Способ получения полиэфирполиолов

Изобретение относится к способу получения полиэфирполиолов. Способ осуществляют путем превращения а) ароматических аминов с b) алкиленоксидами в присутствии с) катализатора. Алкиленоксид b) содержит по меньшей мере 90 масс. % пропиленоксида в пересчете на массу компонента b) и в качестве катализатора с) используют амин. Описаны также полиэфирполиолы, полученные указанным способом и их применение для получения полиуретанов. Технический результат - получение полиэфирполиолов, обладающих низкой вязкостью и незначительным содержанием непревращенных ароматических аминов, используемых в качестве стартовых соединений. 3 н. и 3 з.п. ф-лы, 7 пр.

 

Объектом изобретения является способ получения полиэфирполиолов путем присоединения алкиленоксидов к Н-функциональным стартовым веществам, особенно к ароматическим аминам.

Полиэфирполиолы на основе ароматических аминов, в частности метилендианилина (MDA), который чаще всего находится в смеси с многоядерными продуктами его конденсации (p-MDA), и толуилендиамина, а также применение полиэфирполиолов для получения полиуретанов давно известны. Указанные полиэфирполиолы используют главным образом для получения жестких пенополиуретанов.

Полиэфирполиолы обычно получают путем превращения ароматических аминов с алкиленоксидами, в частности с этиленоксидом и/или пропиленоксидом, которое чаще всего осуществляют в присутствии катализатора.

В патенте США US 4209609 описано получение полиолов на основе толуилендиамина с гидроксильным числом в диапазоне от 400 до 630 мг КОН/г, реализуемое путем первоначального превращения толуилендиамина примерно с четырьмя молями этиленоксида и последующего превращения с пропиленоксидом. Указанные полиолы на основе толуилендиамина обладают определенными преимуществами (например, низкими значениями коэффициента теплопроводности). Другие способы получения полиолов описаны в немецком патенте DE 4232970 А1 и патенте США US 4562290. Катализируемое аминами получение полиолов на основе толуилендиамина, в соответствии с которым сначала добавляют от 2 до 5 молей этиленоксида, а затем пропиленоксид, описано в европейском патенте ЕР 0318784 В1 и немецком патенте DE 3740634.

Полиэфирные цепи указанных выше полиэфирполиолов всегда содержат звенья этиленоксида. Это обусловливает необходимую низкую вязкость полиэфирполиолов. С другой стороны, присутствие звеньев этиленоксида в полиэфирных цепях является причиной низкой совместимости с порообразователями, особенно в случае использования углеводородов в качестве последних.

Как следует из цитированных выше публикаций, полиэфирполиолы, которые обладают гидроксильными числами в указанном выше диапазоне и основаны только на пропиленоксиде, отличаются чрезвычайно высокой вязкостью. Вязкость таких полиэфирполиолов при 25°С часто составляет более 55000 мПа·с. Об этом известно, например, из европейского патента ЕР 0318784 и международной заявки WO 2005/044889. Высокая вязкость полиэфирполиолов неблагоприятна для их переработки в полиуретановые системы. Во-первых, для перекачки подобных полиолов необходимо использовать высокие давления. Следствием этого является повреждение оборудования. Во-вторых, высоковязкие полиолы снижают текучесть полиуретановой системы.

В патенте США US 4391728 описано катализируемое гидроксидом калия получение низковязких полиолов на основе толуилендиамина при температурах выше 140°С. В качестве алкиленоксида используют только пропиленоксид. Для превращения в качестве катализатора необходимо использовать по меньшей мере 0,8% гидроксида щелочного металла. Использование в качестве катализатора гидроксидов щелочных металлов, особенно в столь высоких концентрациях, обусловливает необходимость выполнения дорогостоящей обработки, например, нейтрализации и последующего фильтрования.

В немецком патенте DE 2017038 описан способ получения полиэфирполиолов на основе ортотолуилендиамина и пропиленоксида, в соответствии с которым в качестве катализатора используют гидроксид калия. Получаемые указанным способом полиэфирполиолы обладают чрезвычайно высокой вязкостью. Так, например, в примере 1 описаны полиэфирполиолы на основе толуилендиамина, которые обладают гидроксильным числом 435 мг КОН/г и вязкостью при 25°С, составляющей 59500 мПа·с. При этом на стадии инициирования реакции в отсутствие катализатора присоединяется лишь незначительное количество алкиленоксида (максимум 1,3 моля на моль толуилендиамина). Вязкость в принципе можно снижать за счет использования больших количеств дополнительных стартовых реагентов, например, триэтаноламина. Однако соответствующие полиолы непригодны для любых сфер применения, в частности для применения в сфере производства жестких пенополиуретанов. Многих преимуществ, связанных с использованием полиэфирполиолов на основе ароматических аминов и обусловленных, в частности, более низкой функциональностью и меньшим содержанием ароматических компонентов в полиэфирполиоле, не достигают, или они оказываются слишком незначительными.

В основу настоящего изобретения была положена задача разработать полиэфирполиолы на основе ароматических аминов, прежде всего толуилендиамина, для получения которых в качестве алкиленоксида в основном используют только пропиленоксид и которые не страдают указанными выше недостатками уровня техники. Подобные полиэфирполиолы, в частности, должны обладать низкой вязкостью и незначительным содержанием непревращенных ароматических аминов, используемых в качестве стартовых соединений.

Неожиданно было обнаружено, что использование аминных катализаторов позволяет получать полиолы на основе ароматических аминов, прежде всего толуилендиамина, которые обладают низкой вязкостью и в качестве алкиленоксида содержат только пропиленоксид.

В соответствии с этим объектом изобретения является способ получения полиэфирполиолов путем превращения а) ароматических аминов с b) алкиленоксидами в присутствии с) катализатора, отличающийся тем, что алкиленоксид b) содержит по меньшей мере 90% масс. пропиленоксида в пересчете на массу компонента b) и в качестве катализатора с) используют амин.

Другим объектом изобретения являются также получаемые предлагаемым в изобретении способом полиэфирполиолы, а также их применение для получения полиуретанов.

В качестве ароматических аминов а) в принципе можно использовать любые известные ароматические амины по меньшей мере с одной, предпочтительно по меньшей мере с двумя, особенно предпочтительно с двумя аминогруппами. Под аминогруппами обычно подразумевают первичные аминогруппы.

В предпочтительном варианте осуществления предлагаемого в изобретении способа ароматические амины выбраны из группы, включающей анилин, толуилендиамин, метилендианилин и п-метилендианилин, особенно предпочтительно из группы, включающей толуилендиамин и P-MDA. Прежде всего, используют толуилендиамин.

При применении толуилендиамина можно использовать любые изомеры этого соединения по отдельности или в виде любых смесей друг с другом.

В частности, можно использовать 2,4-толуилендиамин, 2,6-толуилендиамин, смеси 2,4-толуилендиамина с 2,6-толуилендиамином, 2,3-толуилендиамин, 3,4-толуилендиамин, смеси 3,4-толуилендиамина с 2,3-толуилендиамином, а также смеси, состоящие их любых указанных изомеров.

2,3-Толуилендиамин и 3,4-толуилендиамин часто называют также ортотолуилендиамином или вицинальным толуилендиамином. Оба обозначения являются синонимами. Толуилендиамин может быть только вицинальным толуилендиамином. В особенно предпочтительном варианте предлагаемого в изобретении способа толуилендиамин содержит по меньшей мере 90% масс., особенно предпочтительно по меньшей мере 95% масс, в частности по меньшей мере 98% масс. вицинального толуилендиамина соответственно в пересчете на массу толуилендиамина.

В качестве алкиленоксида b) предпочтительно используют только пропиленоксид. Для некоторых сфер применения может оказаться предпочтительным совместное использование небольшого количества этиленоксида. Во избежание возникновения указанных выше недостатков доля этиленоксида не должна превышать 10% масс. Доля этиленоксида в случае данного варианта предпочтительно находится в интервале от величины более ноля до 10% масс., особенно предпочтительно от величины более ноля до 5% масс., в частности от величины более ноля до 2% масс., соответственно в пересчете на массу алкиленоксидов b).

В случае использования этиленоксида он может присоединяться в виде блока или в виде смеси с пропиленоксидом. При присоединении этиленоксида в виде блока присоединение предпочтительно осуществляют без катализатора в начале реакции. Присоединение смесей можно осуществлять также в процессе всего превращения.

В качестве катализатора с) предпочтительно используют амин. При этом амины могут являться первичными, вторичными или третичными. Кроме того, можно использовать алифатические или ароматические амины. Особенно предпочтительными алифатическими аминами являются третичные амины. Под аминами подразумевают также аминоспирты. В одном варианте осуществления предлагаемого в изобретении способа под аминами подразумевают ароматические гетероциклические соединения по меньшей мере с одним, предпочтительно по меньшей мере с двумя атомами азота в кольце.

Амины, предпочтительно используемые в качестве катализатора с), выбраны из группы, включающей триметиламин, триэтиламин, трипропиламин, трибутиламин, N,N'-диметилэтаноламин, N,N'-диметилциклогексиламин, диметилэтиламин, диметилбутиламин, N,N'-диметиланилин, 4-диметиламинопиридин, N,N'-диметилбензиламин, пиридин, имидазол, N-метилимидазол, 2-метилимидазол, 4-метилимидазол, 5-метилимидазол, 2-этил-4-метилимидазол, 2,4-диметилимидазол, 1-гидроксипропилимидазол, 2,4,5-триметилимидазол, 2-этил имидазол, 2-этил-4-метилимидазол, N-фенилимидазол, 2-фенилимидазол, 4-фенилимидазол, гуанидин, алкилированные гуанидины, 1,1,3,3-тетраметилгуанидин, 7-метил-1,5,7-триаза-бицикло[4.4.0]дец-5-ен, 1,5-диазабицикло[4.3.0]нон-5-ен и 1,5-диаза-бицикло[5.4.0]ундец-7-ен.

Аминные катализаторы с) можно использовать по отдельности или в виде любых смесей друг с другом.

В предпочтительном варианте осуществления изобретения алифатический амин с) выбран из группы, включающей N,N'-диметилэтаноламин, триметиламин, триэтиламин, диметилэтиламин и N,N'-диметилциклогексиламин.

В предпочтительном варианте осуществления изобретения катализатором с) является N,N'-диметилэтаноламин.

В предпочтительном варианте осуществления изобретения катализатором с) является имидазол, прежде всего имидазол.

При этом катализатор с) предпочтительно используют в количестве от 0,1 до 1,0% масс. в пересчете на суммарную массу компонентов а), b) и с). Указанное количество является особенно предпочтительным в случае использования алифатических аминов.

Гетероциклические аминные катализаторы с), в частности имидазолы, предпочтительно используют в количестве от 0,01 до 0,5% масс. в пересчете на суммарную массу компонентов а), b) и с).

Катализатор с) можно добавлять в начале реакции. При этом катализатор с) можно добавлять перед подачей алкиленоксидов или, менее предпочтительно, одновременно с началом дозирования алкиленоксидов.

В особенно предпочтительном варианте осуществления изобретения присоединение алкиленоксидов на начальной стадии превращения можно осуществлять без катализатора и добавлять катализатор в процессе превращения. В соответствии с данным вариантом катализатор предпочтительно добавляют после дозирования до 3,4 молей пропиленоксида на моль ароматического амина а), особенно предпочтительно до 3,0 молей пропиленоксида на моль ароматического амина а).

Превращение аминов с алкиленоксидом реализуют обычным методом, описанным, например, в европейском патенте ЕР 318784. Как указано выше, катализатор можно добавлять перед превращением, одновременно с началом дозирования алкиленоксидов или в процессе превращения. Перед дозированием алкиленоксидов смесь стартовых реагентов можно отпаривать предпочтительно под давлением от 0,01 до 1 бар при температуре от 25 до 150°С.

В предпочтительном варианте осуществления изобретения используемые в качестве стартового вещества ароматические амины а) можно использовать в качестве единственного стартового вещества.

В другом варианте осуществления изобретения ароматические амины можно использовать в комбинации с другими соединениями ai), содержащими по меньшей мере два реакционно-способных по отношению к изоцианатным группам атома водорода. Под соединениями ai) предпочтительно подразумевают спирты или аминоспирты с молекулярной массой в диапазоне от 40 до 400 г/моль, в частности от 60 до 120 г/моль, и числом гидроксильных групп от 1 до 8, предпочтительно от 2 до 3. Соединения ai) в последующем описании называют также совместными стартовыми реагентами.

Соединение ai) предпочтительно выбрано из группы, включающей этиленгликоль, диэтиленгликоль, пропиленгликоль, дипропиленгликоль, глицерин, триэтаноламин и продукты превращения этих соединений с алкиленоксидами.

В одном из других вариантов осуществления изобретения соединением ai) может являться вода.

Соединение ai) предпочтительно используют в количестве от 0,1 до 20% масс., предпочтительно от 0,1 до 10% масс., в частности от 0,1 до 5% масс., соответственно в пересчете на суммарную массу компонентов а), b) и с).

Присоединение алкиленоксидов предпочтительно осуществляют в температурном интервале от 90 до 150°С и давлении от 0,1 до 8 бар. Для максимально полного превращения алкиленоксидов по завершении их дозирования обычно реализуют дополнительную реакционную стадию. Полученный указанным образом сырой полиэфирполиол путем дистилляции, которую предпочтительно выполняют под вакуумом, освобождают от непревращенного алкиленоксида и легколетучих соединений.

Получаемые предлагаемым в изобретении способом полиэфирполиолы предпочтительно обладают гидроксильным числом от 200 до 800 мг КОН/г, особенно предпочтительно от 350 до 550 мг КОН/г, в частности от 350 до 470 мг КОН/г.

Получаемые предлагаемым в изобретении способом полиэфирполиолы можно использовать для получения полиуретанов, прежде всего жестких пенополиуретанов.

Полиуретановые системы, получаемые с использованием предлагаемых в изобретении полиэфирполиолов, в связи с их низкой вязкостью обладают благоприятными технологическими свойствами, в частности оптимальной текучестью.

Указанные полиэфирполиолы хорошо совместимы с порообразователями, в частности с порообразователями на основе углеводородов, и отличаются высокой стабильностью при хранении. Кроме того, повышается их совместимость с изоцианатным компонентом, что обусловливает возможность быстрого извлечения изделий из пресс-формы.

Превращение толуилендиамина с алкиленоксидами протекает практически количественно, причем предлагаемые в изобретении полиэфирполиолы практически не содержат свободного толуилендиамина.

Как указано выше, предлагаемые в изобретении полиэфирполиолы можно подвергать превращению с полиизоцианатами, получая жесткие пенополиуретаны.

Для этого пригодны, в частности, следующие исходные вещества.

Пригодными органическими полиизоцианатами предпочтительно являются ароматические полифункциональные изоцианаты.

Соответствующими примерами являются, в частности, 2,4-толуилендиизоцианат и 2,6-толуилендиизоцианат и смеси соответствующих изомеров, 4,4'-дифенилметандиизоцианат, 2,4'-дифенилметандиизоцианат и 2,2'-дифенилметандиизоцианат и смеси соответствующих изомеров, смеси 4,4'-дифенилметандиизоцианата с 2,4'-дифенилметандиизоцианатом, а также, в случае получения жестких пенополиуретанов, прежде всего, смеси, состоящие из 4,4'-дифенилметандиизоцианата, 2,4'-дифенилметандиизоцианата и 2,2'-дифенилметандиизоцианата и полифенилполиметиленполиизоцианатов (сырой МДИ).

Предлагаемые в изобретении полиэфирполиолы обычно используют в смеси с другими соединениями, содержащими по меньшей мере два атома водорода, реакционно-способные по отношению к изоцианатным группам.

В качестве соединений, которые содержат по меньшей мере два реакционно-способных по отношению к изоцианатным группам атома водорода и которые можно использовать совместно с используемыми согласно изобретению полиэфирполиолами, прежде всего используют простые полиэфирполиолы и/или сложные полиэфирполиолы с гидроксильным числом в диапазоне от 100 до 1200 мг КОН/г.

Сложные полиэфирполиолы, используемые совместно с предлагаемыми в изобретении полиэфирполиолами, чаще всего получают путем конденсации многоатомных спиртов, предпочтительно диолов с 2-12 атомами углерода, предпочтительно с 2-6 атомами углерода, с полифункциональными карбоновыми кислотами с 2-12 атомами углерода, например, такими как янтарная кислота, глутаровая кислота, адипиновая кислота, пробковая кислота, азелаиновая кислота, себациновая кислота, декандикарбоновая кислота, малеиновая кислота или фумаровая кислота, предпочтительно фталевая кислота, изофталевая кислота, терефталевая кислота и изомерные нафталиндикарбоновые кислоты.

Функциональность простых полиэфирполиолов, совместно используемых с предлагаемыми в изобретении полиэфирполиолами, чаще всего составляет от 2 до 8, особенно от 3 до 8.

Прежде всего, можно использовать простые полиэфирполиолы, получаемые известными методами, например, путем анионной полимеризации алкиленоксидов в присутствии катализаторов, предпочтительно аминов и/или гидроксидов щелочных металлов.

При этом в качестве алкиленоксидов чаще всего используют этиленоксид и/или пропиленоксид, предпочтительно только 1,2-пропиленоксид.

В качестве стартовых реагентов предпочтительно используют соединения, молекула которых содержит по меньшей мере две гидроксильные группы, предпочтительно от 4 до 8 гидроксильных групп или по меньшей мере две первичные аминогруппы.

В качестве стартовых реагентов по меньшей мере с двумя, предпочтительно с 3-8 гидроксильными группами в молекуле предпочтительно используют триметилолпропан, глицерин, пентаэритрит, касторовое масло, сахарные соединения, например, такие как глюкоза, сорбит, маннит и сахароза, многоатомные фенолы, резолы, например, такие как олигомерные продукты конденсации фенола с формальдегидом и продукты конденсации по Манниху фенолов, формальдегида и диалканоламинов, а также меламин.

Простые полиэфирполиолы обладают функциональностью, предпочтительно составляющей от 2 до 8, и гидроксильным числом, предпочтительно находящимся в интервале от 100 до 1200 мг КОН/г, в частности от 120 до 570 мг КОН/г.

Использование в полиольном компоненте бифункциональных полиолов, например полиэтиленгликолей и/или полипропиленгликолей с молекулярной массой Mw в интервале от 500 до 1500 г/моль, позволяет устанавливать необходимую вязкость полиольного компонента.

К соединениям, содержащим по меньшей мере два реакционно-способных по отношению к изоцианатам атома водорода, относятся также при необходимости совместно используемые агенты удлинения цепей и сшивающие агенты. Жесткие пенополиуретаны можно получать без использования агентов удлинения цепей и/или сшивающих агентов или при их совместном использовании. Для модифицирования механических свойств пенополиуретанов может быть предпочтительным добавление бифункциональных агентов удлинения цепей, трехфункциональных сшивающих агентов, сшивающих агентов с более высокой функциональностью или при необходимости также их смесей. В качестве агентов удлинения цепей и/или сшивающих агентов предпочтительно используют алканоламины и прежде всего диолы и/или триолы с молекулярной массой менее 400 г/моль, предпочтительно от 60 до 300 г/моль.

Агенты удлинения цепей, сшивающие агенты или их смеси целесообразно использовать в количестве от 1 до 20% масс., предпочтительно от 2 до 5% масс. в пересчете на полиольный компонент.

Пенополиуретаны обычно получают в присутствии порообразователей. В качестве порообразователя предпочтительно можно использовать воду, которая взаимодействует с изоцианатными группами с выделением диоксида углерода. В комбинации с водой или вместо воды можно использовать также так называемые физические порообразователи. Под физическими порообразователями подразумевают инертные по отношению к исходным компонентам соединения, которые при комнатной температуре в большинстве случаев являются жидкостями, испаряющимися в условиях реакции уретанообразования. Точка кипения указанных соединений предпочтительно составляет менее 50°С. К физическим порообразователям относятся также газообразные при комнатной температуре соединения, которые вводят в исходные компоненты, соответственно растворяют в исходных компонентах под давлением, например, диоксид углерода, низкокипящие алканы и фторалканы.

Физические порообразователи чаще всего выбирают из группы, включающей алканы и/или циклоалканы по меньшей мере с четырьмя атомами углерода, диалкиловые эфиры, сложные эфиры, кетоны, ацетали, фторалканы с 1-8 атомами углерода и тетраалкилсиланы с 1-3 атомами углерода в алкильной цепи, прежде всего тетраметилсилан.

Примерами физических порообразователей являются пропан, н-бутан, изобутан, циклобутан, н-пентан, изопентан, циклопентан, циклогексан, диметиловый эфир, метилэтиловый эфир, метилбутиловый эфир, сложный метиловый эфир муравьиной кислоты, ацетон, а также фторалканы, которые могут деструктировать в тропосфере, а следовательно, не причиняют ущерб озоновому слою, такие как трифторметан, дифторметан, 1,1,1,3,3-пентафторбутан, 1,1,1,3,3-пентафторпропан, 1,1,1,2-тетрафторэтан, дифторэтан и 1,1,1,2,3,3,3-гептафторпропан, а также перфторалканы, в частности C3F8, C4F10, C5F12, C6F14 и C7F16. Особенно предпочтительными физическими порообразователями являются пентаны, прежде всего циклопентан. Указанные физические порообразователи можно использовать по отдельности или в любых комбинациях друг с другом.

Полиуретаны при необходимости можно получать в присутствии катализаторов, антипиренов, а также обычных вспомогательных веществ и/или добавок.

Дополнительная информация, касающаяся используемых исходных соединений, приведена, например, в Kunststoffhandbuch, том 7, ″Poly-urethane″ (издатель Gunter Oertel), издательство Carl-Hanser, Мюнхен, 3-е издание, 1993.

Приведенные ниже примеры служат для более подробного пояснения настоящего изобретения.

Пример 1

Реактор высокого давления объемом 30 л, снабженный мешалкой, обогревающей и охлаждающей рубашкой, устройствами для дозирования твердых и жидких веществ, а также алкиленоксидов, устройствами для инертизации азотом и системой вакуумирования, нагревают до 80°С и несколько раз инертизируют. В реактор загружают 6,2 кг вицинального толуилендиамина и пускают в ход мешалку (частота вращения 150 об/мин). Затем температуру повышают до 138°С и дозируют 8,26 кг пропиленоксида (2,8 моля пропиленоксида на моль вицинального толуилендиамина). По завершении реакции температуру в течение двух часов снижают до 95°С и добавляют 220 г N,N'-диметилэтаноламина. Промежуточный продукт подвергают дальнейшему превращению с 12,7 кг пропиленоксида при 95°С. Реакцию продолжают в течение двух часов при 95°С. В течение последующих 20 минут продукт превращения отпаривают в атмосфере азота. Получают 26,1 кг продукта, который обладает следующими характеристиками:

гидроксильное число 390 мг КОН/г,

вязкость (25°С) 33500 мПа·с.

Пример 2

В реактор высокого давления объемом 300 мл загружают 51,02 г вицинального толуилендиамина. Пускают в ход мешалку и повышают температуру до 138°С. После этого дозируют 54,34 г пропиленоксида (2,24 моля пропиленоксида на моль вицинального толуилендиамина). По завершении реакции температуру в течение двух часов снижают до 95°С и добавляют 0,66 г имидазола. Затем дополнительно дозируют 112,86 г пропиленоксида. Реакцию продолжают в течение трех часов при 95°С. В течение последующих 90 минут осуществляют вакуумирование реактора. Получают 210 г продукта, который обладает следующими характеристиками:

гидроксильное число 405 мг КОН/г,

вязкость (25°С) 17469 мПа·с.

Пример 3

В реактор, аналогичный используемому в примере 2, загружают 51,00 г вицинального толуилендиамина. Пускают в ход мешалку и повышают температуру до 138°С. После этого дозируют 54,34 г пропиленоксида (2,24 моля пропиленоксида на моль вицинального толуилендиамина). По завершении реакции температуру в течение двух часов снижают до 95°С и добавляют 0,22 г имидазола. Затем дополнительно дозируют 112,86 г пропиленоксида. Реакцию продолжают в течение трех часов при 95°С. В течение последующих 90 минут осуществляют вакуумирование реактора.

Получают 206 г продукта, который обладает следующими характеристиками:

гидроксильное число 406 мг КОН/г,

вязкость (25°С) 30924 мПа·с.

Пример 4

В реактор, аналогичный используемому в примере 2, загружают 51,00 г вицинального толуилендиамина. Пускают в ход мешалку и повышают температуру до 138°С. После этого дозируют 61,14 г пропиленоксида (2,52 моля пропиленоксида на моль вицинального толуилендиамина). По завершении реакции температуру в течение двух часов снижают до 95°С и добавляют 0,66 г имидазола. Затем дополнительно дозируют 106,06 г пропиленоксида. Реакцию продолжают в течение трех часов при 95°С. В течение последующих 90 минут осуществляют вакуумирование реактора. Получают 208 г продукта, который обладает следующими характеристиками:

гидроксильное число 412 мг КОН/г,

вязкость (25°С) 24650 мПа·с.

Пример 5

В реактор, аналогичный используемому в примере 2, загружают 51,00 г вицинального толуилендиамина. Пускают в ход мешалку и повышают температуру до 138°С. После этого дозируют 53,98 г пропиленоксида (2,24 моля пропиленоксида на моль вицинального толуилендиамина). По завершении реакции температуру в течение двух часов снижают до 95°С и добавляют 1,81 г N,N'-диметилэтаноламина. Затем дополнительно дозируют 112,76 г пропиленоксида. Реакцию продолжают в течение трех часов при 95°С. В течение последующих 90 минут осуществляют вакуумирование реактора. Получают 202 г продукта, который обладает следующими характеристиками:

гидроксильное число 414 мг КОН/г,

вязкость (25°С) 15147 мПа·с.

Пример 6 (сравнительный)

Описанный в примере 1 реактор нагревают до 80°С и несколько раз инертизируют. В реактор загружают 5,65 кг вицинального толуилендиамина и пускают в ход мешалку. Затем температуру повышают до 138°С и дозируют 7,50 кг пропиленоксида (2,8 молей пропиленоксида на моль вицинального толуилендиамина). По завершении реакции температуру в течение двух часов снижают до 100°С и добавляют 91 г 48-процентного водного раствора гидроксида калия. Температуру повышают до 138°С и промежуточный продукт подвергают превращению с дополнительными 11,74 кг пропиленоксида. Реакцию продолжают в течение двух часов при 138°С. В течение последующих 20 минут продукт превращения отпаривают азотом. Затем добавляют 2,5% воды и выполняют нейтрализацию фосфорной кислотой. Воду отпаривают в вакууме, и продукт фильтруют при 80°С. Получают 24,6 кг продукта, который обладает следующими характеристиками:

гидроксильное число 371 мг КОН/г,

вязкость (25°С, 5 1/с) 42359 мПа·с.

Пример 7 (сравнительный)

В реактор, аналогичный используемому в примере 2, загружают 55,91 г вицинального толуилендиамина. Пускают в ход мешалку и повышают температуру до 138°С. После этого дозируют 64,84 г пропиленоксида (2,44 моля пропиленоксида на моль вицинального толуилендиамина). По завершении реакции температуру в течение двух часов снижают до 95°С и добавляют 1,39 г водного раствора гидроксида калия концентрацией 50%. Температуру повышают до 138°С и дополнительно дозируют 97,86 г пропиленоксида. Реакцию продолжают в течение трех часов при 138°С. В течение последующих 90 минут осуществляют вакуумирование реактора. Получают 211 г продукта, который обладает следующими характеристиками:

гидроксильное число 424 мг КОН/г,

вязкость (25°С, 5 1/с) 82345 мПа·с.

Определение вязкости

В отсутствие иных указаний вязкость полиолов определяют при 25°С согласно DIN EN ISO 3219 посредством ротационного вискозиметра Rheotec RC 20 (шпиндель СС 25 DIN диаметром 12,5 мм, внутренний диаметр измерительного цилиндра 13,56 мм, скорость сдвига 50 1/с).

Измерение гидроксильного числа

Гидроксильное число определяют согласно DIN 53240.

1. Способ получения полиэфирполиолов путем превращения а) ароматических аминов с b) алкиленоксидами в присутствии с) катализатора, причем алкиленоксид b) содержит по меньшей мере 90% масс. пропиленоксида в пересчете на массу компонента b), а в качестве катализатора с) используют амин, отличающийся тем, что в качестве катализатора с) используют имидазол, а в качестве ароматического амина а) - толуилендиамин.

2. Способ по п. 1, отличающийся тем, что в качестве ароматического амина а) используют толуилендиамин с содержанием вицинального толуилендиамина по меньшей мере 90% масс. в пересчете на общее количество толуилендиамина.

3. Способ по п. 1, отличающийся тем, что дополнительно помимо ароматических аминов а) превращению с алкиленоксидами подвергают другое соединение ai), содержащее по меньшей мере два реакционно-способных по отношению к изоцианатным группам атома водорода.

4. Способ по п. 1, отличающийся тем, что алкиленоксид b) содержит только пропиленоксид.

5. Полиэфирполиолы, получаемые способом по одному из пп. 1-4.

6. Применение полиэфирполиолов по п. 5 для получения полиуретанов.



 

Похожие патенты:

Изобретение относится к серосодержащему полимеру, который используют в качестве пластификатора, а также к вулканизуемой композиции. Серосодержащий полимер имеет концевые галогеновые группы и представлен следующей формулой: Х-(R-Sr)n-R-X, где R представляет алкильную группу, содержащую связь -О-СН2-O-, и имеет от 3 до 26 атомов углерода, X представляет атом галогена, n означает целое число от 1 до 200 и r имеет среднее значение 1 или больше и меньше 2.

Изобретение относится к композициям герметика, которые пригодны в областях применения, связанных с ударами молний. высоким удлинением при растяжении и низким удельным весом.

Настоящее изобретение относится к простым политиоэфирам. Описан простой политиоэфир, содержащий продукт реакции реагентов, содержащих: а) изоциануратсодержащий тритиол, имеющий структуру в которой каждый R представляет собой C2-6 алкилен; b) дитиол, описывающийся формулой: HS-R1-SH, где R1 представляет собой -[(-CH2-)p-O-]q-(-CH2-)r-, где p представляет собой целое число, имеющее значение в диапазоне от 2 до 6, q представляет собой целое число, имеющее значение в диапазоне от 1 до 5, и r представляет собой целое число, имеющее значение в диапазоне от 2 до 10; и c) дивиниловый простой эфир, описывающийся формулой: CH2=CH-O-(-R5-O)m-CH=CH2, в которой m представляет собой рациональное число от 0 до 10; и R5 представляет собой C2-6 н-алкиленовую группу, C2-6 разветвленную алкиленовую группу, C6-8 циклоалкиленовую группу, C6-10 алкилциклоалкиленовую группу или -[(-CH2-)p-O-]q-(-CH2-)r-, где p представляет собой целое число, имеющее значение в диапазоне от 2 до 6, q представляет собой целое число, имеющее значение в диапазоне от 1 до 5, и r представляет собой целое число, имеющее значение в диапазоне от 2 до 10; причем указанный простой политиоэфир при комнатной температуре представляет собой жидкость, и причем простой политиоэфир характеризуется средней функциональностью от 2,1 до 2,8.

Изобретение относится к способу получения отвержденного герметика, к вариантам композиции неотвержденного герметика, а также к отвержденному герметику аэрокосмического назначения.

Изобретение относится к композициям, которые содержат полимер, имеющий тиольные концевые группы, а также описываются соответствующие продукты, такие как герметики, содержащие полимеры, полученные из таких композиций, которые могут использоваться для аэрокосмического назначения.

Настоящее изобретение относится к простым тиоэфирам, пригодным для использования в композиции герметика, содержащим структуру, описывающуюся формулой (I): -[-S-(RX)p-(R1X)q-R2-]n- (I), в которой (a) каждый из R, которые могут быть идентичными или различными, обозначает C2-10 н-алкиленовую группу; C2-10 разветвленную алкиленовую группу; C6-8 циклоалкиленовую группу; C6-14 алкилциклоалкилен; или C8-10 алкилариленовую группу; (b) каждый из R1, которые могут быть идентичными или различными, обозначает C1-10 н-алкиленовую группу; C2-10 разветвленную алкиленовую группу; C6-8 циклоалкиленовую группу; C6-14 алкилциклоалкилен; или C8-10 алкилариленовую группу; (c) каждый из R2, которые могут быть идентичными или различными, обозначает C2-10 н-алкиленовую группу; C2-10 разветвленную алкиленовую группу; C6-8 циклоалкиленовую группу; C6-14 алкилциклоалкилен; или C8-10 алкилариленовую группу; (d) X обозначает O; (e) p имеет значение в диапазоне от 1 до 5; (f) q имеет значение в диапазоне от 0 до 5; (g) n имеет значение в диапазоне от 1 до 60; и (h) R и R1 являются отличными друг от друга.

Изобретение относится к получению термопластичных формовочных масс. .

Изобретение относится к получению политиоэфирных полимеров и отверждаемых композиций. .
Изобретение относится к получению смол на основе простого политиоэфира и амина и к получению композиций на их основе. .
Изобретение относится к предварительно сформованным композициям в профилированной форме и применению предварительно сформованных композиций для герметизации отверстий в корпусе оборудования.

Настоящее изобретение относится к политиоэфирам и композициям для герметизации, содержащим политиоэфиры. Описан политиоэфир, содержащий: (a) скелет, содержащий структуру, имеющую формулу (1): , где: (i) каждый R1 независимо выбран из С2-10 н-алкиленовой группы, С2-6 разветвленной алкиленовой группы, С6-8 циклоалкиленовой группы, С6-10 алкилциклоалкиленовой группы, гетероциклической группы, -[(-СН2-)р-Х-]q-(СН2)r-группы и -[(-CH2-)p-X-]q-(CH2)r-группы, в которой по меньшей мере один -СН2- фрагмент замещен метильной группой; (ii) каждый R2 независимо выбран из С2-10 н-алкиленовой группы, С2-6 разветвленной алкиленовой группы, С6-8 циклоалкиленовой группы, С6-14 алкилциклоалкиленовой группы, гетероциклической группы и -[(-CH2-)p-X-]q-(CH2)r-группы; (iii) каждый X независимо выбран из О, S и -NR6- группы, где R6 выбран из Н и метильной группы; (iv) m находится в диапазоне от 1 до 50; (v) n представляет собой целое число в диапазоне от 1 до 60; (vi) р представляет собой целое число в диапазоне от 2 до 6; (vii) q представляет собой целое число в диапазоне от 1 до 5; и (viii) r представляет собой целое число в диапазоне от 2 до 10; и (b) по меньшей мере две группы на молекулу, имеющие формулу: где R3, R4 и R3 каждый независимо выбраны из С1-6 н-алкильной группы, С1-6 разветвленной алкильной группы, замещенной С1-6 н-алкильной группы и фенильной группы. Также описана композиция для герметизации, содержащая указанный выше политиоэфир, и описан способ получения указанного выше политиоэфира, включающий реакцию тиол-функционального политиоэфира с галогенсиланом. Также описан способ получения отверждаемой композиции, включающий объединение полиэпоксида и указанного выше политиоэфира. Описана композиция для герметизации, содержащая: (А) силил-функциональный форполимер, где силил-функциональный форполимер содержит: (а) скелет, содержащий структуру, имеющую формулу(1): , где: (i) каждый R1 независимо выбран из С2-10 н-алкиленовой группы, С2-6 разветвленной алкиленовой группы, С6-8 циклоалкиленовой группы, С6-10 алкилциклоалкиленовой группы, гетероциклической группы, -[(-CH2-)p-X-]q-(CH2)r-группы и -[(-CH2-)p-X-]q-(CH2)r-группы, в которой по меньшей мере один -СН2- фрагмент замещен метильной группой; (ii) каждый R2 независимо выбран из С2-10 н-алкиленовой группы, С2-6 разветвленной алкиленовой группы, С6-8 циклоалкиленовой группы, С6-14 и алкилциклоалкиленовой группы, гетероциклической группы и -[(-CH2-)p-X-]q-(CH2)r-группы; (iii) каждый X независимо выбран из О, S и -NR6- группы, где R6 выбран из Н и метильной группы; (iv) m находится в диапазоне от 1 до 50; (v) n представляет собой целое число в диапазоне от 1 до 60; (vi) р представляет собой целое число в диапазоне от 2 до 6; (vii) q представляет собой целое число в диапазоне от 1 до 5; и (viii) r представляет собой целое число в диапазоне от 2 до 10; и (В) по меньшей мере две группы на молекулу, имеющие формулу: где R3, R4 и R5 каждый независимо выбраны из C1-6 н-алкильной группы, C1-6 разветвленной алкильной группы, замещенной C1-6 н-алкильной группы и фенильной группы; (b) полиэпоксид; и (c) основный оксид. Технический результат - получение герметизирующей композиции, обладающей длительным сроком хранения при нормальной температуре, при взаимодействии с влагой затвердевающей, образуя тем самым затвердевший герметик, обладающий хорошей прочностью на сдвиг. 5 н. и 19 з.п. ф-лы, 4 табл., 2 пр.

Изобретение относится к композициям герметика, которые включают в себя серосодержащий полимер, например полисульфид и/или простой политиоэфир, и частицы графенового углерода, а также к способам применения таких композиций, которые относятся к способу герметизации щели. Композиция обладает способностью быть устойчивой к атмосферным условиям, таким как влажность и температура. 5 н. и 20 з.п. ф-лы, 2 ил., 6 табл.

Настоящее изобретение относится к применению реакции Михаэля для отверждения композиций, включающих серосодержащие полимеры. Описан аддукт на основе простого политиоэфира, включающий по меньшей мере две концевые группы, являющиеся акцепторами Михаэля, выбранный из аддукта на основе политиоэфира формулы (3), аддукта на основе политиоэфира формулы (3а) и их комбинации: где каждый R1 независимо выбран из С2-10 алкандиила, С6-8 циклоалкандиила, С6-10 алканциклоалкандиила, С5-8 гетероциклоалкандиила и -[(-CHR3-)s-X-]q-(-CHR3-)r-, где: s является целым числом в диапазоне 2-6; q является целым числом в диапазоне 1-5; r является целым числом в диапазоне 2-10; каждый R3 независимо выбран из водорода и метила и каждый X независимо выбран из -О-, -S- и -NHR-, где R выбран из водорода и метила; каждый R2 независимо выбран из С1-10 алкандиила, С6-8 циклоалкандиила, С6-14 алканциклоалкандиила и -[(-CHR3-)s-X-]q-(-CHR3-)r-, где s, q, r, R3 и X таковы, как определено для R1; m является целым числом в диапазоне 0-50; n является целым числом в диапазоне 1-60; р является целым числом в диапазоне 2-6; В представляет собой ядро z-валентного полифункционализующего соединения В(-V)z с винильными концевыми группами, где z является целым числом в диапазоне 3-6; и каждый V представляет собой группу, включающую концевую винильную группу; и каждый -V' получают по реакции -V с тиолом; и каждый R6 независимо выбран из винилкетона, винилсульфона, хинона, енамина, кетимина, альдимина и оксазолидина. Также описана композиция герметика, включающая: (a) указанный выше простой политиоэфирный аддукт и (b) соединение, имеющее по меньшей мере две группы, реагирующие с группами, являющимися акцепторами Михаэля. Описана композиция герметика, включающая: (a) указанный выше аддукт на основе политиоэфира; (b) серосодержащий полимер, включающий по меньшей мере две концевые группы, способные реагировать с группами, являющимися акцепторами Михаэля; и (c) мономерное соединение, имеющее по меньшей мере две группы, являющиеся акцепторами Михаэля. Технический результат – герметик с улучшенными термостойкостью и стойкостью к воздействию топлива, улучшенными физическими свойствами. 3 н. и 11 з.п. ф-лы, 1 ил., 5 табл., 34 пр.

Изобретение относится к композициям, включающим серосодержащие полимеры, такие как простые политиоэфиры и полисульфиды, полиэпоксиды и аминные катализаторы контролируемого высвобождения, которые применяются в области аэрокосмических герметизирующих материалов. Композиция содержит серосодержащий полимер, выбранный из серосодержащего полимера с концевой группой тиола, блокированного серосодержащего полимера с концевой группой тиола и их комбинации, полиэпоксидный отвердитель и аминный катализатор с контролируемым высвобождением, включающий матричное герметизирующее вещество, содержащее аминный катализатор. Изобретение обеспечивает регулируемую скорость отверждения композиции и длительный срок годности при хранении. 2 н. и 17 з.п. ф-лы, 7 табл., 2 ил., 7 пр.

Описан простой сульфонсодержащий политиоэфир, содержащий фрагмент формулы (1): , где: каждое А независимо представляет собой фрагмент формулы (2): , где: каждый R1 независимо содержит С2-10 алкандиил, С6-8 циклоалкандиил, С6-10 алканциклоалкандиил, С5-8 гетероциклоалкандиил, или -[(-CHR3-)s-X-]q-(-CHR3-)r-, где: s является целым числом от 2 до 6; q является целым числом от 1 до 5; r является целым числом от 2 до 10; каждый R3 независимо содержит водород или метил; и каждый X независимо содержит -О-, -S- и -NR5-, где R5 содержит водород или метил; и каждый R2 независимо содержит С1-10 алкандиил, С6-8 циклоалкандиил, С6-14 алканциклоалкандиил или -[(-CHR3-)s-X-]q-(-CHR3-)r-, где s, q, r, R3 и X являются такими, как указано для R1; m является целым числом от 0 до 50; n является целым числом от 1 до 60; и р является целым числом от 2 до 6. Также описаны композиции, применяемые в качестве герметика аэрокосмического назначения, содержащие указанный выше простой сульфонсодержащий политиоэфир, и отвердитель, который способен реагировать с концевыми группами простого сульфонсодержащего политиоэфира. Также описан способ получения простых сульфонсодержащих политиоэфиров. Технический результат – получение отвержденных композиций герметика, содержащих простые сульфонсодержащие политиоэфиры, обладающих лучшей термостойкостью. 7 н. и 9 з.п. ф-лы, 1 табл., 4 пр.

Настоящее изобретение относится к полимерам, в которых усилители адгезии сополимеризованы с цепью серосодержащего полимера. Описано серосодержащее соединение, имеющее структуру формулы (1): , где каждый R1 независимо выбран из С2-6 алкандиила, С6-8 циклоалкандиила, С6-10 алканциклоалкандиила, С5-8 гетероциклоалкандиила и -[-(CHR3)s-X-]q-(CHR3)r-; где каждый R3 независимо выбран из водорода и метила; каждый X независимо выбран из -О-, -S- и -NR-, где R выбран из водорода и метила; s является целым числом от 2 до 6; q является целым числом от 1 до 5; и r является целым числом от 2 до 10; каждый А' независимо является группой, образованной в результате взаимодействия соединения А с тиольной группой, причем соединение А является соединением, имеющим концевую группу, которая может реагировать с тиольной группой, и концевую группу, которая усиливает адгезию; где группа, усиливающая адгезию, выбрана из силана, имеющего структуру -Si(R5)y1(OR6)y2, фосфоната, амина, карбоновой кислоты и фосфоновой кислоты; где y1 выбран из 0, 1 и 2; y2 выбран из 1, 2 и 3; сумма y1 и y2 равна 3; и каждый R5 независимо выбран из С1-4 алкила; и каждый R6 независимо выбран из С1-4 алкила; В представляет собой центр z-валентного полифункционального соединения B(-V)z с алкенильными концевыми группами, где z является суммой z1 и z2 и z является целым числом от 3 до 6; z1 является целым числом от 1 до 4; z2 является целым числом от 2 до 5; и каждый -V представляет собой фрагмент, включающий концевую группу, которая может реагировать с тиольной группой; каждый -V'- представляет собой группу, образованную в результате реакции каждого -V с тиольной группой. Также описана композиция герметика, включающая по меньшей мере одно указанное выше соединение, по меньшей мере один серосодержащий полимер с тиольными концевыми группами и по меньшей мере один отверждающий агент. Описан отвержденный герметик, содержащий указанную выше композицию, описано отверстие, герметизированное с использованием герметика, содержащего указанную выше композицию, а также описан способ герметизации отверстия. Технический результат - повышение адгезии герметика к подложке, при сохранении других его полезных свойств. 6 н. и 15 з.п. ф-лы, 7 табл., 12 пр.

Настоящее изобретение относится к композициям УФ-отверждаемых герметиков. Описан герметизирующий колпачок, включающий: предварительно сформованную, по меньшей мере частично отвержденную композицию первого герметика, образующую оболочку толщиной от 1/32 до 1/4 дюйма или толщиной 1/2 дюйма; и по меньшей мере частично неотвержденную композицию второго герметика, заполняющую указанную оболочку, где композиция первого герметика и композиция второго герметика содержат: (i) простой политиоэфир, содержащий концевые тиольные группы, включающий содержащий концевые тиольные группы простой политиоэфир формулы (II), простой политиоэфир формулы (III) или их комбинацию: где (1) каждый R1 независимо означает С2-10 н-алкандиильную группу, С2-6 разветвленную алкандиильную группу, С6-8 циклоалкандиильную группу, С6-10 алканциклоалкандиильную группу, -[(-CH2-)p-X-]q-(-CH2-)r- или -[(-CH2-)p-X-]q-(-CH2-)r-, где по меньшей мере одно звено -СН2- замещено метильной группой, где: (i) каждый X независимо выбран из О, S и -NR6-, где R6 представляет собой атом водорода или метил; (ii) p представляет собой целое число, имеющее значение в диапазоне от 2 до 6; (iii) q представляет собой целое число, имеющее значение в диапазоне от 0 до 5; и (iv) r представляет собой целое число, имеющее значение в диапазоне от 2 до 10; (2) каждый R2 независимо означает С2-10 н-алкандиильную группу, С2-6 разветвленную алкандиильную группу, С6-8 циклоалкандиильную группу, С6-10 алканциклоалкандиильную группу или -[(-CH2-)p-X-]q-(-CH2-)r-, где: (i) каждый X независимо выбран из О, S и -NR6-, где R6 представляет собой атом водорода или метил; (ii) p представляет собой целое число, имеющее значение в диапазоне от 2 до 6; (iii) q представляет собой целое число, имеющее значение в диапазоне от 0 до 5; и (iv) r представляет собой целое число, имеющее значение в диапазоне от 2 до 10; (3) m представляет собой рациональное число в диапазоне от 0 до 10; и (4) n представляет собой целое число, имеющее значение в диапазоне от 1 до 60; (5) А означает структуру, описывающуюся формулой: -R1-[-S-(CH2)2-O-[-R2-O-]m-(CH2)2-S-R1-]n-, в которой (I) каждый R1 независимо означает С2-10 н-алкандиильную группу, С2-6 разветвленную алкандиильную группу, С6-8 циклоалкандиильную группу, С6-10 алканциклоалкандиильную группу, -[(-CH2-)p-X-]q-(-CH2-)r- или -[(-CH2-)p-X-]q-(-CH2-)r-, где по меньшей мере одно звено -СН2- замещено метильной группой, где: (i) каждый X независимо выбран из О, S и -NR6-, где R6 представляет собой атом водорода или метил; (ii) p представляет собой целое число, имеющее значение в диапазоне от 2 до 6; (iii) q представляет собой целое число, имеющее значение в диапазоне от 0 до 5; и (iv) r представляет собой целое число, имеющее значение в диапазоне от 2 до 10; (II) каждый R2 независимо означает С2-10 н-алкандиильную группу, С2-6 разветвленную алкандиильную группу, С6-8 циклоалкандиильную группу, С6-10 алканциклоалкандиильную группу или -[(-CH2-)p-X-]q-(-CH2-)r-, где: (i) каждый X независимо выбран из О, S и -NR6-, где R6 представляет собой атом водорода или метил; (ii) p представляет собой целое число, имеющее значение в диапазоне от 2 до 6; (iii) q представляет собой целое число, имеющее значение в диапазоне от 0 до 5; и (iv) r представляет собой целое число, имеющее значение в диапазоне от 2 до 10; (III) m представляет собой рациональное число в диапазоне от 0 до 10; и (IV) n представляет собой целое число, имеющее значение в диапазоне от 1 до 60; (6) y представляет собой 0 или 1; (7) R3 означает одинарную связь, когда y=0, и -S-(CH2)2-[-O-R2-]m-O-, когда y=1; (8) z представляет собой целое число в диапазоне от 3 до 6; и (9) В означает z-валентный остаток полифункционализующего агента; и (ii) соединение, содержащее концевые алкенильные группы, включающее простой поливиниловый эфир и/или полиаллильное соединение; причем композиция первого герметика по меньшей мере частично пропускает ультрафиолетовое излучение, а композиция второго герметика является отверждаемой под действием ультрафиолетового излучения. Также описан способ герметизации крепежного устройства, включающий: нанесение указанного выше герметизирующего колпачка на крепежное устройство; и воздействие на герметизирующий колпачок ультрафиолетовым излучением для полного отверждения второго герметика в целях герметизации крепежного устройства. Описано крепежное устройство, включающее указанный выше герметизирующий колпачок. Технический результат – получение предварительно сформованного герметизирующего колпачка, характеризующегося меньшим временем отверждения и являющегося визуально прозрачным. 3 н. и 12 з.п. ф-лы, 8 ил., 8 табл., 20 пр.

Изобретение относится к отверждающимся композициям, содержащим политиоэфир с концевой группой тиола и капсулированный полиэпоксидный отверждающий агент. Описана отверждающаяся уплотняющая композиция авиакосмического назначения, содержащая: (a) от 40 масс. % до 60 масс. % политиоэфира с концевой группой тиола; где политиоэфир с концевой группой тиола включает в себя структуру формулы (1) , в которой каждый R1 независимо включает С2-10 алкандиил, С6-8 циклоалкандиил, С6-14 алканциклоалкандиил, С5-8 гетероциклоалкандиил, или -[(-CHR3-)s-X-]q-(-CHR3-)r-, где s означает целое число от 2 до 6; q означает целое число от 0 до 5; r означает целое число от 2 до 10; каждый R3 независимо включает водород или метил; и каждый X независимо выбирают из -О-, -S- и -NR6-, где R6 выбирают из водорода и метила; каждый R2 независимо включает С1-10 алкандиил, С6-8 циклоалкандиил, С6-14 алканциклоалкандиил, или -[(-CHR3-)s-X-]q-(-CHR3-)r-, где s, q, r, R3, и X имеют такие же значения, как для R1; m означает целое число от 0 до 50; n означает целое число от 1 до 60; и р означает целое число от 2 до 6; (b) от 0,5 масс. % до 20 масс. % микрокапсул, включающих полимерную оболочку и полиэпоксид, суспендированный в растворителе, где полимерная оболочка включает полиоксиметилен мочевину, а полиэпоксид включает эпоксидную смолу на основе бисфенол А/эпихлоргидрина; и (c) аминный катализатор, где аминный катализатор включает 1,8-диазабициклоундец-7-ен (DBU), 1,4-диазабицикло[2,2,2]октан (DABCO), изофорондиамин (IPDA), и первичный амин С6-10, или любую их комбинацию; где масс. % относится к общей массе твердого вещества отверждающейся композиции. Также описан способ герметизации отверстия, включающий в себя: (a) нанесение уплотняющей указанной выше композиции на одну или несколько поверхностей, ограничивающих отверстие, (b) воздействие энергии с целью выделения полиэпоксида из капсулы. Описано отверстие, герметизированное с помощью указанной выше композиции. Технический результат – получение отверждаемых композиций политиоэфира с концевой группой тиола, обладающие продолжительным сроком годности при хранении. 3 н. и 9 з.п. ф-лы, 1 пр.
Наверх