных труб содержит сжиженный природный газ и обеспечивает теплообмен внутри кожуха между смешанным газом и сжиженным природным газом;
распределитель пара для распределения обходного потока смешанного газа ниже по потоку от первой нижней по потоку теплообменной трубы.

8. Система по п. 7, дополнительно содержащая одну или более заслонки для регулирования расхода атмосферного воздуха через впуски.

9. Система по п. 7, дополнительно содержащая термопару для измерения температуры смешанного газа.

10. Система по п. 8, дополнительно содержащая термопару для измерения температуры смешанного газа.

11. Система по п. 7, дополнительно содержащая систему управления для управления температурой нагретой текучей среды по меньшей мере одним из:
регулированием температуры смешанного газа за счет изменения расхода топлива для горелки;
регулированием температуры смешанного газа за счет изменения расхода атмосферного воздуха через один или более впусков; и
регулированием расхода текучей среды для одной или более теплообменных труб.

12. Система по п. 7, дополнительно содержащая устройство для ввода атмосферного воздуха в один или более впусков в качестве принудительной конвекции.

13. Система по п. 7, выполненная с возможностью управления теплообменом за счет регулирования одного или более из: отработанного газа, атмосферного воздуха, обходного потока и потока сжиженного природного газа.

14. Система по п. 7, в которой распределитель пара выполнен с возможностью распределения обходного потока смешанного газа ниже по потоку от второй теплообменной трубы.

15. Система испарения криогенной жидкости, содержащая:
один или более впусков для атмосферного воздуха, обеспечивающего поток атмосферного воздуха в кожух, имеющий верхний по потоку конец и нижний по потоку конец;
одну или более топливных горелок, выполненных с возможностью обеспечения потока отработанного газа в кожух, причем поток отработанного газа и поток атмосферного воздуха образуют поток смешанного газа;
множество теплообменных труб, расположенных внутри кожуха, причем множеством теплообменных труб обеспечивает теплообмен между потоком смешанного газа и потоком сжиженного природного газа внутри теплообменных труб;
выпуск, расположенный между верхней по потоку теплообменной трубой и нижней по потоку теплообменной трубой для удаления по меньшей мере части потока смешанного газа из кожуха, причем
удаленный смешанный газ образует обходной поток; и
распределитель пара, выполненный с возможностью распределения обходного потока ниже по потоку от нижней по потоку теплообменной трубы.

16. Система по п. 15, выполненная с возможностью управления теплообменом за счет регулирования одного или более из: потока отработанного газа, потока атмосферного воздуха, обходного потока и потока сжиженного природного газа.

17. Система по п. 15, дополнительно содержащая одну или более заслонок, выполненных с возможностью регулирования расхода атмосферного воздуха через впуски для атмосферного воздуха.

18. Система по п. 15, дополнительно содержащая термопару для измерения температуры смешанного газа.

19. Система по п. 15, дополнительно содержащая систему управления, выполненную с возможностью управления температурой потока сжиженного природного газа по меньшей мере одним из:
регулированием температуры потока смешанного газа за счет изменения расхода топлива в одну или более горелок;
регулированием температуры потока смешанного газа за счет изменения расхода потока атмосферного воздуха через один или более впусков для атмосферного воздуха; и
регулированием расхода потока сжиженного природного газа в одну или более теплообменных труб.

20. Система по п. 15, дополнительно выполненная с возможностью обеспечения потока атмосферного воздуха в кожух посредством принудительной конвекции.

21. Система по п. 15, в которой поток смешанного газа,
контактирующий с теплообменными трубами, имеет профиль с по существу равномерным распределением температур.

22. Система по п. 15, в которой множество теплообменных труб расположены поперек потока, параллельно потоку, против потока или в комбинациях указанных расположений, с потоком смешанного газа.

23. Система по п. 15, в которой распределитель пара выполнен с возможностью распределения обходного потока ниже по потоку от первой нижней по потоку теплообменной трубы, второй нижней по потоку теплообменной трубы или от обеих.

24. Система испарения криогенной жидкости, содержащая:
кожух, имеющий принудительный конвекционный поток атмосферного воздуха, обеспечиваемый через один или более впусков для атмосферного воздуха, причем кожух имеет верхний по потоку конец и нижний по потоку конец;
одну или более заслонок, выполненных с возможностью регулирования расхода потока атмосферного воздуха через кожух;
одну или более топливных горелок, выполненных с возможностью обеспечения потока отработанного газа в кожух, причем поток атмосферного воздуха и поток отработанного газа образуют внутри кожуха поток смешанного газа;
множество теплообменных труб, расположенных внутри кожуха, причем множеством теплообменных труб обеспечивает теплообмен между потоком смешанного газа и потоком сжиженного природного газа внутри теплообменных труб, причем множество теплообменных труб расположены поперек потока, параллельно потоку, против потока или в комбинациях указанных расположений, с потоком смешанного газа;
выпуск, расположенный между верхней по потоку теплообменной трубой и нижней по потоку теплообменной трубой для удаления по меньшей мере части потока смешанного газа из кожуха, причем удаленный смешанный газ образует обходной поток; и
распределитель пара, выполненный с возможностью распределения обходного потока ниже по потоку от нижней по потоку теплообменной трубы,
причем система выполнена с возможностью управления теплообменом за счет регулирования одного или более из: потока отработанного газа, потока атмосферного воздуха и потока сжиженного природного газа.

25. Система по п. 24, в которой поток смешанного газа, контактирующий с теплообменными трубами, имеет профиль с по существу равномерным распределением температур.

26. Система по п. 24, дополнительно содержащая систему управления, выполненную с возможностью управления температурой потока сжиженного природного газа по меньшей мере одним из:
регулированием температуры потока смешанного газа за счет изменения расхода топлива в одну или более горелок;
регулированием температуры потока смешанного газа за счет изменения расхода потока атмосферного воздуха через один или более впусков для атмосферного воздуха; и
регулированием расхода потока сжиженного природного газа в одну или более теплообменных труб.



 

Похожие патенты:

Изобретение относится к области энергетики, в частности к системам автономного энергоснабжения удаленных населенных пунктов и других объектов с использованием газификации на основе сжиженного природного газа.

Изобретение относится к области теплоэнергетики. Испаритель содержит корпус с встроенным в него трубчатым змеевиком.

Изобретение относится к области теплотехники и может быть использовано в криогенной технике для испарения газообразных сред, находящихся в жидком состоянии. Испаритель криогенной жидкости содержит корпус, в котором расположены теплообменные элементы и нагреватель.

Изобретение относится к области теплотехники и может быть использовано в криогенной технике для испарения газообразных сред, находящихся в жидком состоянии. Испаритель криогенной жидкости содержит корпус, в котором расположены теплообменные элементы и нагреватель.

Изобретение относится к способу, а также к устройству для повышения энтальпии среды, в которой энергия отбирается у первого теплоносителя, состоящего из первого дымового газа (5), и у второго теплоносителя (W), содержащего воду и дымовой газ, и путем опосредованного теплообмена передается, соответственно, в среду, причем второй дымовой газ (3) для образования второго теплоносителя (W) подается в систему, содержащую воду, через насадку.

Изобретение относится к области теплотехники и может быть использовано в криогенной технике для испарения газообразных сред, в ракетно-космической технике и т. д.

Изобретение относится к области теплотехники и может быть использовано в криогенной технике для испарения газообразных сред, находящихся в жидком состоянии, в ракетно-космической технике и в народном хозяйстве, например, для газификации сжиженных газов и их смесей.

Изобретение относится к области теплотехники и может быть использовано для испарения сред, находящихся в жидком состоянии. Испаритель криогенной жидкости содержит корпус, в котором расположены теплообменные элементы и нагреватель.

Изобретение относится к области теплотехники и может быть использовано для испарения сред, находящихся в жидком состоянии. Предложен способ подогрева криогенной жидкости, заключающийся в пропускании жидкости через теплообменные элементы с подведением к ним тепла.

Изобретение относится к области газоснабжения, в частности к испарению сжиженного углеводородного газа в самих расходных емкостях и грунтовых испарителях и последующему дросселированию парового потока без образования гидратов, и может быть использовано при снабжении сжиженным углеводородным газом жилищно-коммунальных потребителей и объектов сельского хозяйства от подземных резервуарных установок с естественной регазификацией продукта.

Изобретение относится к области теплотехники и может быть использовано для испарения сжиженного углеводородного газа, находящегося в жидком состоянии. Испаритель сжиженного углеводородного газа содержит корпус, состоящий из наружной и внутренней стенок. В выходной части корпус выполнен глухим, дополнительный теплообменник, расположенный на оси корпуса и состоящий из трех жестко соединенных между собой цилиндрических оболочек, образующих кольцевые полости для прохода сжиженного углеводородного газа, смесительную головку, расположенную во входной части корпуса и включающую в себя втулки, равномерно расположенные по окружности, огневое и наружной днище, топливный коллектор с форсунками, расположенными равномерно по окружности, запальное устройство, расположенное на боковой поверхности корпуса. В выходной части дополнительного теплообменника установлена дымовая труба. Использование изобретения позволит уменьшить габариты и массу испарителя, а также интенсифицировать процесс испарения сжиженного углеводородного газа. 2 ил.

Изобретение относится к машиностроению, а именно к мобильным топливозаправочным модулям, служащим для приема, хранения и выдачи сжиженного газа. Топливозаправочный модуль для сжиженного газа включает корпус, имеющий дно, крышу и боковые стенки, снабженные сквозными отверстиями. В корпусе расположены емкость для сжиженного газа, имеющая двойные стенки, насосное оборудование, газораздаточная колонка, запорно-регулировочная аппаратура, а также трубопроводные магистрали, включающие магистраль, обеспечивающую заправку емкости сжиженным газом, и магистраль, связывающую указанную емкость с газораздаточной колонкой. Топливозаправочный модуль дополнительно содержит ванну аварийного пролива, расположенную под емкостью для сжиженного газа, а также баллоны с азотом, снабженные оборудованием, обеспечивающим его подачу в емкость для сжиженного газа и трубопроводные магистрали. Корпус топливозаправочного модуля содержит перегородки, разделяющие его на азотный отсек, в котором расположены баллоны с азотом, технологический отсек, в котором расположены емкость для сжиженного газа и ванна аварийного пролива, насосный отсек, в котором расположено насосное оборудование, и газораздаточный отсек, в котором расположена газораздаточная колонка. Нижние участки стенок корпуса выполнены сплошными, а на верхних участках стенок корпуса с обеих его сторон, по меньшей мере, в зоне расположения технологического отсека установлены вентиляционные решетки, имеющие сквозные щели. Техническим результатом, достигаемым при реализации изобретения, является повышение удобства пользования и безопасности работы модуля. 5 з.п. ф-лы, 2 ил.

Изобретение относится к области теплотехники и может быть использовано для испарения сжиженного углеводородного газа, находящегося в жидком состоянии. Испаритель сжиженного углеводородного газа содержит корпус, заполненный жидким промежуточным теплоносителем, полую обечайку с глухим выходным торцом, установленную на оси корпуса. Во внутренней полости обечайки расположен трубопровод подачи сжиженного углеводородного газа, на цилиндрической поверхности которого выполнены ряды радиальных отверстий, причем его выходной торец выполнен глухим. Испаритель также содержит кольцевую камеру сгорания с горелочным устройством, запальное устройство, расположенное на цилиндрической поверхности кольцевой камеры сгорания, трубчатые теплообменные элементами, расположенные вокруг обечайки и соединяющие внутреннюю полость кольцевой камеры сгорания с дымовой трубой, расположенной в выходной части корпуса. Использование изобретения позволит уменьшить габариты и массу испарителя, а также интенсифицировать процесс испарения сжиженного углеводородного газа. 2 ил.

Изобретение относится к области криогенной техники, в частности к устройствам перекачки и заправки жидкого азота, а также для заморозки вакуумных ловушек. Стационарное устройство для подачи хладагента в камеру холода содержит как минимум один стационарный сосуд Дьюара, каждый из которых снабжен фланцем и герметизирующей кольцеобразной прокладкой, расположенной между торцом горловины сосуда Дьюара и посадочным местом во фланце, выполненном с двумя патрубками, расположенными вертикально над горловиной сосуда Дьюара. Оба патрубка выполнены с внутренней резьбой в верхней их части, один из патрубков является заправочным и герметично соединен резьбой с предохранительным клапаном, выполненным съемным. Второй патрубок герметично соединен резьбой с заглушкой, которая также выполнена съемной. Средняя часть второго патрубка выполнена с внутренней резьбой и посадочным местом для верхней резьбовой части питателя, выполненного съемным, и расположенным коаксиально второму патрубку. Под заглушкой и выше верхней резьбовой части питателя во втором патрубке выполнен отвод под камеру шарикового клапана. Верхняя часть камеры выполнена с внутренней резьбой и герметично соединена с нижней резьбовой частью штуцера. Фланец винтовым соединением прикреплен к ручкам сосуда Дьюара и снабжен герметичными токовводами, соединенными проводами с нагревателем и датчиком уровня жидкого азота, размещенным на расстоянии 30-50 мм выше нагревателя. Технический результат в предлагаемом техническом решении заключается в создании стационарного устройства для подачи хладагента в камеру холода с обеспечением возможности непрерывного режима работы (длительное время) с большим расходом жидкого азота (10 л/ч) и установкой датчика, позволяющего заблаговременно сигнализировать об окончании жидкого азота в работающем сосуде Дьюара. 3 ил.

Изобретение относится к области криогенной техники, в частности к устройствам перекачки, заправки жидкого азота, а также для заморозки вакуумных ловушек. Устройство для подачи хладагента в камеру холода содержит воронку, выполненную как одно целое с фланцем, и герметизирующую пробку, выполненную с вертикальным сквозным отверстием, расположенную между горловиной сосуда Дьюара и посадочным местом во фланце. Трубка воронки, расположенная в вертикальном отверстии пробки, выполнена на 5 мм длиннее высоты пробки, верхняя цилиндрическая часть воронки герметично соединена с нижней резьбовой частью тонкостенной теплоразвязывающей трубки, верхняя часть которой снабжена фасонным фланцем с внутренней резьбой, нижняя часть которой герметично соединена с верхней резьбовой частью питателя, а верхняя резьбовая часть фасонного фланца соединена с нижней резьбовой частью выходного штуцера, верхняя резьбовая часть которого предназначена для подсоединения к трубопроводу камеры холода. Верхняя резьбовая часть питателя выполнена с вертикальной цилиндрической полостью, в которой расположен металлический шарик, являющийся шариковым клапаном. С наружной части, воронка снабжена отводом, выполненным с воронкой как одно целое, внутренняя резьбовая часть отвода герметично соединена с предохранительным клапаном, устройство так же содержит два зацепа расположенные на ручках сосуда Дьюара, снабженных барашками, соединенными резьбовым соединением с двумя тягами, выполненными в виде прутков, верхняя часть которых выполнена как одно целое с вилками шарнирных соединений с фланцем воронки, который выполнен с ответными частями этих соединений расположенными с противоположных сторон. Технический результат изобретения заключается в создании устройства для подачи хладагента в камеру холода с надежной герметизацией горловины сосуда Дьюара и возможности подключения к трубопроводу камеры холода, как минимум, еще одного устройства с сосудом Дьюара с целью их последовательного использования. 4 ил.

Изобретение относится к области хранения и регазификации сжиженных углеводородных газов. Способ предусматривает изотермическое хранение сжиженного углеводородного газа (СУГ) и последующую его регазификацию для подачи под заданным давлением в сеть потребления с применением парокомпрессионного холодильного агрегата, работающего в режиме теплового насоса. Исходный СУГ по линии подают в изотермический резервуар, где он хранится при постоянной температуре, не превышающей температуру кипения СУГ (от -40°C до - 10°C в зависимости от состава смеси). По мере необходимости СУГ подается в конденсатор парокомпрессионного холодильного агрегата, где происходит процесс регазификации газа за счет тепла выделяемого при конденсации хладагента, после чего газовая фаза подается в линию подачи потребителю. Использование изобретения позволяет повысить энергетическую эффективность и взрыво-пожаробезопасность хранения и регазификации СУГ, снизить металлоемкость, минимизировать естественные потери СУГ, обеспечить необходимую производительность процесса регазификации и постоянство состава испаряемого газа, использовать смеси СУГ с большим содержанием более легких углеводородов. 1 ил.

Изобретение относится к области теплотехники и может быть использовано для испарения сред, находящихся в жидком состоянии. Испаритель криогенной жидкости содержит корпус, состоящий из внутренней и наружной цилиндрических оболочек, установленных коаксиально с кольцевым зазором и соединенных между собой с помощью днища, при этом во внутренней полости корпуса расположена коаксиально дополнительная цилиндрическая оболочка, образуя единый кольцевой канал для прохода греющего теплоносителя от периферии испарителя к его центру, причем каждая из оболочек состоит из двух жестко соединенных между собой цилиндров, между которыми образованы каналы, объединенные в коллекторы для подвода и отвода криогенной жидкости, смесительную головку со смесительными элементами, воспламеняющим устройством и коллекторами подвода компонентов топлива, установленную на входе в кольцевой канал. Использование изобретения позволит уменьшить габариты и массу испарителя, а также улучшить характеристики испарителя за счет развитой поверхности нагрева. 2 ил.

Изобретение относится к области теплотехники и может быть использовано для испарения сред, находящихся в жидком состоянии. Испаритель криогенной жидкости содержит охлаждаемую криогенной жидкостью камеру сгорания, смесительную головку, включающую в себя блок подачи горючего, блок подачи окислителя, блок огневого днища, при этом в указанных блоках по концентрическим окружностям установлены форсунки, состоящие из полого наконечника и втулки, охватывающей с кольцевым зазором наконечник, при этом на наружной поверхности наконечника форсунки выполнены ребра, взаимодействующие своей наружной частью с внутренней поверхностью втулки, причем во внутренней полости камеры сгорания расположены теплообменные элементы, выполненные в виде трубок Фильда, у которых вход наружной трубки и выход внутренней трубки соединены с полостями блока огневого днища, при этом одна из его полостей сообщается с трактом охлаждения камеры сгорания, а в выходной части камеры сгорания установлен газовод, в варианте исполнения, ребра, выполненные на наружной поверхности наконечника форсунки смесительной головки, расположены под углом к продольной оси форсунки, наконечник форсунки смесительной головки со стороны подачи окислителя выполнен глухим, при этом на его наружной поверхности выполнены тангенциальные отверстия, равномерно расположенные по окружности и сообщающиеся с полостью окислителя 2 з.п. ф-лы, 7 ил.

Изобретение относится к технологии регазификации криогенных жидкостей и может быть использовано в криогенной технике. Характеризуется тем, что формируют воздушный поток, направляют его через продукционный испаритель 3, формируют напор гидростатического столба криогенной жидкости, направляют жидкий криопродукт из резервуара 5 в испаритель наддува 4, осушают поток воздуха, направляют осушенный поток воздуха вертикально вниз через продукционный испаритель 3 и испаритель наддува 4 и нагревают полученный продукционный поток газа до заданной температуры. При этом газификатор содержит роторный адсорбционный осушитель воздуха низкого давления 1, блок вентиляторов 2, продукционный испаритель 3, испаритель наддува 4, резервуар жидкого криопродукта 5, предохранительный клапан 6 и догреватель продукционного потока газа 7. Изобретение направлено на увеличение производительности и эффективности газификатора бесперебойного действия. 2 н.п. ф-лы, 2 ил.

Изобретение относится к криогенной технике. Способ подачи потребителю газообразного водорода высокого давления заключается в нагнетании насосом по перекрываемому трубопроводу жидкого водорода из резервуара в накопитель-газификатор, выполненный в виде емкости полного объема Vп, где с повышением температуры и давления за счет подводимого тепла жидкий водород превращают в газообразный высокого давления. Емкость с объемом Vп выполнена с расположенной в ней внутренней емкостью объемом Vв, которая с перекрытием соединена с насосом и через сквозные отверстия - с емкостью объема Vп. Отношение объемов Vв/Vп выбрано в диапазоне от 0,3 до 1,0 в зависимости от максимального давления водорода при постоянной максимальной температуре емкости объема Vп. Заполнение внутренней емкости объемом Vв за один цикл осуществляют водородом дозированной массы со сверхкритическими значениями давления и температуры. Изохорический нагрев водорода обеспечивают теплом окружающей среды с достижением заданного максимально допустимого давления газообразного водорода перед подачей потребителю. После заправки баллонов потребителя при снижении давления в емкости Vп до установленного уровня отключают перекрываемый трубопровод от потребителя и подключают к технологической емкости. Охлаждают оставшийся в емкости Vп водород жидким азотом по криогенным магистралям из источника и продолжают перепускать водород в технологическую емкость со снижением давления и температуры в емкости Vп до уровня значения давления водорода на выходе из насоса при работе. Затем включают насос, добавляют до заданного значения дозированную массу водорода из резервуара жидкого водорода и осуществляют следующий цикл подачи потребителю газообразного водорода. Технический результат заключается в достижении максимально допустимого давления газообразного водорода в заполняемой емкости, исключении вибраций потока и уменьшении энергозатрат, повышении долговечности накопителя-газификатора, увеличении быстродействия заправки баллонов, обеспечении возможности восстановления высокого давления водорода в емкости до уровня максимального давления после снижения давления. 1 ил.
Наверх