Способ развертывания стелющейся антенны

Использование: изобретение относится к области электрорадиотехники, а именно к антенной технике, и может использоваться для развертывания на холмистой подстилающей поверхности проволочных антенн KB, СВ, ДВ и СДВ диапазонов. Технический результат: снижение времени развертывания антенны и повышение ее эффективности. Сущность: реализация способа предусматривает следующие действия: на вершину холма устанавливают пусковой контейнер, предназначенный для выстреливания проводников антенны; размещают в контейнере проводники антенны; размечают места установки нижних концов проводов на периметре основания холма; выстреливают в направлении каждого из размещенных мест соответствующие проводники, затем корректируют положение проводников, коммутируют их в соответствии с принятой электрической схемой апертуры и подключают к выходу передатчика, размещенного у основания холма. 1 з.п. ф-лы, 3 ил.

 

Изобретение относится к области электрорадиотехники, а именно к антенной технике, и, в частности, заявленный способ предназначен для развертывания на холмистой поверхности проволочных антенн, работающих в коротковолновом (KB), средневолновом (СВ), длинноволновом (ДВ) и сверхдлинноволновом (СДВ) диапазонах волн, совместно с KB, СВ, ДВ или СДВ радиопередатчиками.

Известны способы развертывания проволочных низкочастотных передающих антенн.

Так, способ развертывания СДВ выпускной тросовой антенны по патенту US №3496567, 1970; по патенту US №3806944, 1974, предусматривает следующие действия:

размещают на борту летательного аппарата (ЛА) на свободно вращающемся барабане тросе выпускной антенны;

один конец троса подключают к выходу бортового СДВ радиопередатчика;

выпускают тросе через шлюз в корпусе ЛА с помощью вытяжного конуса, закрепленного на конце троса, на длину, соответствующую рабочей частоте передатчика;

после завершения выпуска троса включают радиопередатчик.

Недостатком способа является то, что он пригоден для использования ЛА в условиях его полета. Кроме того, при реализации подобного способа высока вероятность обрыва выпускного троса из-за больших динамических нагрузок на него.

Известен также способ развертывания низкочастотной антенны по патенту US №3680129, 1972, позволяющий обеспечить работу антенны, с радиопередатчиком, установленным на поверхности земли. Способ заключается в выполнении следующих действий:

антенну в виде металлической мачты укладывают горизонтально на поверхность земли в месте ее развертывания;

закрепляют ее вершину с помощью троса к ЛА (например, вертолету);

переводят мачту в вертикальное положение;

подключают изолированное от земли основание мачты у выходу передатчика.

Недостатком указанного способа является то, что в случае неблагоприятных метеоусловий (ветер, туман, осадки, обледенение и т.д.) способ имеет ограниченное применение или вообще не может быть использован.

Наиболее близким аналогом (прототипом) по своей технической сущности к заявленному является способ постановки и выборки гибкой подвижной буксируемой антенны по патенту РФ №2497710, опубл. 10.11.2013, бюл. №31. В способе, используемом для развертывания с подводной лодки буксируемой антенны, подстилающей поверхностью является поверхность моря (океана). Способ включает следующие действия:

закрепляют внешний конец антенны в трубчатом хранилище;

подсоединяют к участку антенны, размещенной в трубчатом хранилище, основную часть проводника развертываемой антенны;

«выталкивают» проводник антенны путем создания избыточного давления в трубчатом хранилище;

подключают антенну к бортовой радиостанции после завершения ее развертывания за борт подводной лодки.

Недостатком прототипа является большое время, необходимое для развертывания даже однолучевой антенны. В случае многолучевой структуры антенны, а также в условиях холмистой подстилающей поверхности данный способ неприемлем. Кроме того, антенна малоэффективна в силу того, что она является горизонтально поляризованной.

Целью заявленного технического решения является разработка способа развертывания стелющейся антенны, в том числе антенны в виде совокупности разнонаправленных проводов, обеспечивающего снижение времени, необходимого для развертывания антенны на холмистой подстилающей поверхности, и увеличение его эффективности (КПД).

Указанный технический результат достигается тем, что в известном способе развертывания стелющейся антенны, заключающемся в том, что проводники антенны размещают в пусковом контейнере, с помощью которого их выстреливают в заданном направлении, при развертывании на холмистой подстилающей поверхности стелющейся антенны с апертурой в виде совокупности разнонаправленных проводников пусковой контейнер устанавливают на вершине холма, на периметре основания холма в соответствии с геометрией апертуры антенны размечают места расположения нижних концов проводников, последовательно ориентируют пусковой контейнер в направления размеченных мест расположения нижних концов проводников, в каждом из направлений выстреливают соответствующий проводник антенны, корректируют положение проводников на подстилающей поверхности холма, коммутируют проводники в соответствии с электрической схемой антенны, после завершения корректировки и коммутации вход антенны подключают к выходу радиопередатчика, размещенного у основания холма.

Установка пускового контейнера на вершине холма может производиться различным образом в зависимости от высоты и крутизны склонов холма. В частности установку можно выполнить с помощью вертолета.

Благодаря указанной новой совокупности существенных признаков за счет исключения трудоемких и затратных по времени операций размещения сложной апертуры антенны на склонах холма обеспечивается не только существенное снижение времени, необходимое на приведение антенны в рабочее состояние, но и повышение ее эффективности (КПД) благодаря увеличению вертикальной компоненты излучаемого электромагнитного поля (ЭМП).

Заявленный способ поясняется чертежами, на которых показано:

на фиг. 1 - общий вид антенны, размещенной на холмистой подстилающей поверхности;

на фиг. 2 - вариант апертуры объемного вибратора с верхним питанием;

на фиг. 3 - вариант апертуры турникетного излучения.

Реализация способа заключается в следующем.

При наличии холмистой подстилающей поверхности, показанной на фиг. 1, высота Н и диаметр D периметра основания холма 1 могут составлять от десятков до сотен метров. Развертывание стелющейся антенны в таком случае наталкивается на ряд трудностей, связанных с размещением проводников на склонах холма в соответствии с геометрией апертуры, включающей совокупность разнонаправленных проводников. Возможные варианты проволочной апертуры стелющихся антенн приведены на фиг. 2 - объемный вибратор с верхним питанием, на фиг. 3 - турникетный излучатель, обеспечивающий возможность работы с линейной или вращающейся поляризацией поля излучения.

При выбранном варианте схемы антенной апертуры предварительно на вершину холма 1 устанавливают, например, с помощью вертолета 2 пусковой контейнер 3. Пусковой контейнер 3 предназначен для выстреливания в требуемом направлении α проводников 4. Подобные пусковые установки известны. Например, в патенте US №4776255, 1988 г., описана малогабаритная пусковая установка, обслуживаемая одним оператором. Такую установку целесообразно использовать при длине проводников от 50 до 300 м. При необходимости выстреливания проводников на большее расстояние может использоваться пусковая установка, описанная в патенте RU №2241197, 2004 г., или подобные установки, описанные в патенте US №4967636, 1990 г., патенте RU №2497740, 2013 г., патенте US №4671162, 1987 г., и др.

В зависимости от высоты Н и диаметра D основания холма 1 и габаритов пускового контейнера 3 его установка может выполняться различными средствами, например с помощью вертолета 3.

Затем по периметру 5 основания холма 1 размечают расположения нижних концов проводников 4 в соответствии с принятой геометрией апертуры антенны. На фиг. 1 показаны места расположения нижних концов проводников 4 (точки Т1, Т2, …), которые соответствуют схеме антенны, показанной на фиг. 2. На фиг. 2 также показан проводник 6, выполненный из коаксиального кабеля, который нижним концом подключают к выходу радиопередатчика (не показан), а верхний его конец подключают центральным проводником к верхним концам всех проводников 4, а экранную оболочку заземляют.

После разметки точек T1, Т2, …, Tn, где n - общее число проводников, в рассматриваемом примере n=8, определяют азимутальные углы φ1, φ2, … φn, в направлении которых необходимо выстреливать проводники 4. Затем ориентируют последовательно пусковой контейнер в направлениях φ1, φ2, … φn и в каждом из направлений выстреливают из пускового контейнера соответствующий проводник. При выстреливании проводников 4 в силу различных дестабилизирующих воздействий в процессе его полета и приземления (порыв ветра, ошибка оператора, наличие растительности на склоне холма 1 и т.п.) может оказаться необходимой корректировка положения проводников до близкой к требуемой конфигурации.

Затем проводники коммутируют в соответствии с принятой электрической схемой антенны. В приведенном примере на фиг. 1 нижние концы электрически соединят друг с другом, например, с помощью дополнительных проводников 7. Верхние концы проводников 4 объединяют электрически (точка «а») и подключают к фидерному проводнику 6, как было описано выше. После завершения развертывания пусковой контейнер 3 удаляют из вершины холма 1 или перемещают от вершины.

Развертывание описанным способом антенны на холме 1 высотой Н порядка 200 м и периметром до 1500 м занимает не более 10-15 часов, что во много раз меньше по времени, чем при использовании известных способов.

Кроме того, при размещении проводников на склонах холма 1 существенно увеличивается вертикальная компонента EB излученного антенной ЭМП (см. фиг. 1), что повышает эффективность антенны в силу меньшего затухания при распространении вертикальной компоненты излученного поля.

Отмеченное указывает на возможность достижения технического результата при использовании заявленного способа.

1. Способ развертывания стелющейся антенны, заключающийся в том, что проводники антенны размещаются в пусковом контейнере, с помощью которого выстреливают проводники антенны в заданном направлении, отличающийся тем, что при развертывании на холмистой подстилающей поверхности стелющейся антенны с апертурой в виде совокупности разнонаправленных проводников пусковой контейнер устанавливают на вершине холма, на периметре основания холма в соответствии с геометрией апертуры антенны размечают места расположения нижних концов проводников антенны, последовательно ориентируют находящийся на вершине холма пусковой контейнер в направлении размеченных мест расположения нижних концов проводников антенны и выстреливают в каждом из направлений соответствующий проводник антенны, затем корректируют положение проводников на подстилающей поверхности холма, коммутируют их в соответствии с электрической схемой антенны, после чего подключают антенну к выходу радиопередатчика, размещенного у основания холма.

2. Способ по п. 1, отличающийся тем, что пусковой контейнер на вершину холма устанавливают с помощью вертолета.



 

Похожие патенты:

Использование: изобретение относится к области радиотехники, а именно к антенной технике, и предназначено для развертывания КВ, СВ, ДВ или СДВ проволочных антенн преимущественно на холмистой подстилающей поверхности.

Изобретение относится к антенной технике. Заявленный промежуточный возбудитель коротковолновой антенны подвижного объекта содержит индуктивный проводник, размещенный в экранированном подкрышевом пространстве подвижного объекта и подключенный одним концом к блоку дискретных реактивных нагрузок, а другим - через блок настройки и согласования к выходу бортовой коротковолновой радиостанции, причем периферийные трети индуктивного проводника, размещенного в подкрышевом пространстве, выполнены в виде сосредоточенных индуктивных нагрузок.

Использование: изобретение относится к области гидроакустики и может быть применено при разработке гидроакустических антенн произвольной формы и назначения. Сущность: устройство содержит преобразователь давления в электрический сигнал, усилитель, аналого-цифровой преобразователь, сдвиговый регистр, параллельный вход которого соединен с выходом аналого-цифрового преобразователя, а последовательные вход и выход являются внешними входом и выходом приемника.

Изобретение относится к антенной технике. Плазменная антенна содержит плазменный генератор, формирующий плазменное образование, и первичный источник электромагнитных волн, при этом анод плазменного генератора выполнен в виде конического диффузора, состоящего из корпуса и конической вставки, диэлектрически соединенной с подводящим патрубком, поверхность которого выполнена перфорированной, кроме того, первичный источник радиоволн установлен на оси антенны на расстоянии от точки генерации плазменного образования, где γ=2,8…3,0 - постоянная величина, k - волновое число, b - максимальное расстояние от плазменного генератора до границы области с критической концентрацией электронов, θк - угол между осью антенны и направлением распространения плазмы с максимальной скоростью.

Изобретение относится к радиотехнике СВЧ и предназначено для ретрансляции высокочастотного сигнала системы телеметрии ракеты-носителя на наземный измерительный пункт.

Изобретение относится к технике связи и предназначено для определения местонахождения железнодорожного транспортного средства (V) вдоль железнодорожного пути (VF) при помощи ряда сигнальных маяков, которые взаимодействуют с антенной, установленной на железнодорожном транспортном средстве.

Изобретение относится к полевым устройствам, используемым в системах управления и мониторинга производственными процессами, и, в частности, к полевым устройствам, которые используют беспроводную передачу данных.

Изобретение предназначено для борьбы с беспилотными летательными аппаратами (БЛА) ближнего и малого радиуса действия. Техническим результатом является повышение эффективности поражения БЛА.

Настоящее изобретение относится к антенному устройству для установки на стекле. Технический результат изобретения заключается в том, что заявленная антенна принимает высокочастотный сигнал и при расположении в стекле автомобиля не оказывает отрицательного воздействия на видимость для водителя.

Изобретение относится к радиотехнике и может быть использовано для определения радиотехнических характеристик крупногабаритных антенн для космических аппаратов без их непосредственных измерений.

Приемо-передающая антенна для поляризационного инструмента поисковой антенны, которая имеет установленный с возможностью вращения вокруг фиксирующего штифта (3) металлический резонатор (2) в качестве антенны и находящуюся на расстоянии под ним изоляционную пластину (6) с расположенным на обращенной от резонатора (2) стороне металлическим слоем (7) в качестве электрода или второй антенны, а также расположенную без возможности вращения на расстоянии от изоляционной пластины (6) магнитную пластину (8) с экраном (9) на обращенной от изоляционной пластины стороне. Один конец резонатора (2) зажат между магнитной пластиной (8) и дополнительным расположенным вблизи резонатора (2) магнитом (10) антенны, а другой конец резонатора (2) зафиксирован посредством магнита (11) опоры и по сравнению с нормальным положением зажат. Технический результат: посредством соответствующей регулировки пилообразного сигнала данная антенна работает как «поющая пила» и ее чувствительность по сравнению с уровнем техники существенно улучшена. 3 з.п. ф-лы, 2 ил.

Изобретение относится к антенной технике, в частности к конструкции передающей антенны для работы с широкополосными радиопередающими устройствами. Сущность: антенна ненаправленная в горизонтальной плоскости имеет ввод в виде корпуса, внутри которого проходит коаксиальный кабель, взаимодействующий с разъемом, закрепленным на корпусе ввода, и с коаксиальными металлическими стержнями проводниками, размещенными внутри изолятора состоящего из двух продольных половинок, зафиксированных к вводу полуцилиндром, коаксиальные металлические стержни проводники имеют канавки, взаимодействующие с выступами на внутренней части изолятора, один конец коаксиального металлического стержня проводника взаимодействует с коаксиальным кабелем, другой конец имеет резьбовую часть, взаимодействующую с металлическим цилиндром вибратором в виде стакана, посаженного на изолятор и взаимодействующего через изоляторы в виде колец с металлическими кольцами вибраторами, по внешнему диаметру все элементы антенны ненаправленной в горизонтальной плоскости зафиксированы оболочкой со вставками и трубками термоусаживаемыми. Технический результат: данное техническое решение позволяет получить антенну ненаправленную в горизонтальной плоскости, имеющую жесткую конструкцию, у которой конструктивные емкости и коаксиальные линии позволяют получить шикополосность - коэффициент перекрытия по диапазону fmax/fmin≥2, стабильность диаграммы направленности - диаграмма направленности круговая, лежащая в азимутальной плоскости во всем рабочем диапазоне. 15 ил.

Изобретение относится к антенной технике. Особенностью заявленного промежуточного возбудителя невыступающей коротковолновой передающей антенны подвижного объекта является то, что горизонтальные части П-образных элементов объединены и электрически соединены друг с другом и установлены вдоль продольной оси симметрии экранированного подкрышевого пространства подвижного объекта, а их периферийные трети выполнены в виде плавных переходов, подключенных к вершинам соответствующих пар вертикальных частей П-образных элементов, размещенных вне экранированного подкрышевого пространства подвижного объекта. Техническим результатом является повышение эффективности антенны. 1 з.п. ф-лы, 6 ил.

Антенна полигона для измерения радиолокационных характеристик целей в зоне Френеля выполнена в виде фазированной антенной решетки (ФАР), которая содержит систему ответвителей с входом и N выходами, N четное число больше шести, N первых коммутаторов сигналов и N каналов передачи сигналов, в которые входят N вторых и N третьих коммутаторов, N первых, N вторых, N третьих и N четвертых смесителей, 2N циркуляторов, 2N переменных аттенюаторов, 2N фазовращателей, 2N излучателей. Каждый канал состоит из двух субканалов вертикальной Ε и горизонтальной Η поляризаций излучений. В субканал Ε входят: второй коммутатор, первый и второй смесители частот и последовательно соединенные первый выход циркулятора, переменный аттенюатор, фазовращатель и излучатель вертикальной поляризаций, в субканал Η входят: третий коммутатор, третий и четвертый смесители частот и последовательно соединенные первый выход второго циркулятора, второй переменный аттенюатор, второй фазовращатель, излучатель горизонтальной поляризации. Технический результат изобретения - увеличение коэффициента использования апертуры приемно-передающей антенны - ФАР до 0,9 и уменьшение занимаемой антенной площади безэховой камеры, т.к. продольный размер ФАР определяется ее толщиной, которая составляет 3-5 рабочих длин волн. 3 ил.

Изобретение относится к области радиотехники, а именно к антенной технике. Заявленная передающая туннельная антенна (ПТА) относится к классу подземных антенн (ПА) и может быть использована в качестве передающей низкочастотной (НЧ) антенны, размещенной в туннеле, пробуренном в полупроводящем грунте (ППГ). Техническим результатом при использовании ПТА является повышение коэффициента усиления (КУ) и устойчивости при воздействии на ПТА дестабилизирующих воздействий. ПТА состоит из симметричного вибратора (СВ), плечи которого длиной L выполнены из K проводников 1, расположенных равномерно по образующей цилиндрической поверхности 2, осесимметричной с внутренней поверхностью туннеля 3. В сечениях туннеля 3 с интервалом lс по образующей поверхности туннеля 3 в ППГ 7 погружены по N металлических стержней (МС) 8 анкерной крепи. Проводники 1 плеч СВ скреплены с поверхностью туннеля с помощью подвесок 9, обеспечивающих гальваническую связь проводников 1 с МС 8 анкерной крепи. Приведены оптимальные соотношения элементов конструкции ПТА, обеспечивающие повышение КУ антенны и ее устойчивость при воздействии ударных и вибрационных нагрузок. 4 з.п. ф-лы, 5 ил.

Изобретение относится к антенной технике, в частности к стационарной, и может быть использовано в подъемно-мачтовых устройствах (ПМУ), устанавливаемых на фундамент бетонный, свайный или свайно-винтовой, для подъема оборудования на заданную высоту, с лебедкой в комплекте для подъема мачты с плоскопараллельным поворотом верхней площадки, и опускания для обслуживания, ремонта и при наступлении форс-мажорных обстоятельств. Технический результат заключается в упрощении конструкции ПМУ при сохранении ее надежности. Поставленная задача достигается тем, что в подъемно-мачтовом устройстве, содержащем основание, секционную мачту с закрепленной на ней верхней монтажной площадкой для антенной системы, согласно изобретению дополнительно введен шарнирный параллелограмм, позволяющий при подъеме секционной мачты верхней монтажной площадке сохранять горизонтальное положение. 2 ил.

Группа изобретений относится к средствам метеорологического обеспечения и применяется в СВЧ устройствах метеорадиолокаторов, предназначенных для получения информации о параметрах атмосферы на высотах зондирования и у поверхности земли. Комбинированное СВЧ устройство для метеорадиолокатора содержит генератор СВЧ, устройство защитное, малошумящий усилитель СВЧ. По первому и второму варианту группы изобретений устройство защитное и малошумящий усилитель СВЧ выполнены твердотельными, а для совместной работы генератора СВЧ и малошумящего усилителя СВЧ на антенну дополнительно установлен циркулятор. Во втором варианте в вышеописанное устройство для усиления обеспечения избирательности по зеркальному каналу дополнительно установлен фильтр. Технический результат заключается в повышении надежности комбинированного СВЧ устройства, уменьшении его массы, снижении потребляемой мощности и увеличении коэффициента усиления. 2 н.п. ф-лы, 2 ил.

Изобретение относится к радиолокации и может использоваться в системах судовой радиолокации. Технический результат состоит в повышении помехозащищенности системы управления от заградительных активных помех, в том числе от активных помех, совпадающих по углам и дальности с целью, а также от пассивных помех, в оптимизации частот для обнаружения целей и их сопровождения и обеспечении одновременной и независимой работы антенн разных частотных диапазонов. Разделение антенн по частотному диапазону позволяет оптимизировать частоты для обнаружения целей и их сопровождения. Использование управляемой поляризации в антенне сопровождения позволяет повысить помехозащищенность системы управления от заградительных активных помех, в том числе от активных помех, совпадающих по углам и дальности с целью, а также от пассивных помех. Одновременная и независимая работа антенн позволяет уменьшить время реакции системы, т.е. за время сопровождения условно первой цели антенной сопровождения антенна обзора подготавливает исходные данные для антенны сопровождения по другим целям, обеспечивая взятие их на автосопровождение без их допоиска. 5 з.п. ф-лы, 2 ил.

Изобретение относится к сверхширокополосным сверхвысокочастотным антеннам, в частности для применения в бесконтактных сверхширокополосных подповерхностных радарах, для 3D или 2D визуализации подповерхностных структур. Технический результат заключается в сохранении рабочего диапазона частот микроволновой широкополосной антенны при значительном уменьшении ее размеров. Согласно изобретению сверхширокополосная СВЧ антенна содержит по меньшей мере два проводящих слоя: нижний излучающий слой типа «бабочка» и слой перераспределения токов, имеющий прорези, заканчивающиеся вырезами произвольной формы, а также содержит микрополосок для питания антенны, расположенный на слое перераспределения токов изолированно от остальной части слоя перераспределения токов, по меньшей мере два запитывающих вертикальных соединителя, соединяющих между собой нижний слой и слой перераспределения токов, и вертикальные соединители, заземляющие слои антенны. 10 з.п. ф-лы, 3 ил.

Изобретение относится подъемно-мачтовым устройствам (ПМУ), преимущественно к автоматическим системам развертывания подъемно-мачтовых устройств мобильных антенных установок. Целью заявляемого изобретения является повышение удобства управления за счет обеспечения возможности дистанционного управления и автоматизации выполнения операций по развертыванию и свертыванию мачты, а также повышение надежности работы мачты. Указанная цель достигается тем, что в ПМУ дополнительно введены с соответствующими связями с другими элементами: станция управления, включающая в себя: усилитель мощности; блок управления, в который дополнительно введены: панель управления; модуль контроллера; модуль обработки (МО); блок силовых ключей (БСК); контроллер последовательной шины первый (КПШ); контроллер последовательной шины второй (КПШ), датчик наклона (ДН) механически связанный с корпусом мачты телескопической; фиксатор транспортного положения первый (ФТП1); фиксатор транспортного положения второй (ФТП2); датчик высоты подъема (ДВП), в силовой редуктор подъемно-мачтового устройства дополнительно введена приборная ветвь, механически связывающая вал датчика высоты подъема (ДВП) с приводным винтом мачты телескопической. 3 ил.
Наверх