Способ изготовления полупроводниковой структуры

Изобретение относится к области технологии производства полупроводниковых приборов, в частности к технологии изготовления полупроводниковых структур с низкой плотностью дефектов. В способе изготовления полупроводниковой структуры выращивание эпитаксиального слоя Si1-xGex производят со скоростью 10 нм/мин, при давлении 0,133 Па, температуре 750°C, расходе SiH4 - 10 см3/мин и соотношении концентраций смеси GeH4:SiH4=3-6%. Техническим результатом изобретения является снижение плотности дефектов, обеспечивающее технологичность, улучшение параметров, повышение надежности и увеличение процента выхода годных. 1 табл.

 

Изобретение относится к области технологии производства полупроводниковых приборов, в частности к технологии изготовления полупроводниковых структур с низкой плотностью дефектов.

Известен способ выращивания эпитаксиальных слоев GaAs [Пат. 5068695 США, МКИ H01L 29/161] с низкой плотностью дислокаций. Подложка GaAs с высокой плотностью дислокаций подвергается имплантации ионов бора В с энергией 350 кэВ. При последующем быстром отжиге с защитным слоем при 900°C в течение 25 с образуется рекристаллизованный слой Ga1-xBxAs с пониженной плотностью дислокаций. На этом слое затем выращивается эпитаксиальный слой GaAs. В таких структурах, сформированных при воздействии высоких энергий, образуются утечки, ухудшающие параметры приборов.

Известен способ [Пат. 5091767 США, МКИ H01L 29/04] изготовления структуры GeSi/Si с согласованной кристаллической решеткой и малой плотностью дислокации. На границе слоя GeSi и Si-подложки формируется скрытый участок SiO2 толщиной 200 нм, который служит стоком для дислокаций, перемещающихся из верхнего GeSi слоя.

Недостатками этого способа являются:

- повышенная плотность дефектов в поверхностном слое Si;

- значительные токи утечки,

- низкая технологичность.

Задача, решаемая изобретением: снижение плотности дефектов, обеспечивающее технологичность, улучшение параметров, повышение надежности и увеличение процента выхода годных.

Задача решается выращиванием слоев Si1-xGex при расходе SiH4 - 10 см3/мин, при соотношениях GeH4:SiH4=3-6%; давлении 0,133 Па, при температуре 750°C.

Технология способа состоит в следующем: выращивали Si1-xGex на подложке кремния Si с ориентацией (100) методом ПФХО при давлении 1,33 Па и температуре 750°C. Для осаждения применялся реактор с радиационным нагревом и покрытым Si графитовым пьедесталом, на котором размещались пластины. Плазма создавалась с помощью ВЧ-генератора, работающего на частоте 13,56 МГц. На пьедестал подавалось постоянное отрицательное смещение с целью ускорения ионов в процессе распыления. После очистки аргоном: поток Ar, смещение пьедестала, ВЧ-мощность отключались и в реактор производилась подача SiH4 для выращивания эпитаксиального слоя Si толщиной 240-300 нм. Слой Si1-xGex выращивался после прекращения подачи SiH4 и продувки в течение 30 с из смеси SiH4 и GeH4 при давлении 0,133 Па. Выращивание слоев Si1-xGex производилась при расходах SiH4 - 10 см3/мин и соотношениях GeH4:SiH4 3-6% со скоростью 10 нм/мин.

По предлагаемому способу были изготовлены и исследованы полупроводниковые структуры. Результаты обработки представлены в таблице.

Экспериментальные исследования показали, что выход годных полупроводниковых структур, на партии пластин сформированных в оптимальном режиме, увеличился на 16,4%.

Технический результат: снижение плотности дефектов, обеспечение технологичности, улучшение параметров, повышение надежности и увеличение процента выхода годных структур.

Стабильность параметров во всем эксплуатационном интервале температур была нормальной и соответствовала требованиям.

Предложенный способ изготовления полупроводниковых структур путем выращивания слоев Si1-xGex со скоростью 10 нм/мин, при расходе SiH4 - 10 см3/мин, давлении 0,133 Па, температуре 750°C, при соотношении смеси GeH4:SiH4=3-6%, позволяет повысить процент выхода годных и улучшить их надежность.

Способ изготовления полупроводниковой структуры, включающий кремниевую подложку, процессы выращивания эпитаксиального слоя, отличающийся тем, что выращивание эпитаксиального слоя Si1-xGex производят со скоростью 10 нм/мин, при давлении 0,133 Па, температуре 750°C, расходе SiH4 - 10 см3/мин и соотношении концентраций смеси GeH4:SiH4=3-6%.



 

Похожие патенты:

Изобретение относится к способу выращивания пленки нитрида галлия путем автосегрегации на поверхности подложки-полупроводника из арсенида галлия и может быть использовано при изготовлении светоизлучающих диодов, лазерных светодиодов, а также сверхвысокочастотных транзисторных приборов высокой мощности.

Изобретение относится к технологии получения монокристаллического, полученного химическим осаждением из газовой фазы (ХОГФ), синтетического алмазного материала, который может быть использован в качестве квантовых датчиков, оптических фильтров, частей инструментов для механической обработки и исходного материала для формирования окрашенных драгоценных камней.

Изобретение относится к электронной технике. Способ изготовления полупроводниковой гетероструктуры для мощного полевого транзистора СВЧ включает расположение предварительно обработанной монокристаллической полуизолирующей подложки арсенида галлия на подложкодержатель в реакторе газофазной эпитаксии, запуск газа-носителя - водорода, нагрев подложкодержателя до рабочей температуры, запуск ростовых технологических газов и последующее наращивание в едином технологическом цикле последовательности слоев заданной полупроводниковой гетероструктуры.

Изобретение относится к области микроэлектроники и может быть использовано в производстве эпитаксиальных структур полупроводниковых соединений А3В5 и соединений А2В6 методом химического газофазного осаждения из металлоорганических соединений и гидридов.

Изобретение относится в технологии производства пленок карбида кремния на кремнии, которые могут быть использованы в качестве подложек или функциональных слоев при изготовлении приборов полупроводниковой электроники, работающих в экстремальных условиях - повышенных уровнях радиации и температур.

Изобретение относится к технологии получения полупроводниковых материалов и может быть использовано при создании полупроводниковых приборов. Изобретение позволяет упростить технологию получения применением одной поликристаллической мишени, улучшить качество пленок за счет высокой адгезии.

Группа изобретений относится к полупроводниковым материалам. Способ (вариант 1) включает обеспечение реакционной камеры, обеспечение полупроводниковой подложки, обеспечение прекурсорного газа или газов, выполнение эпитаксиального CVD выращивания легированного полупроводникового материала на подложке в реакционной камере для формирования первого слоя, продувку реакционной камеры газовой смесью, включающей водород и газ, содержащий галоген, с обеспечением уменьшения эффекта памяти легирующей примеси без удаления сопутствующего осажденного слоя из зоны реакции и выполнение эпитаксиального CVD выращивания легированного полупроводникового материала на указанной подложке в реакционной камере для формирования второго слоя.

Изобретение относится к сфере производства гетероэпитаксиальных структур, которые могут быть использованы в технологии изготовления элементов полупроводниковой электроники, способных работать в условиях повышенных уровней радиации и высоких температур.

Изобретение относится к устройству для каталитического химического осаждения из паровой фазы и может быть использовано для формирования пленки на подложке. .

Изобретение относится к области формирования эпитаксиальных слоев кремния на изоляторе. Способ предназначен для изготовления эпитаксиальных слоев монокристаллического кремния n- и p-типа проводимости на диэлектрических подложках из материала с параметрами кристаллической решетки, близкими к параметрам кремния с помощью химической газофазной эпитаксии. В качестве материала подложки могут использоваться, в частности, лейкосапфир (корунд), шпинель, алмаз, кварц. Способ заключается в расположении подложки в реакторе, нагреве рабочей поверхности подложки до 900-1000°C, подаче потока реакционного газа, содержащего инертный газ-носитель и моносилан, наращивании кремния до образования начального сплошного слоя на рабочей поверхности подложки, добавлении к потоку реакционного газа потока галогенсодержащего реагента и формировании эпитаксиального слоя кремния требуемой толщины. Начальный сплошной слой кремния наращивают со скоростью от 3000 /мин до 6000 /мин. После формирования данного слоя на рабочей поверхности подложки расход потока реакционного газа уменьшают, снижая скорость роста на 500-2000 /мин. К потоку реакционного газа добавляют поток насыщенного пара галогенида кремния или газообразного галогенсилана, значение расхода которого задают таким образом, чтобы скорость роста кремниевого слоя вернулась к значениям 3000-6000 /мин. Технический результат изобретения - получение слоя кремния высокого качества и снижение себестоимости процесса изготовления. 3 ил., 1 пр.

Изобретение относится к способам получения эпитаксиальных тонкопленочных материалов, а именно новой фазы дисилицида стронция, обладающего в контакте с кремнием низкой высотой барьера Шоттки, и может быть использовано для создания контактов истока/стока в технологии производства полевых транзисторов с барьером Шоттки. Способ выращивания эпитаксиальных пленок дисилицида стронция на кремниевой подложке методом молекулярно-лучевой эпитаксии заключается в осаждении атомарного потока стронция с давлением PSr=(0,5÷3)×10-8 Торр на предварительно очищенную и нагретую до Ts=500±20°С поверхность подложки кремния до формирования пленки дисилицида стронция требуемой толщины. Техническим результатом заявленного изобретения является создание технологии формирования эпитаксиальных пленок SrSi2 методом молекулярно-лучевой эпитаксии, ориентация которых определяется подложкой, что позволит выращивать пленки с различными заданными свойствами. 2 з.п. ф-лы, 4 ил.

Группа изобретений относится к технологии вакуумной эпитаксии германия или германия и кремния, включающей применение вакуумного осаждения германия из газовой среды германа в качестве способа удаления естественно образовавшегося или сформированного защитного слоя диоксида кремния с рабочей поверхности химически очищенной кремниевой подложки на этапе - ее подготовительной вакуумной очистке перед вакуумным осаждением германия или германия и кремния на указанную подложку для получения соответствующей эпитаксиальной пленки. Технический результат изобретения - повышение эффективности подготовительной вакуумной очистки рабочей поверхности кремниевой подложки за счет обеспечения высокой степени удаления диоксида кремния при одновременном повышении технологичности сочетаемости указанного удаления с последующей вакуумной эпитаксией, а также расширение актуального технологического арсенала вакуумной эпитаксии, удовлетворяющего растущим требованиям высококачественного полупроводникового производства. Для достижения указанного технического результата предлагается применение вакуумного осаждения германия из газовой среды германа путем пиролиза последнего в присутствии источника тепла для указанного пиролиза в виде резистивного нагревательного элемента, изготовленного из тугоплавкого металла и расположенного над нагретой химически очищенной кремниевой подложкой, в качестве способа удаления диоксида кремния с рабочей поверхности указанной подложки в условиях ее нагрева до температуры, превышающей технологическую температуру этой подложки, поддерживаемую при последующей вакуумной эпитаксии полупроводникового материала на основе германия, на величину, подбираемую в зависимости от степени наличия диоксида кремния на рабочей поверхности химически очищенной кремниевой подложки. Техническим результатом способа изготовления монокристаллической пленки германия на кремниевой подложке является повышение качества получаемой монокристаллической пленки германия за счет высокотехнологичной подготовительной вакуумной очистки рабочей поверхности кремниевой подложки перед началом формирования указанной пленки. 2 н. и 2 з.п. ф-лы, 1 ил.
Изобретение относится к электронной технике, а именно к способам изготовления антимонида галлия с большим удельным электрическим сопротивлением, применяемым в производстве полупроводниковых приборов. В способе изготовления антимонида галлия с большим удельным электрическим сопротивлением, включающем выращивание антимонида галлия методом эпитаксии на подложке из антимонида галлия, при этом процесс выращивания антимонида галлия осуществляют методом газофазной эпитаксии из металлорганических соединений при температуре в диапазоне от 550 до 620°С при обеспечении превышения содержания атомов сурьмы по отношению к содержанию атомов галлия в газовой фазе в 20-50 раз. Техническим результатом изобретения является создание способа промышленного изготовления GaSb с большим удельным электрическим сопротивлением.

Изобретение относится к полупроводниковой технике, а именно к области изготовления гетероэпитаксиальных слоев монокристаллического кремния различного типа проводимости и высокоомных слоев в производстве СВЧ-приборов, фото- и тензочувствительных элементов, различных интегральных схем с повышенной стойкостью к внешним дестабилизирующим факторам. Способ изготовления гетероэпитаксиального слоя кремния на диэлектрике включает формирование ростовых кремниевых островков на поверхности диэлектрической подложки (сапфир, шпинель, алмаз, кварц) с последующим наращиванием начального слоя кремния путем термического разложения моносилана, его термообработку в течение времени, достаточного для устранения структурных дефектов, образовавшихся в результате релаксации напряжений кристаллической решетки кремния, и продолжение наращивания слоя кремния до требуемых значений толщины, при этом наращивание начального слоя кремния осуществляют при температуре 930-945°C до момента слияния ростовых кремниевых островков и образования сплошного слоя, температуру термообработки устанавливают в пределах 945-975°C, а температуру роста слоя требуемой толщины задают не менее 960°C. Технический результат изобретения - повышение структурного качества и однородности распределения удельного сопротивления по толщине гетероэпитаксиального слоя кремния на диэлектрике. 4 ил.

Изобретение относится к области технологии производства полупроводниковых приборов, в частности к технологии получения кремниевых пленок на сапфире с пониженной дефектностью. В способе изготовления полупроводниковой структуры проводят отжиг подложки в атмосфере водорода в течение 2 часов при температуре 1250°C с последующим наращиванием пленок кремния пиролизом силана в атмосфере водорода при температуре 1000-1030°C в два этапа: сначала выращивают n+-слой кремния, легированный из PH3, с концентрацией примеси 1020 см-3, со скоростью роста 5 мкм/мин, затем наращивают n-слой кремния, легированный AsH3, с концентрацией примеси 4*1015 см-3, со скоростью роста 2,3 мкм/мин, с последующим термическим отжигом при температуре 600°C в течение 15 минут в атмосфере водорода. Затем формируют n-канальные полевые транзисторы и электроды стока, истока и затвора по стандартной технологии. Предложенный способ изготовления полупроводниковой структуры позволяет повысить процент выхода годных приборов и улучшить их надежность. 1 табл.
Наверх