Тензорезистивный преобразователь

Изобретение относится к измерительной технике, а именно к датчикам давления контактного типа, в частности к тензометрическим средствам измерений консольного типа. Техническим результатом изобретения является расширение динамического диапазона тензорезистивного преобразования напряженно-деформированных состояний при прямом контактном воздействии на упруго-чувствительный элемент скоростного напора газовых или жидкостных потоков в электрический сигнал. Тензорезистивный преобразователь содержит упруго-чувствительный элемент консольного типа, выполненный из тензорезисторов, планарно и попарно расположенных на его противоположных сторонах, и электрических выводов со стороны его заделки, измерительный мост и индикатор, включенный в измерительную диагональ измерительного моста. При этом упруго-чувствительный элемент работает на изгиб ортогонально вектору приложенной силы. Также в преобразователь введены, по меньшей мере, один и более упругих слоев, выполненных из тонкопленочного эластичного полимера, имеющих одинаковую с упруго-чувствительным элементом ширину, но различные длины и расположены на нем последовательно с уменьшением длины в сторону его заделки. Упругие слои планарно жестко связаны между собой и упруго-чувствительным элементом, либо планарно свободны, но собраны воедино в заделке в сэндвич-структуру, обладающей качеством тела равного сопротивления изгибу. 2 з.п. ф-лы, 6 ил.

 

Заявленное изобретение относится к измерительной технике, к датчикам давления контактного типа, в частности к тензометрическим средствам измерений и анализа стационарных и динамических напряженно-деформированных состояний упругого чувствительного элемента консольного типа вследствие воздействия на его поверхность физических величин (линейных перемещений, температуры, механических колебаний, скоростного напора газовых или жидкостных потоков и др.), преобразуемых в электрический сигнал, и может быть применено в экспериментальной аэродинамике для измерений скорости движения воздуха или скоростного напора (динамического давления) воздушного потока (ВП), а также для его визуализации при проведении аэродинамических испытаний как на аэродинамических поверхностях, так и в окружающем пространстве.

В практике наибольшее применение нашли простейшие контактные анемометры прямого преобразования, работающие в движущихся потоках [Дж. Фрайден. Современные датчики. Справочник. Москва: Техносфера, 2005. - 592 с; Рыжов C.H. Устройства для контроля за потоками жидкостей и газов. Датчики потока/Датчики и системы. Москва, 2007, №9, с. 38-40; Интернет-сайт http://www.ahlborn.com. Датчики воздушного потока ALMEMO]. Они состоят из трех основных частей: приемное устройство (чувствительный элемент, первичный преобразователь), вторичный преобразователь (механический, пневматический или электронный) и отсчетное устройство (индикатор, дисплей и т.п.).

Основным недостатком контактных анемометров прямого преобразования является их инерционность и, как следствие, ограниченность быстродействия при изменении скорости напора ВП и его направления.

Известно устройство для измерения скорости газожидкостного потока [Авторское свидетельство СССР на изобретение SU №1673986 A1. Устройство для измерения скорости газожидкостного потока], состоящее из комбинации двух чувствительных элементов, выполненных из микропроволоок полупроводника (нитевидного кристалла), включенных в смежные плечи измерительного моста, один из которых работает в режиме термоанемометра при малых скоростях ВП, а другой - в основном режиме тензорезистора. В набегающих газожидкостных потоках основной тензорезистор прогибается, увеличивая свою длину и получая деформацию, являющуюся функцией скорости потока. Основными недостатками устройства являются: анизотропность материала - сильная зависимость кристаллографической оси проволочного полупроводника от вектора скорости при невозможности регистрации этого направления; малая контактная (взаимодействующая с ВП) площадь и низкие упруго-эластичные свойства, и, как следствие, низкий тензорезистивный эффект.

Наиболее близким по технической сущности и достигаемому результату является тензорезистивный преобразователь [Авторское свидетельство СССР №387234. Тензорезистивный преобразователь], содержащий упругий элемент с симметрично расположенными по отношению к его продольной оси по обеим сторонам тензочувствительными элементами, выполненными в виде многослойной тонкопленочной структуры с четным числом последовательно соединенных тензочувствительных слоев, разделенных изолирующими пленками, и образующий упруго-чувствительный элемент консольного типа (УЧЭ), работающий на изгиб. Тензочувствительные слои, расположенные по обеим сторонам УЧЭ, имеют общий электрический вывод и соединены в полумостовую (мостовую) электрическую схему [Панфилов В.А. Электрические измерения, «Академия», 2006 г.]. Под действием силы, приложенной к тензорезистивному преобразователю, его свободный конец изгибается. Тензочувствительные слои, расположенные на одной стороне УЧЭ, растягиваются, а на другой - сжимаются. Сжатие и растяжение тензослоев изменяет их электрические сопротивления: с одной стороны УЧЭ сопротивление уменьшается, а с другой стороны - увеличивается. При таком включении тензочувствительных слоев (тензорезисторов) в смежные плечи измерительного моста электрический сигнал, пропорциональный перемещению от возмущающего воздействия, удваивается. Планарное или сэндвич изготовление попарных тензочувствительных слоев в четном количестве повышает коэффициент полезного действия, соответственно на единицу площади или объема. Следовательно, информацию о векторе силы, ортогонально приложенной сосредоточенной или равномерно распределенной по поверхности тензорезистивного преобразователя (например, динамического давления или скоростного напора воздушного или жидкостного потока), можно получить из деформации его изгиба в одну или другую противоположную сторону (инверсия знака вектора силы).

Известно, что изгибная жесткость EJx, определяемая как способность упругого элемента консольного типа сопротивляться изгибу, равна произведению модуля упругости Ε материала УЧЭ на момент инерции Jx=bh3/123 (где b - ширина, h - толщина) сечения консоли и может быть мягкой при Е<100 МПа или жесткой при Е>1000 МПа. При этом всегда является фиксированной величиной. Зависимость коэффициента упругости k консоли от ее размеров и свойств материала k=F/δ=EJx/4l3=Ebh3/4l3, где F - приложенная сила: сосредоточенная или равномерно распределенная F=ql, l - длина консоли. При этом отклонение свободного конца консоли δ=ml2/2EJx(1-m2l2/12(EJx)2), где m - реактивный момент: для сосредоточенной силы m=Fl; для равномерно распределенной силы m=ql2/2. Следовательно, при большой изгибной жесткости EJx консоли для получения требуемого тензорезистивного эффекта ΔR/R=KΔδ/δ (K - фактор) требуются значительные возмущающие воздействия силы (F, q). При мягкой изгибной жесткости, имеющей высокую чувствительностью к малым возмущениям, рост нагрузки приводит к пластическому излому - обратимой деформации (вынужденной эластичности) УЧЭ вблизи ее защемления (крепления, основания).

Следовательно, основным недостатком такого устройства является малый динамический диапазон преобразуемых внешних воздействий, из-за фиксированной изгибной жесткости EJx=const УЧЭ, определяемой формой и размерами его конструкции и упруго-эластичной константой материала. Кроме того, в пределах чувствительности и для жесткой, и для мягкой изгибной жесткости имеет место проблема квадратичной и кубической зависимости свойств УЧЭ от его размеров. При равномерно распределенной нагрузке q≠0 по площади S=lb консоли ее максимальный изгиб соответствует δmax≈Vl4/8EJx, а максимальный угол изгиба консоли составляет Θmax≈1/ρ≈Vl3/6EJx (где ρ - радиус кривизны, V - вектор силы, скоростной напор ВП). Более того, поскольку коэффициент упругости k связан с резонансной частотой консоли ω0 по закону гармонического осциллятора (где mэфф - эффективная масса консоли), то изменение силы, приложенной к консоли, приводит к сдвигу резонансной частоты. В результате, на преобразуемый сигнал будут накладываться пульсации, амплитуда и частота которых зависит как от величины, так и направления возмущающей силы.

Таким образом, наличие фиксированной изгибной жесткости УЧЭ препятствует увеличению динамического диапазона преобразуемых внешних воздействий: жесткая упругость ограничивает порог чувствительности тензорезистивного преобразователя; мягкая изгибная жесткость, с ростом давления на поверхность S УЧЭ и, соответственно, увеличением изгиба δ приводит к его пластическому излому вблизи защемления (в заделке, у основания).

Целью изобретения является расширение динамического диапазона напряженно-деформированных состояний УЧЭ консольного типа, состоящего из тонкопленочного эластичного полимера и фольговых тензорезисторов, соответственно, расширение динамического диапазона тензорезистивного преобразования при прямом контактном воздействии скоростного напора (динамического давления) газовых или жидкостных потоков в электрический сигнал. При его осуществлении может быть получен следующий технический результат: расширение динамического диапазона преобразования напряженно-деформированных состояний в электрический сигнал с одновременным:

- уменьшением инерционности;

- уменьшением пульсаций с ростом скоростного напора;

- определением вектора скорости ВП, с возможностью регистрации его мгновенной составляющей, в том числе при его инверсии;

- прямой визуализацией направления ВП; и,

- существенным упрощением конструкции по сравнению с аналогами.

Технический результат достигается тем, что в известном тензорезистивном преобразователе [Авторское свидетельство СССР №387234. Тензорезистивный преобразователь] содержится: измерительный мост, индикатор и УЧЭ, выполненный в виде консольной балки из тонкопленочного эластичного полимера, двух или четырех фольговых тензорезисторов, планарно и попарно расположенных на противоположных сторонах УЧЭ, продольные оси которых симметричны относительно его продольной оси и параллельны между собой, при этом УЧЭ ориентирован ортогонально вектору приложенной силы и работает на изгиб. В результате образуется электрический сигнал, пропорциональный величине упругой деформации на изгиб, соответственно приложенной силе.

Признаками, отличающими изобретение от прототипа, являются:

1. введение по меньшей мере одного и более упругих слоев, выполненных из тонкопленочного эластичного полимера, имеющих одинаковую с УЧЭ ширину, но различные длины, и расположенных на нем последовательно с уменьшением длины в сторону его заделки, при этом упругие слои и УЧЭ планарно жестко связаны между собой или планарно свободны, но собраны воедино в заделке в упруго-чувствительную сэндвич-структуру, обладающую качеством тела равного сопротивления изгибу;

2. введенные один и более упругие слои расположены с двух сторон УЧЭ попарно симметрично или ассиметрично относительно его продольной оси;

3. введение одного упругого монослоя, выполненного из эластичного полимера с непрерывно-изменяемой площадью поперечного сечения, минимальной на свободном конце УЧЭ и максимальной в заделке, с образованием тела равного сопротивления изгибу.

Для расширения динамического диапазона преобразования кинетической энергии известно техническое решение: выполнение консольной балки в виде листовой рессоры - пакета упругих слоев (листов) разной длинны, собранных воедино и образующих тело равного сопротивления изгибу [Сопротивление материалов: Учебник для вузов / А.В. Александров, В.Д. Потапов, Б.П. Державин; под. ред. А.В. Александрова. - 3-е изд. испр. - М., Высшая школа, 2003. - 560 с; Интернет-сайт http://machinepedia.org/index.php. Рессора. Виды рессор]. В таких конструкциях совмещены функции демпфирующего (амортизатора, поглотителя колебаний) и упругого (энергоемкого) элементов. На этом принципе основана работа рессорных виброизоляторов [Например: Патент на изобретение RU №2282073 от 20.08.2006 г. Рессорный виброизолятор].

Признаком, характеризующим предлагаемое изобретение тензорезистивный преобразователь, является: выполнение упруго-чувствительного тензорезистивного элемента консольного типа совместно с одним и более упругими слоями разной длины или с одним упругим монослоем в виде симметричной или ассиметричной упруго-чувствительной сэндвич-структуры консольного типа, с переменной площадью сечения и обладающей качеством тела равного сопротивления изгибу. При этом упругие слои планарно жестко связаны между собой и упруго-чувствительным элементом либо планарно свободны, но собраны воедино в заделке.

Полученный при осуществлении изобретения технический результат, а именно, расширение динамического диапазона тензорезистивного преобразования напряженно-деформированных состояний в электрический сигнал при прямом контактном воздействии с одновременным: уменьшением инерционности; уменьшением пульсаций с ростом скоростного напора; определением вектора скорости, с возможностью регистрации его мгновенной составляющей, в том числе при инверсии вектора скорости; а также прямой визуализацией направления потока и существенным упрощением конструкции по сравнению с аналогами достигается за счет того, что изгибная жесткость на каждом участке (в сечении) упруго-чувствительной сэндвич-структуре тензорезистивного преобразователя различна: минимальна на свободном конце, поскольку определяется только мягкой жесткостью УЧЭ, и максимальна вблизи защемления (в заделке), поскольку складывается из жесткостей всех упругих слоев, включая упругость УЧЭ. При этом изменение изгибной жесткости упруго-чувствительной сэндвич-структуры осуществляется либо дискретно с введением каждого последующего упругого слоя, выполненного из тонкопленочного полимера, имеющего одинаковую с УЧЭ ширину, но различные длины, либо непрерывно за счет введения одного монослоя, выполненного из эластичного полимера с непрерывно-изменяемой площадью поперечного сечения.

На фиг. 1 изображен тензорезистивный преобразователь, содержащий: 1 - упруго-чувствительный элемент консольного типа (УЧЭ), выполненный из тонкопленочного эластичного полимера; 2 - двух или четырех фольговых тензорезисторов с выводами 5; 3 - один и более упругих слоев, выполненных из тонкопленочного эластичного полимера, имеющих одинаковую с УЧЭ ширину, но различные длины и собраны последовательно с уменьшением длины в упруго-чувствительную сэндвич-структуру; при этом упругие слои и УЧЭ планарно жестко связаны между собой, либо планарно свободны, но собраны воедино в пакет в заделке и образуют тело равного сопротивления изгибу; 4 - основание с жестким защемлением - заделкой; 6 - измерительный мост, плечи которого попарно соединены выводами 5 с тензорезисторами 2 в мостовую (полумостовую) схему, индикатор 7 и источник питания 8.

На фиг. 2-6 дополнительно показаны варианты изготовления устройства: фиг. 2, 3, 4 соответствуют п. 2, а фиг. 5, 6 - п. 3 формулы изобретения. На фиг. 2 равномерно распределенное по площади S упруго-чувствительной сэндвич-структуры воздействие V скоростного напора показано в виде стрелок.

Упруго-чувствительный элемент консольного типа 1 выполнен из упругого тонкопленочного эластичного полимера, двух (RG1, RG2) или четырех (RG1, RG2, RG3, RG4) фольговых тензорезисторов 2, планарно и попарно расположенных на его противоположных сторонах, продольные оси которых симметричны относительно его продольной оси и параллельны между собой, и электрических выводов 5 у основания 4. Смежные плечи измерительного моста 6 попарно соединены электрическими выводами 5 с фольговыми тензорезисторами 2 в полумостовую схему для двух активных RG1, RG2 тензорезисторов (R1, R2 - балансные постоянные сопротивления, показаны на фиг. 1 штриховыми линиями) или мостовую схему для четырех активных RG1, RG2, RG3, RG4 тензорезисторов. Индикатор 7 включен в измерительную диагональ измерительного моста, другая диагональ которого соединена с источником 8 напряжения U питания.

Введенные один и более упругие слои, выполненные из тонкопленочного эластичного полимера (фиг. 1-4), имеют одинаковую с УЧЭ ширину, но различные длины и расположены на нем последовательно с уменьшением длины в сторону заделки - в сторону его основания 4. При этом упругие слои могут быть выполнены либо планарно жестко связанными между собой и упруго-чувствительным элементом (например, склейкой, или изготовлены в едином технологическом цикле по планарной технологии), либо планарно свободными, но собранными воедино в пакет в заделке (в основании 4) с формированием упруго-чувствительной сэндвич-структуры, обладающей качеством тела равного сопротивления изгибу. Таким образом, количество участков с разной изгибной жесткостью определяется количеством упругих слоев и их расположением в сэндвич-структуре и может быть любым и изменяться как ступенчато, так и непрерывно.

Упруго-чувствительная сэндвич-структура ориентирована ортогонально вектору V приложенной силы - скоростному напору q (динамическому давлению). Согласно уравнению Бернулли это позволяет преобразовывать кинетическую энергию ВП (V) в потенциальную энергию давления q изоэнтропически заторможенного газа: q=ρвоздV2/2, где ρвозд и V - плотность и скорость ВП, соответственно [Гарбузов В.М. и др. Аэромеханика: Учеб. для студентов вузов. - М.: Транспорт, 2000]. В исходном состоянии при отсутствии скоростного напора (при V=0, и, соответственно q=0) упруго-чувствительная сэндвич-структура находится в равновесном состоянии, изгиб и деформация изгиба равны нулю, соответственно, ε0=ΔR/R=KΔδ/δ=0. При этом угол изгиба Θ=0 и радиус кривизны упруго-чувствительной сэндвич-структуры ρ=1/Θ~∞.

Отношение между деформацией ε0 и выходным напряжением u0 определяется: для полумостового включения -u0=U/2·KSε0; для полномостового включения - u0=U·KSε0, где KS - K - фактор. При указанном включении тензорезисторов в плечи измерительного моста 6 деформация продольного (по осям плоскости S=lb) сжатия/растяжения исключена, возможна только деформация на δ-изгиб при прямом направлении распространения потока или - δ-изгиб при обратном инверсном направлении (фиг. 2).

Устройство работает следующим образом. Под действием отличного от нуля скоростного напора (например, воздушного или жидкостного потока) малой величины q≥0, распределенного по всей поверхности S=lb упруго-чувствительной сэндвич-структуре, имеющей различную изгибную жесткость на разных а, b, с, d участках, изгибается на малую величину только начальный, первый а участок свободного конца консоли, имеющий самую мягкую изгибную жесткость. Поскольку изгибная жесткость всех последующих b, с, d участков (фиг. 2) возрастает кратно с каждым последовательно введенным упругим слоем, то эти b, с, d участки находятся в равновесии и не испытывают напряженно-деформированных состояний. При этом b участок, состоящий из слоя УЧЭ и одного или более упругих слоев планарно связанных либо не связанных между собой является опорным для предыдущего а участка. Соответственно, с участок является опорным для b участка, а основание 4 является опорным для последнего d участка. При этом количество участков неограниченно. С ростом скоростного напора q>0 увеличивается давление, распределенное по всей поверхности, и реакция опоры предыдущего а слоя на последующий b слой, вызывая в нем напряженно-деформированное состояние . Поскольку реактивный момент для равномерно распределенной силы соответствует m=ql2/2, то рост нагрузки (скоростного напора q>0) на а участке с мягкой изгибной жесткостью приводит к его пластическому излому в максимуме реактивного момента, находящегося вблизи его защемления последующими слоями (опорным b участком), если его длина La равна или превышает критическую длину l. И так далее. При этом изгибную жесткость и длину каждого упругого слоя подбирают с таким расчетом, чтобы обеспечить максимально-возможную упругую деформацию предыдущего слоя с предотвращением его пластического излома. При дальнейшем росте скоростного напора q>>0 напряженно-деформированному состоянию будут подвергаться последующие участки с большей изгибной жесткостью до тех пор, пока не деформируется последний d участок вблизи заделки у основания 4.

Введение по меньшей мере одного и более упругих слоев, имеющих одинаковую с УЧЭ ширину, но различные длины, и расположенных на нем последовательно с уменьшением длины в сторону его заделки, планарно жестко связанные между собой и УЧЭ или планарно свободные, но собранные воедино в заделке в упруго-чувствительную сэндвич-структуру, обладающей качеством тела равного сопротивления изгибу, предотвращает излом в областях максимума реактивного момента на каждом участке.

Таким образом, мягкая изгибная жесткость на свободном конце консоли обеспечивает высокую чувствительность тензорезистивного преобразователя при малых воздействиях, а напряженно-деформированное состояние самого жесткого участка упруго-чувствительной сэндвич-структуры вблизи ее заделки будет обеспечивать регистрацию максимально возможного воздействия скоростного напора. Благодаря этому обеспечивается расширение динамического диапазона напряженно-деформированных состояний упруго-чувствительной сэндвич-структуры. Более того, выполнение упруго-чувствительной сэндвич-структуры в виде тела равного сопротивления изгибу, с переменной изгибной жесткостью, обеспечивает равномерность напряжений по всей ее длине.

Преобразование скоростного напора при его прямом контактном воздействии на упруго-чувствительную сэндвич-структуру в электрический сигнал осуществляется посредствам двух или четырех фольговых тензорезисторов 2 (фиг. 1). При этом, если вектор скорости V имеет прямое направление, как показано на фиг. 2, то тензорезисторы RG1 и RG3 растягиваются, a RG2 и RG4 - сжимаются. При инверсном направлении, наоборот: RG1 и RG3 - сжимаются, a RG2 и RG4 - растягиваются. Сжатие и растяжение фольговых тензорезисторов 2 под действием компонентов механической энергии (деформации) изменяет их электрические сопротивления. Соответственно, с одной стороны упругой подложки электрические сопротивления RG1 и RG3 увеличиваются/уменьшаются, а с другой стороны RG2 и RG4 - уменьшаются/увеличиваются. При таком включении тензорезисторов в смежные плечи измерительного моста 6 электрический сигнал u0, пропорциональный перемещению от возмущающего воздействия, удваивается.

Поскольку последующие упругие слои предотвращают излом предыдущего участка, то соблюдается отношение между деформацией ε0 и выходным напряжением u0 и, соответственно, между электрическим сигналом u0 и возмущающим воздействием V(q).

1. Тензорезистивный преобразователь, содержащий: упруго-чувствительный элемент консольного типа, выполненный из тонкопленочного эластичного полимера, двух или четырех фольговых тензорезисторов, планарно и попарно расположенных на его противоположных сторонах, продольные оси которых симметричны относительно его продольной оси и параллельны между собой и электрических выводов со стороны его заделки; измерительный мост, смежные плечи которого попарно соединены с электрическими выводами фольговых тензорезисторов в полу- или полномостовую схему и индикатор, включенный в измерительную диагональ измерительного моста, при этом упруго-чувствительный элемент работает на изгиб ортогонально вектору приложенной силы, отличающийся тем, что введены по меньшей мере один и более упругих слоев, выполненных из тонкопленочного эластичного полимера, имеющих одинаковую с упруго-чувствительным элементом ширину, но различные длины, и расположены на нем последовательно с уменьшением длины в сторону его заделки, при этом упругие слои планарно жестко связаны между собой и упруго-чувствительным элементом либо планарно свободны, но собраны воедино в заделке в сэндвич-структуру, обладающей качеством тела равного сопротивления изгибу.

2. Тензорезистивный преобразователь по п. 1 отличающийся тем, что введенные один и более упругие слои расположены с двух сторон упруго-чувствительного элемента попарно симметрично или асимметрично относительно его продольной оси.

3. Тензорезистивный преобразователь по п. 1 или 2 отличающийся тем, что введен один упругий монослой, выполненный из эластичного полимера с непрерывно-изменяемой площадью поперечного сечения, минимальной на свободном конце упруго-чувствительного элемента и максимальной в заделке, с образованием тела равного сопротивления изгибу.



 

Похожие патенты:

Изобретение относится к измерительной технике, а именно к тензометрическим средствам измерения. Технический результат: расширение динамического диапазона преобразования напряженно-деформированных состояний сенсорной консоли вследствие воздействия на ее поверхность скоростного напора (динамического давления) газовых или жидкостных потоков.

Изобретение относится к буровой технике и предназначено для измерения параметров силового воздействия на буровое долото режуще-скалывающего действия в процессе разрушения им породы.

Изобретение относится к датчикам силы. Датчик силы содержит корпус, который выполнен в виде короба, основание которого с внешней стороны снабжено крестообразным хомутом для закрепления корпуса в держателе штатива, а к противоположной стороне хомута закреплено основание, посредством которого датчик силы устанавливается на лабораторном столе, корпус снабжен съемной крышкой, один торец которой выполнен с П-образным окном для выхода порта.

Изобретение относится к весовой технике, в частности к датчикам силы, для точного измерения небольших усилий в широком диапазоне. Силочувствительный элемент содержит упругое кольцо с тензорезисторами, два жестких кольца меньшего и большего диаметров, радиальные рычаги по своим концам снабжены верхними и нижними балками равной толщины и длины, выполненными в виде трапеций с криволинейными основаниями.

Изобретение относится к весовой технике, в частности к тензорезисторным датчикам силы, предназначенным для точного измерения сил, в том числе в агрессивных средах.

Изобретение относится к весовой технике, в частности к упругим элементам датчиков силы, предназначенных для точного измерения силы небольшой величины в широком диапазоне.

Изобретение относится к контрольно-измерительной технике и может быть использовано для постоянного измерения усилий в различных резьбовых соединениях строительных элементов и конструкций.

Изобретение относится к области измерительной техники, а именно к системам измерения усилий в стержнях, тягах и других протяженных элементах конструкций, и может быть использовано в любой отрасли народного хозяйства, и, в частности, в ракетной технике.

Изобретение относится к измерительной технике, в частности к устройству многокомпонентных тензометрических динамометров с внутренним каналом, и может быть использовано в различных областях техники (например, в робототехнике, экспериментальной гидро- и аэродинамике).

Изобретение относится к области измерительной техники, а именно к системам измерения усилий в стержнях, тягах и других протяженных элементах конструкций, нагруженных осевой силой.

Изобретение относится к приборостроению, в частности к измерительным устройствам для измерения и регистрации сил взаимодействия между колесом и рельсом. Техническим результатом является повышение точности измерения сил взаимодействия колеса с рельсом за счет уменьшения влияния на измерения вертикальных сил, поперечного смещения колеса относительно рельса и расширения частотного диапазона измеряемых вертикальных и боковых (горизонтальных) сил, возникающих при контакте колеса с рельсом при прохождении по геометрическим, стыковым неровностям пути и волнообразным неровностям на поверхности катания рельса. Устройство для измерения вертикальных и боковых сил взаимодействия между колесом и рельсом содержит железнодорожную колесную пару, тензометрические датчики, размещенные на внутренней и наружной стороне диска колеса по разные стороны от оси на концентричных диаметрах внутренней стороны дисков колес и включенные в полумостовые схемы, тензометрические усилители, програмируемый контроллер, блок передачи сигналов по радиоканалу, связанный с блоком приема сигналов и бортовым компьютером. Тензореристоры на наружной стороне диска колеса диаметрально расположены в створе с тензорезисторами на внутренней стороне, а угол α между соседними диаметрами на внутренней или наружной стороне диска колеса, на которых размещены диаметрально расположенные тензодатчики, составляет от 36° до 60° дуги окружности. 4 з.п. ф-лы, 12 ил.

Изобретение относится к измерительной технике и может быть использовано для регистрации нагрузок, в частности осевого усилия от вращающихся деталей, таких как валы или цапфы турбомашин. Заявленное устройство для замера осевого усилия ротора турбомашины содержит шариковый подшипник, внутреннее кольцо которого установлено на валу, а наружное кольцо в корпусе, а также установленные в корпусе плоское упругое кольцо, на торцевых поверхностях которого выполнены опорные площадки выступов, между которыми установлены тензодатчики и дополнительное упругое кольцо с тензодатчиками, при этом оно содержит два кольцевых элемента, контактирующих между собой по коническим относительно продольной оси вала торцевым поверхностям, которые образуют усеченный конус, большее основание которого расположено со стороны шарикового подшипника, при этом упомянутые кольцевые элементы установлены между близлежащими торцами плоского упругого кольца и наружного кольца шарикового подшипника, причем кольцевой элемент, контактирующий непосредственно с плоским упругим кольцом, выполнен разрезным, а другой кольцевой элемент установлен непосредственно в корпусе, при этом дополнительное упругое кольцо выполнено с коэффициентом жесткости меньшим, чем у плоского упругого кольца, и установлено между внутренней поверхностью корпуса и наружной поверхностью разрезного кольцевого элемента, а в осевом направлении дополнительное упругое кольцо ограничено торцом плоского упругого кольца и радиальным торцом, выполненным на внутренней поверхности корпуса, причем на наружной и внутренней поверхностях дополнительного упругого кольца выполнены опорные площадки выступов, между которыми установлены упомянутые тензодатчики, при этом плоское упругое кольцо, дополнительное упругое кольцо, два кольцевых элемента зафиксированы в корпусе в осевом направлении, а наружное кольцо шарикового подшипника зафиксировано в корпусе от проворота. Технический результат заключается в расширении диапазона замера осевого усилия ротора турбомашины, а также в сокращении времени и затрат на доводку турбомашины. 1 ил.

Изобретение относится к области измерительной техники и может быть использовано для весовых измерений в части измерений сигналов с первичных преобразователей силы (тензодатчиков). Аппаратура может применяться в любых отраслях промышленности, требующих прецизионных (0.002% и точнее) измерений массы, силы, момента силы и т.п. Многоканальный измерительный преобразователь сигналов в тензорезисторных мостовых схемах содержит блок генератора синусоидальных сигналов, блоки измерителей по числу каналов. Противофазные сигналы питания тензорезисторной мостовой схемы с выхода блока генератора синусоидальных сигналов через усилители мощности подаются на входы питания каждой тензорезисторной мостовой схемы, в каждом блоке измерителя напряжение со входов питания тензорезисторной мостовой схемы через дополнительные буферные усилители подается на входы опорного индуктивного делителя напряжения, выход которого соединен с первым входом коммутатора, второй вход которого соединен с выходной диагональю тензорезисторной мостовой схемы, а выход через дифференциальный операционный усилитель соединен со входом аналого-цифрового преобразователя (АЦП), режим работы которого задается первым микропроцессором. Вход-выход АЦП соединен с входом-выходом первого микропроцессора, выход которого соединен со входом второго микропроцессора (МП2), осуществляющего цифровое синхронное детектирование, цифровую фильтрацию и расчет коэффициента деления тензорезисторной мостовой схемы, вход-выход второго микропроцессора соединен входом-выходом устройства передачи данных, аналоговый вход МП2 соединен с выходом схемы защиты, входы которой соединены с выходами усилителей мощности, второй выход МП2 соединен с третьим входом схемы защиты, а третий выход МП2 - с третьим входом коммутатора. Тактирующий вход АЦП каждого блока измерителей соединен с выходом блока генератора синусоидальных сигналов, формирующим тактирующие импульсы, а дискретный вход первого микропроцессора каждого блока измерителей соединен с выходом блока генератора синусоидальных сигналов, формирующим сигнал полной фазы напряжения питания тензорезисторных мостовых схем. Технический результат - снижение основной и дополнительных погрешностей измерений. 3 з.п. ф-лы, 1 ил.
Наверх