Способ минимизации зон отчуждения отделяемых частей ракеты-носителя

Изобретение относится к ракетно-космической технике и может быть использовано для снижения площадей районов падения отделяющихся частей (ОЧ) ракет космического назначения (РКН). В способе минимизации зон отчуждения ОЧ определяют дополнительное количество теплоты, необходимое для сжигания ОЧ при движении на атмосферной части траектории спуска до заданной высоты, на которой должно закончиться их сгорание в атмосфере. Определенную массу энергетического материала помещают в конструкцию ОЧ, например в сотовые ячейки конструкции оболочки головного обтекателя. Техническим результатом изобретения является снижение площади зоны необходимого отчуждения.

 

Изобретение относится к ракетно-космической технике и может быть использовано для сокращения районов падения отделяющихся частей (ОЧ) ступеней ракет-носителей (РН). К ОЧ ступеней РН относятся: отработанные ступени (ОС), переходные отсеки (ПО), створки головных обтекателей (СГО).

Одной из основных проблем, связанных со снижением техногенного воздействия пусков РН на окружающую среду, является наличие ОЧ, что приводит к необходимости выделять значительные территории для районов падения ОЧ, а наличие невырабатываемых остатков жидкого топлива в баках ОС приводят к взрывам на орбитах, проливам компонентов топлива в районах падения, увеличению разбросов фрагментов ОЧ, использованию энергетически неоптимальных схем выведения и т.д.

Известен «Способ спуска в атмосфере отделяемого от гиперзвукового летательного аппарата элемента, обладающего аэродинамическим качеством, и устройство для осуществления способа» (патент РФ №2086903, МПК F42B 15/00, 1997). Сущность данного технического решения состоит в том, что на этапе предполетной подготовки многоступенчатой ракеты-носителя производят расчет параметров движения отделяемых частей ракеты-носителя до момента опускания их на землю и по результатам расчетов определяют необходимую зону отчуждения.

Известен также «Способ минимизации зон отчуждения для отделяемых частей многоступенчатой ракеты-носителя» (патент РФ №2464526, МПК F42B 15/36, 2012 г.), по которому на этапе предполетной подготовки РН производят расчет параметров движения ОЧ до момента падения их на землю и по результатам расчетов определяют необходимую зону отчуждения, в конструкции ОЧ выделяют элементы, различающиеся по степени их разрушения в плотных слоях атмосферы после отделения от РН, для этих отдельно летящих элементов ОЧ рассчитывают зоны необходимого отчуждения, и после отделения ОЧ от РН в процессе автономного полета этих частей на участке траектории до момента вхождения в плотные слои атмосферы формируют сигнал на средства членения и осуществляют воздействие на конструкцию ОЧ для их физического разделения на выделенные элементы.

К недостаткам технического решения прототипа следует отнести наличие нескольких районов падения, значительную площадь зоны необходимого отчуждения т.к. степень разрушения этих ОЧ различна, от полного сгорания до сохранения фрагментов, в связи с чем задача минимизации зон отчуждения для отделяемых частей многоступенчатой ракеты-носителя решается недостаточно и остается актуальной.

Техническим результатом предлагаемого технического решения является максимальное снижение площади зоны необходимого отчуждения.

Указанный технический результат достигается за счет того, что в известном способе, по которому на этапе предполетной подготовки РН выделяют элементы ОЧ, различающиеся по степени их разрушения в плотных слоях атмосферы после отделения от ракеты-носителя, производят расчет параметров движения ОЧ РН до момента падения их на землю, согласно заявляемому техническому решению рассчитывают количество теплоты, получаемой ОЧ за счет аэродинамического нагрева при движении на атмосферном участке траектории спуска до заданной высоты, на которой должно закончиться ее сгорание, рассчитывают необходимое дополнительное количество теплоты для обеспечения полного сгорания ОЧ в атмосфере до достижения заданной высоты полета, определяют необходимое количество энергетического материала для обеспечения рассчитанного повышения температуры ОЧ, размещают его в конструкции ОЧ и после отделения ОЧ от РН в процессе автономного полета ОЧ на участке траектории до момента вхождения в плотные слои атмосферы формируют сигнал на возгорание энергетического материала по достижении заданной температуры.

Реализация предлагаемого технического решения.

1. Расчет полного количества подведенного тепла Qтп к ОЧ за время снижения до заданной высоты проводится в соответствии с расчетной формулой (2.40), приведенной на стр. 115 кн. 1. Инженерный справочник по космической технике. Изд. 2-е, перераб. и доп. Под ред. А.В. Солодова. М., Воениздат, 1977, 430 с.

2. Расчет требуемого количества теплоты Qтт, обеспечивающего полное сгорание ОЧ в условиях набегающего аэродинамического потока, основан на большой базе данных параметров входа в атмосферу известных конструкций отработанных ступеней РН, КА и соответствующих математических моделях, приведенный, например, в кн. 2. Программный комплекс НАСА расчета сгорания тел при входе в атмосферу. / General Input Requirements for Object Reentry Survival Analysis Tool (ORSAT). http://orbitaldebris.jsc.nasa.gov/reentry/orsat.html.

Дополнительное количество теплоты ΔQ определяется как разница между значениями

3. Дополнительное тепловое воздействие на ОЧ может осуществляться различными методами, например:

- за счет инициирования размещенных в конструкции ЭМ материалов, выделяющих дополнительное количество теплоты;

- подача энергии за счет лазерного воздействия с наземной станции.

Например, современные конструкции головных обтекателей представляют собой трехслойные сотовые конструкции, которые возможно заполнить ЭМ, который можно инициировать с помощью теплового реле, либо выбором свойства ЭМ, который инициируется самостоятельно по достижению заданной температуры.

Масса ЭМ определяется в соответствии с формулой

где qЭM - количество теплоты, выделяемое при сгорании 1 кг ЭМ.

Использование предлагаемого технического решения позволит решить 2 важнейшие проблемы, свойственные ракетно-космической технике:

- в значительной степени уменьшить, а в ряде случаев избавиться от зоны отчуждения, выделяемой, например, для СГО, ОС, в частности, наиболее эффективно для верхних ступеней РН, спускаемых с орбит;

- обеспечить выбор более энергетически оптимальной схемы выведения РН за счет снятия дополнительного граничного условия по обеспечению падения, например, СГО в заданный район радения, при расчете программы тангажа, что приводит к повышению массы выводимой полезной нагрузки, компенсирующей увеличение массы СГО за счет размещения ЭМ.

В качестве ЭМ можно использовать различные твердотопливные составы, например NaClO3+Mg+CaO2, C6H7.31N2.69O10.3, N4H4O4+C18.96H34.64N19.16O29.32+AlH3, N4H4O4+C73.2H120.9+Al и т.д.

Конкретный выбор ЭМ будет определяться конструкцией СГО или ступени, количеством тепла, которое необходимо подвести к конкретному участку ОЧ для полного сгорания при движении в атмосфере до заданной высоты, например до высоты 10 км.

В качестве примера реализации способа рассматривается обеспечение сжигания в атмосфере СГО.

В настоящее время СГО представляют собой сотовые конструкции, изготовленные с применением многослойных композиционных материалов, например обтекатели РН семейства «Союз», «Протон».

В процессе выведения РН происходит нагрев СГО до температуры порядка 300°C (в зависимости от типа РН, траектории выведения), после их отделения часть траектории проходит на внеатмосферном участке полета, где тепловые притоки только от Земли и Солнца, при входе в атмосферу температура СГО начинает повышаться, но ее недостаточно для того, чтобы сгореть (газифицироваться) СГО до заданной высоты, например 10 км.

Для доведения температуры СГО до сгорания необходимо дополнительное количество теплоты (1), которую предлагается добавить за счет теплового воздействия ЭМ, при этом скорость приращения теплоты СГО не должна приводить к разлету (взрыву) и, как следствие, недополучению необходимого количества теплоты для газификации. В этой связи ЭМ размещают равномерно непосредственно в сотах конструкции той части СГО, которой необходима дополнительная теплота для сгорания, при этом распределение массы ЭМ по внутренней поверхности СГО обеспечивает максимальную теплопередачу необходимого количества теплоты от ЭМ к элементам конструкции СГО без взрыва, когда теплота не успевает перейти в сжигаемую конструкцию.

Способ минимизации зон отчуждения для отделяемых частей (ОЧ) многоступенчатой ракеты-носителя (РН), заключающийся в том, что на этапе предполетной подготовки РН выделяют элементы ОЧ, различающиеся по степени их разрушения в плотных слоях атмосферы после отделения от ракеты-носителя, производят расчет параметров движения ОЧ РН до момента падения их на землю, отличающийся тем, что рассчитывают количество теплоты, получаемой ОЧ за счет аэродинамического нагрева при движении на атмосферном участке траектории спуска до заданной высоты, на которой должно закончиться ее сгорание, и необходимое дополнительное количество теплоты для обеспечения полного сгорания ОЧ в атмосфере до достижения заданной высоты полета, определяют необходимое количество энергетического материала для обеспечения рассчитанного повышения температуры ОЧ, размещают его в конструкции ОЧ и после отделения ОЧ от РН в процессе автономного полета ОЧ на участке траектории до момента вхождения в плотные слои атмосферы формируют сигнал на его возгорание по достижении заданной температуры.



 

Похожие патенты:

Группа изобретений относится к области ракетной техники. Способ отделения маршевой ступени ЛА включает механическое удержание в разомкнутом состоянии цепи запуска электровоспламенителя механизма разделения ступеней при пуске ЛА на стартовом участке траектории полета.

Изобретение относится к ракетной технике и представляет собой ракетную часть со стабилизирующим устройством реактивного снаряда. Корпус ракетной части перед стабилизирующим устройством выполнен с коническим кольцевым уступом, при этом больший диаметр корпуса расположен под наружным кольцом.

Изобретение относится к военной технике и может быть использовано в крылатых ракетах. Противокорабельная крылатая ракета, имеющая в поперечном сечении эллиптическую или овальную форму, содержит корпус цилиндрической формы с каналом внутри, крыло, конфузор в форме эллипсоида вращения или параболоида вращения, расширяюще-сужающуюся полость, диффузор, скругление, цилиндрическую часть, реактивный двигатель, воздушный винт, излучатель радиолокационного излучения, приемник радиолокационного излучения, пилоны.

Изобретение относится к гиперзвуковым крылатым ракетам (ГПКР), оснащенным гиперзвуковым прямоточным воздушно-реактивным двигателем (ГПВРД). ГПКР содержит маршевую ступень с конструкцией, построенной на основе двух модулей.

Изобретение относится к боеприпасам, в частности к переносным тактическим боеприпасам. Переносной тактический боеприпас содержит корпус, кумулятивный боевой элемент, источник питания, координатор цели.

Изобретение относится к ракетной технике и может быть использовано при полете ракет. Подают распыленное рабочее тело через форсунки и нагреватель в теплообменную камеру без доступа кислорода под действием поршня и сил инерции, придают основной импульс ракете от разогретого рабочего тела, выходящего из сопла, придают дополнительный импульс ракете за счет воспламенения и сгорания поступившего из сопла рабочего тела в обойме, установленной на стабилизаторах ракеты.

Группа изобретений относится к способу определения коэффициента команды одноканальных вращающихся ракет и снарядов и устройству для его определения. Для определения коэффициента команды закручивают ракету или снаряд вокруг оси крена в плоскости слежения за имитатором цели.

Изобретение относится к области приборостроения, а именно к области автоматического регулирования, и может быть использовано в системах высокоточного управления движением центра масс подвижных объектов, в частности аэробаллистических летательных аппаратов.

Изобретение относится к области ракетной техники и может быть использовано в бикалиберных управляемых ракетах. Бикалиберная управляемая ракета содержит маршевую ступень и отделяемый стартовый двигатель.

Изобретение относится к боеприпасам, в частности к управляемым пулям. Управляемая пуля в пусковом контейнере содержит маршевую ступень, соединенную электрическим жгутом с пусковым контейнером, отделяемый стартовый двигатель и переходный обтекатель.

Изобретение относится к области космической техники. Посадочное устройство содержит, по крайней мере, одну посадочную опору, включающую в себя центральную телескопическую стойку.

Изобретение относится к управлению движением космического аппарата (КА), главным образом на атмосферном участке траектории выведения. Способ включает автономное оперативное определение бортовыми средствами КА высоты условного перицентра траектории сразу после входа КА в атмосферу.

Изобретение относится к управлению выведением космического аппарата (КА) с подлетной траектории на орбиту искусственного спутника планеты (ИСП) с атмосферой. В способе используются аэродинамическое торможение КА и реактивная коррекция орбиты КА на внеатмосферном участке.

Изобретение относится к ракетно-космической технике и может быть использовано при отделении отработанных ступеней ракет-носителей (РН) типа «Союз». Оснащают ракетные блоки (РБ) первой ступени гибкой тросовой механической связью, отделяют РБ от второй ступени РН, запускают парашютную систему, стабилизируют РБ, производят гашение гиперзвуковых скоростей РБ, снижают РБ с помощью воздушно-космической парашютной системы, приземляют РБ на земную поверхность в районы падения.

Изобретение относится к ракетно-космической технике и может быть использовано в ракетах космического назначения лёгкого класса (РКН ЛК). РКН ЛК на нетоксичных компонентах топлива с высокой степенью заводской готовности к пусковым операциям с определенным составом, весогабаритными и техническими параметрами, необходимыми для осуществления авиационной транспортировки полностью собранной и испытанной в заводских условиях РКН ЛК, содержит спасаемые ракетный блок или двигательную установку первой ступени, воздушно-космическую парашютную систему.

Изобретение относится к конструкциям космических ракет и способам их посадки на землю. Космическая ракета содержит ракетный двигатель и полезную нагрузку, при этом многоразовый аппарат имеет форму оживального конуса с затупленной жаропрочной частью в основании конуса, а рули, или пилоны, или двигатели присоединены к полезной нагрузке управляемым отсоединяемым креплением.

Изобретение относится к управлению движением связанных тросом космических объектов. Способ включает расстыковку указанных объектов с сообщением спускаемому аппарату (СА) начальной скорости расхождения против вектора орбитальной скорости.

Изобретение относится к космонавтике, в частности к области управления космическими аппаратами (КА). Бортовыми средствами аппарата определяются координаты включения двигательной установки, величины и ориентации импульсов характеристической скорости КА.

Изобретение относится к управлению космическим аппаратом (КА) на внеатмосферном участке его схода с орбиты искусственного спутника Земли (ИСЗ). Способ заключается в двукратном включении реактивной двигательной установки КА: на орбите ИСЗ и при входе КА в атмосферу Земли.

Группа изобретений относится к аэрокосмической системе для выведения полезной нагрузки (ПН) на орбиту и возвращения с орбиты путем торможения в атмосфере. Система содержит средство выведения (100) с вертикальным взлетом и посадкой.

Изобретение относится к управлению подготовкой и осуществлением спуска космического аппарата (КА). Способ включает построение требуемой для проведения наблюдений ориентации КА, определение остатка топлива на борту КА, а также орбиты спуска, проходящей максимальное число раз над заданными наземными пунктами и отвечающей требованиям светотеневой обстановки на орбите КА и в этих пунктах. Остаток топлива должен превышать суммарный его расход на ориентацию и маневры орбиты спуска. При выполнении указанных требований переводят КА на орбиту спуска. Технический результат изобретения состоит в повышении разрешения и количества наблюдений наземных пунктов при спуске КА.
Наверх