Способ определения места короткого замыкания на воздушной линии электропередачи при несинхронизированных замерах с двух её концов

Предлагаемое изобретение относится к электроэнергетике и может быть использовано для определения места короткого замыкания на линиях электропередачи по замерам мгновенных значений токов и напряжений при несинхронизированных замерах с двух ее концов. Техническая задача изобретения заключается в повышении точности определения места повреждения. Технический результат изобретения достигается за счет учета фазных и междуфазных параметров линии при наличии точной синхронизации измеренных величин токов и напряжений по концам линии не синхронизированных по времени при измерении, которая выполняется путем совмещения осциллограмм с двух концов линии по срезу начала короткого замыкания. 2 ил.

 

Предлагаемое изобретение относится к электроэнергетике и может быть использовано для определения места короткого замыкания на линиях электропередачи при несинхронизированных замерах с двух ее концов.

Изобретение относится к приоритетному направлению развития науки и технологий «Технологии создания энергосберегающих систем транспортировки, распределения и потребления тепла и электроэнергии» [Алфавитно-предметный указатель к Международной патентной классификации по приоритетным направлениям развития науки и технологий / Ю.Г. Смирнов, Е.В. Скиданова, С.А. Краснов. - М.: ПАТЕНТ, 2008. - с. 97], так как решает проблему уменьшения времени задержек при транспортировке электроэнергии потребителям в случае повреждения электрических сетей.

Известен способ определения места повреждения на воздушных линиях электропередачи [Заявка RU №2009137563/28, G01R 31/08 (2006.01), дата публикации 20.04.2011], в котором измеряют с двух концов линии фазные напряжения и токи, преобразуют их в расчетные комплексные значения по предложенным выражениям, и, используя мнимые части расчетных величин, находят расчетным путем относительные и физические расстояния места повреждения от концов линии. В этом способе не используют эквивалентные параметры питающих систем, устранено влияние переходного сопротивления.

Признаками аналога, совпадающими с существенными признаками заявляемого способа, являются: измерение с двух концов линии (′ - один конец линии, ′′ - второй конец линии) не синхронизированных по углам фазных токов , и напряжений , основной частоты в момент короткого замыкания, расчетным путем с использованием замеров с обоих концов определение относительного значения расстояния до места короткого замыкания n и расстояние до места короткого замыкания lk=n·l.

Недостатком указанного способа является необходимость использования только мнимых составляющих расчетных величин.

Указанный недостаток может приводить к погрешности в определении места повреждения из-за недостаточного объема учитываемых параметров.

Известен способ определения места короткого замыкания на воздушной линии электропередачи по замерам мгновенных значений токов и напряжений с одного конца линии [учебное пособие «Методы и приборы определения места короткого замыкания на линии», Ивановский ГЭУ, 1998].

В данном способе измеряют на одном конце линии мгновенные значения фазного тока, тока нулевой последовательности, фазного напряжения, выбирают момент, когда ток в месте короткого замыкания равен нулю, что предполагает равенство нулю падения напряжения на переходном сопротивлении, и находят расстояние до места короткого замыкания по соотношению мгновенного значения напряжения на данном конце линии и удельного падения напряжения на одном километре линии.

Аналогично определяют расстояние до места короткого замыкания по замерам с другого конца линии.

Признаками аналога, совпадающими с существенными признаками заявляемого способа, являются: измерение с двух концов линии не синхронизированных по времени фазных токов , и напряжений , , в момент короткого замыкания, расчетным путем с использованием замеров с обоих концов определение относительного значения расстояния до места короткого замыкания n и расстояние до места короткого замыкания lk=n·1.

Недостатком аналога являются: неучет угла сдвига в момент короткого замыкания между векторными диаграммами по концам линии, необходимость измерения дополнительно к фазному току тока нулевой последовательности. Кроме того, способ реализован только в величинах интегральных значений, а в величинах мгновенных значений описан только аналитически. Потому как далее производят замену мгновенного значения напряжения на данном конце линии и удельного падения напряжения на одном километре линии в момент перехода тока нулевой последовательности i0 через нулевое мгновенное значение на расчет проекции на мнимую ось, перпендикулярную вектору тока нулевой последовательности I0, интегральных величин и , и определяют расстояние до места короткого замыкания по мнимым значениям указанных интегральных величин.

Указанный недостаток может приводить к погрешности в определении места повреждения из-за недостаточного объема учитываемых параметров.

Известен способ определения места повреждения на воздушных линиях электропередачи [Технология векторной регистрации параметров и ее применение для управления режимами ЕЭС России, Электро, №2, 2011, с. 2-5], в котором необходимость использования только мнимых составляющих расчетных величин устраняется. В этом способе предварительно измеряют угол между токами по концам линии. Что выполняют путем использования цифровых каналов связи между концами линии или путем использования спутниковой синхронизации времени. При использовании цифровых каналов связи углы определяют путем выполнения выборок синхронизированных по времени или путем постоянного вычисления времени прохождения сигнала между полукомплектами дифференциальной защиты линии. При использовании спутниковой синхронизации времени импульсы синхронизации времени получают от приемников сигнала ГЛОНАСС (GPS). Далее измеряют с двух концов линии фазные напряжения и токи, преобразуют их в расчетные комплексные значения по предложенным выражениям и, используя полные части расчетных величин, находят расчетным путем относительные и физические расстояния места повреждения от концов линии. В этом способе не используют эквивалентные параметры питающих систем, устранено влияние переходного сопротивления.

Признаками аналога, совпадающими с существенными признаками заявляемого способа, являются измерение фазных токов и напряжений в момент короткого замыкания на линии на обоих концах линии, учет угла между токами и напряжениями по концам линии и определение по соотношению измеренных величин расстояния до места короткого замыкания.

Основная особенность способа - это возможность учета влияния питания с противоположного конца линии, а также исключение погрешности от переходного сопротивления в месте короткого замыкания. Для реализации этого метода не требуется полная модель сети, т.е. программы расчета установившихся и аварийных режимов сети. Кроме того, не требуется производить предварительные измерения тока нагрузки, которые используют для компенсации погрешности от влияния нагрузки.

Недостатком способа является необходимость использования сложного оборудования и алгоритмов, например цифровых каналов связи между концами линии, когда углы определяют путем выполнения синхронизированных выборок по времени или путем постоянного вычисления времени прохождения сигнала между полукомплектами дифференциальной защиты линии, или оборудования спутниковой синхронизации времени, когда импульсы синхронизации времени получают от приемников сигнала ГЛОНАСС (GPS).

Известен способ определения места короткого замыкания на линии электропередачи по замерам с двух ее концов [патент RU 2508556 С1], принятый за прототип, имеющей длину l, активное R и индуктивное XL фазные сопротивления, соединяющей две питающие системы, в котором измеряют с двух концов линии (′ - один конец линии, ′′ - второй конец линии) несинхронизированные по времени мгновенные значения фазных токов , и напряжений , в момент короткого замыкания, определяют вид короткого замыкания, получают осциллограммы токов и напряжений, совмещают осциллограммы с двух концов линии по срезу начала короткого замыкания, выбирают на расстоянии двух-трех периодов от начала короткого замыкания сечение для осциллограмм тока и напряжения поврежденной фазы, определяют относительное значение расстояния до места короткого замыкания n по выражению:

где u′, u′′ - мгновенные значения напряжений, полученные в сечении осциллограмм напряжений поврежденной фазы с одного и второго концов линии (В);

i′, i′′ - мгновенные значения токов, полученные в сечении осциллограмм токов поврежденной фазы с одного и второго концов линии (А);

di′/dt, di′′/dt - производные токов по времени, (А/с);

R, XL - активное и индуктивное фазные сопротивления линии (Ом).

Далее определяют расстояние до места короткого замыкания со стороны конца с индексом ′ по выражению: l′=n·l.

Признаками прототипа, совпадающими с существенными признаками заявляемого способа, являются измерение фазных токов и напряжений в момент короткого замыкания на линии на обоих концах линии, учет угла между токами и напряжениями по концам линии и определение по соотношению измеренных величин расстояния до места короткого замыкания.

Основная особенность способа - это возможность учета влияния питания с противоположного конца линии, а также исключение погрешности от переходного сопротивления в месте короткого замыкания. Для реализации этого метода не требуется полная модель сети, т.е. программы расчета установившихся и аварийных режимов сети.

Недостатком способа, принятого за прототип, является необходимость использования усредненных величин - симметричных составляющих токов, напряжений и сопротивлений линии.

Указанный недостаток может приводить к погрешности в определении места повреждения из-за усреднения величин сопротивлений линии.

Изобретение направлено на решение задачи по созданию технологий, позволяющих повысить эффективность электроснабжения.

Технический результат изобретения заключается в повышении точности определения места повреждения за счет использования величин фазных токов и напряжений и величин полных фазных и междуфазных сопротивлений линии.

Технический результат достигается тем, что в способе определения места короткого замыкания на линии электропередачи по замерам с двух ее концов, имеющей длину l, комплексные сопротивления проводов фаз ZA=RA+jωLA, ZB=RB+jωLB, ZC=RC+jωLC, междуфазные комплексные сопротивления ZAB=RAB+jωLAB, ZBC=RAB+jωLAB, ZCA=RCA+jωLCA, соединяющей две питающие системы, измеряют с двух концов линии (′ - один конец линии, ′′ - второй конец линии) мгновенные значения фазных токов i′A, i′B, i′C, i′′A, i′′B, i′′C и напряжений u′А, u′B, u′C, u′′A, u′′B, u′′C во время короткого замыкания, получают осциллограммы токов и напряжений, совмещают осциллограммы с двух концов линии по срезу начала короткого замыкания, выбирают на интервале двух-десяти периодов от начала короткого замыкания сечение на осциллограммах тока и напряжения фаз, снимают мгновенные значения напряжений и u′А, u′B, u′C, u′′A, u′′B, u′′C и токов i′A, i′B, i′C, i′′A, i′′B, i′′ в сечении и в соседних точках, вычисляют в сечении производные от токов по времени diA′/dt, diB′/dt, diC/dt, diA′′/dt, diB′′/dt, diC′′/dt, определяют относительное значение расстояния до места короткого замыкания n и физическое расстояние до места короткого замыкания со стороны конца линии с индексом ′ по выражению: l′=n·l, согласно изобретению формируют падение напряжения в проводе каждой фазы линии duA′, duB′, duC′ от токов одного конца линии:

формируют падение напряжения в проводе каждой фазы линии duA′′, duB′′, duC′′ от токов второго конца линии:

и определяют относительное значение расстояния до места короткого замыкания по выражению:

где n - относительное значение расстояния до места короткого замыкания;

u′А, u′B, u′C, u′′A, u′′B, u′′C - мгновенные значения напряжений, полученные в сечении осциллограмм напряжений фаз А, В, C с одного и второго концов линии (В);

i′A, i′B, i′C, i′′A, i′′B, i′′C - мгновенные значения токов, полученные в сечении осциллограмм токов фаз А, В, C с одного и второго концов линии (А);

di′A/dt, di′B/dt, di′C/dt, di′′A/dt, di′′B/dt, di′′C/dt - мгновенные значения производных токов по времени, полученные в сечении осциллограмм токов фаз А, В, C с одного и второго концов линии, (А/с);

RA, RB, RC - активное фазные сопротивления линии (Ом);

LA, LB, LC - индуктивности фаз линии (Гн);

MAB, MBC, MCA - взаимоиндукции между проводами фаз линии (Гн).

Значения комплексных сопротивлений проводов фаз линии ZA=RA+jωLA, ZB=RB+jωLB, ZC=RC+jωLC, и междуфазных комплексных сопротивлений ZAB=RAB+jωLAB, ZBC=RAB+jωLAB, ZCA=RCA+jωLCA, (соответственно, собственных и взаимных сопротивлений) определяют по общеизвестным выражениям [например, Ульянов С.А. Электромагнитные переходные процессы в энергетических системах, изд-во Энергия, 1970 г., с 293, 294]:

где Rп - активное сопротивление провода (Ом);

Rз=0,05 - сопротивление земли (величина, учитывающая потери активной мощности при прохождении тока через землю) (Ом);

Dз - глубина протекания эквивалентного тока в земле (выбирается для каждой территории в отдельности) (м);

rпэ=0,95·rп - эквивалентный радиус провода (0,95 для сталеалюминиевых проводов, 0,85 - для алюминиевых проводов) (м);

rп - радиус провода (м);

Dвзаимн - расстояние между каждыми двумя проводами линии, например между проводами фаз А и В - DAB (м);

RA, RB, RC - действительная часть комплексного собственного сопротивления Zсобств, соответственно проводов фаз А, В, С (Ом);

LA, LB, LC - мнимая часть комплексного собственного сопротивления Zсобств, соответственно проводов фаз А, В, С, отнесенная к ω=2·π·f=314 (f=50 Гц);

MAB, МВC, MCF - мнимая часть комплексного взаимного сопротивления Zвзаимн, соответственно между проводами фаз А и В, В и С, С и А, отнесенная к ω=2·π·f=314 (f=50 Гц).

Отличия от прототипа доказывают новизну заявляемых вариантов технического решения, охарактеризованных в формуле изобретения.

Новый подход позволяет повысить точность определения места повреждения, и в то же время дает возможность практической реализации метода, благодаря раскрытию довольно простых средств и методов и отсутствию громоздких вычислений и сложных математических преобразований, что подтверждает соответствие заявляемых технических решений условию патентоспособности «промышленная применимость».

Из уровня техники неизвестны отличительные существенные признаки заявляемых способов, охарактеризованных в формуле изобретения, что подтверждает ее соответствие условию патентоспособности «изобретательский уровень».

Изобретение поясняется чертежом, где:

на фиг. 1 представлена общая трехфазная схема замещения линии электропередачи с двухсторонним питанием;

на фиг. 2 представлена трехфазная схема замещения линии для короткого замыкания на землю;

На фиг. 1 на трехфазной схеме замещения линии электропередачи с двухсторонним питанием, длиной l, имеющей комплексные сопротивления Z, Z, Z проводов фаз А, В и С, комплексные междуфазные сопротивления ZAB, ZBC, ZCA, ZBA, ZCB, ZAC (причем ZAB=ZBA, ZBC=ZCB, ZCA=ZAC), соединяющей шины 3 и 4 двух систем 1 и 2 с эквивалентными параметрами (ЭДС и комплексные сопротивления соответственно , , , , , , , , , , , , ′ - один конец линии, ′′ - второй конец линии).

На фиг. 2 на линии показано короткое замыкание 6 за переходным сопротивлением (RП) 7 на расстоянии nl от первого конца линии, сопротивления фаз и междуфазные сопротивления от первого конца линии до места короткого замыкания 8, сопротивления от второго конца линии до места короткого замыкания 9. При возникновении короткого замыкания на линии по ней протекают фазные токи в сопротивлениях 8, токи в сопротивлениях 9, сумма которых дает полный ток короткого замыкания (iK) в переходном сопротивлении 7, при этом на шинах 3 и 4 измеряют в виде осциллограмм с двух концов линии несинхронизированные по углам фазные токи , и напряжения , .

Рассмотрим однофазное короткое замыкание 8 на одноцепной линии с двухсторонним питанием (Фиг. 2). Параметры аварийного режима , , , замерены с двух сторон, и поэтому влияние переходного сопротивления (RП) 9 и питающих систем 6 и 7 можно исключить.

Падение напряжения в каждой фазе лини до точки короткого замыкания с двух концов линии (Фиг. 2.) можно записать как:

Упрощаем выражения 2

где

После преобразования выражения (3) путем сложения трех уравнений получим выражение (1).

Для реализации способа по выражению (1) измеряют с двух концов линии (′ - один конец линии, ′′ - второй конец линии) мгновенные значения фазных токов i′A, i′B, i′C, i′′A, i′′B, i′′C и напряжений u′А, u′B, u′C, u′′A, u′′B, u′′C во время короткого замыкания, получают осциллограммы токов и напряжений, совмещают осциллограммы с двух концов линии по срезу начала короткого замыкания, выбирают на интервале двух-десяти периодов от начала короткого замыкания сечение на осциллограммах тока и напряжения фаз, снимают мгновенные значения напряжений u′А, u′B, u′C, u′′A, u′′B, u′′C и токов i′A, i′B, i′C, i′′A, i′′B, i′′ в сечении и в соседних точках, вычисляют в сечении производные от токов по времени diA′/dt, diB′/dt, diC/dt, diA′′/dt, diB′′/dt, diC′′/dt, формируют падение напряжения в проводе каждой фазы линии duA′, duB′, duC′ от токов одного конца линии:

формируют падение напряжения в проводе каждой фазы линии duA′′, duB′′, duC′′ от токов второго конца линии:

определяют относительное значение расстояния до места короткого замыкания n и физическое расстояние до места короткого замыкания со стороны конца линии с индексом ′ по выражению: l′=n·l. Физическое расстояние до места короткого замыкания со стороны конца линии с индексом ′′ определяют по выражению: l′′=(l-n)·l.

Определение diA′/dt, diB′/dt, diC/dt, diA′′/dt, diB′′/dt, diC′/dt, производится одним из известных способов, например, на основе использования m-й i(mT) и предыдущей i(mT-T) выборки мгновенных значений токов в области сечения:

где i(mT) - последовательность мгновенных значений токов, взятых с осциллограмм (а), Т - период дискретизации (угол или время между двумя соседними точками осциллограммы).

Предложенный способ также позволяет определять место короткого замыкания при других видах замыкания: двухфазном, двухфазном на землю, трехфазном.

Определение места повреждения, выполненное по предложенной методике для схемы на фиг. 1, показало также полное отсутствие методической погрешности при наличии переходного сопротивления от 5 до 50 Ом и при изменениях нагрузочного режима в широких диапазонах. Погрешность отсутствует как при измерениях со стороны слабой, так и со стороны мощной системы.

Таким образом, использование измеренных мгновенных значений токов и напряжений в фазах линии с учетом фазных и междуфазных параметров линии позволяет получить точные параметры линии, что при наличии точной синхронизации по времени при двухстороннем несинхронизированном замере за счет совмещения осциллограммы с двух концов линии по срезу начала короткого замыкания, чем достигается более точное определение расстояния до места короткого замыкания.

При совмещении осциллограмм с двух концов линии по срезу начала короткого замыкания определяется точный угол между напряжениями и токами по концам линии. Значение угла между напряжениями и токами по концам линии могут быть использованы для других целей, например для анализа режима другой части сети.

Способ определения места короткого замыкания на воздушной линии электропередачи при несинхронизированных замерах с двух ее концов, имеющей длину l, имеющей комплексные сопротивления проводов фаз ZA=RA+jωLA, ZB=RB+jωLB, ZC=RC+jωLC, междуфазные комплексные сопротивления ZAB=RAB+jωLAB, ZBC=RAB+jωLAB, ZCA=RCA+jωLCA, соединяющей две питающие системы, в котором измеряют с двух концов линии (′ - один конец линии, ′′ - второй конец линии) мгновенные значения фазных токов и напряжений во время короткого замыкания, получают осциллограммы токов и напряжений, совмещают осциллограммы с двух концов линии по срезу начала короткого замыкания, выбирают на интервале двух-десяти периодов от начала короткого замыкания сечение на осциллограммах тока и напряжения фаз, снимают мгновенные значения напряжений и токов в сечении и в соседних точках, вычисляют в сечении производные от токов по времени определяют относительное значение расстояния до места короткого замыкания n и физическое расстояние до места короткого замыкания со стороны конца линии с индексом ′ по выражению: l′=n·l, отличающийся тем, что формируют падение напряжения в проводе каждой фазы линии от токов одного конца линии:

формируют падение напряжения в проводе каждой фазы линии от токов второго конца линии:

и определяют относительное значение расстояния до места короткого замыкания по выражению:

где n - относительное значение расстояния до места короткого замыкания;
- мгновенные значения напряжений, полученные в сечении осциллограмм напряжений фаз A, B, C с одного и второго концов линии (В);
- мгновенные значения токов, полученные в сечении осциллограмм токов фаз A, B, C с одного и второго концов линии (A);
- мгновенные значения производных токов по времени, полученные в сечении осциллограмм токов
фаз A, B, C с одного и второго концов линии, (А/с);
RA, RB, RC - активные фазные сопротивления линии (Ом);
LA, LB, LC - индуктивности фаз линии (Гн);
МАВ, МВC, MCA - взаимоиндукции между проводами фаз линии (Гн).



 

Похожие патенты:

Изобретение относится к электроэнергетике и может быть использовано для определения места короткого замыкания в длинных линиях электропередач. Технический результат: снижение трудоемкости и повышение точности при определении места короткого замыкания за счет более полного учета параметров линий.

Изобретение относится к контрольно-измерительной технике, в частности к устройствам, предназначенным для контроля качества электрической энергии. Сущность: передающие линейные полукомплекты снабжены блоком сравнения напряжений передающих линейных полукомплектов.

Изобретение относится к электроэнергетике, а именно к релейной защите и автоматике распределительных сетей, работающих в режиме с изолированной нейтралью. Сущность: используется модель контролируемого фидера.

Изобретение относится к электротехнике, а именно к релейной защите и автоматике линий электропередачи, и может быть использовано при создании устройств защиты и автоматики, требующих высокой степени адаптации характеристик срабатывания к режимам защищаемого объекта.

Изобретение относится к области электротехники и электроэнергетики и может быть использовано для определения места повреждения в трехфазной линии электропередачи (ЛЭП) высокого и сверхвысокого напряжения.

Изобретение относится к защите подземных сооружений от коррозии и может быть использовано при контроле работы устройств катодной защиты от коррозии. Сущность: поиск места повреждения протяженного анодного заземлителя (ПАЗ) индукционным способом осуществляют в три этапа с использованием различных схем подключения источников переменного тока к ПАЗ и с использованием переменного тока с частотой ниже 128 Гц, исключая частоты 100 и 50 Гц.

Изобретение относится к области электрохимической защиты подземных трубопроводов. Способ включает выявление поврежденной секции протяженного анодного заземлителя (ПАТ), а затем нахождение места повреждения на секции, при этом к концу секции подключают низкочастотный генератор тока, работающий на частотах менее 100 Гц, с помощью измерителя и датчика индуктивности определяют положение ПАТ в грунте, поиск места обрыва производят при помощи измерения поперечного градиента потенциала поверхности земли между измерительными электродами, при этом первый электрод расположен над ПАТ, а второй электрод - на расстоянии не менее 7 м со стороны, противоположной защищаемому трубопроводу, перпендикулярно ходу движения, причем измерения проводят с шагом 1 м, при определении измерителем максимального сигнала устанавливают контрольный знак, далее генератор переключают на другой конец поврежденной секции ПАТ и проводят измерения в обратном направлении, а за место повреждения ПАТ принимают среднюю точку между двумя контрольными знаками, установленными в местах обнаружения максимальных значений измеренных сигналов.

Изобретение относится к обнаружению замыканий на землю в электрической сети. Сущность: способ включает обнаружение короткого замыкания на землю на основе измеренных трехфазных токов iA, iB и iC и получение момента времени t, соответствующего моменту времени, когда было только что обнаружено короткое замыкание на землю; определение того, является ли это короткое замыкание на землю однофазным коротким замыканием на землю или двухфазным коротким замыканием на землю, на основе трех инкрементных фазных токов ΔiA, ΔiB и ΔiC в момент времени t; и когда определено однофазное короткое замыкание на землю, определение того, является ли это короткое замыкание на землю коротким замыканием выше по линии или коротким замыканием ниже по линии, на основе амплитуды инкрементного фазного тока замкнутой фазы.

Изобретение относится к устройствам контроля и может быть использовано для избирательного контроля сопротивления изоляции многофазных сетей переменного тока с изолированной нейтралью, находящихся под напряжением.

Использование: в области электротехники. Технический результат - повышение чувствительности дистанционной защиты.

Группа изобретений относится к электроизмерительной технике и может быть использована для определения местоположения обрыва в многожильном кабеле, не имеющем экранной оболочки, в частности геофизическом. Технический результат заключается в повышении точности за счет применения тонального детектора с узкой полосой пропускания, снижении влияния сигналов от недоступных для заземления жил за счет использования второго генератора с частотой вне полосы пропускания тонального детектора, снижении влияния сигналов промышленной частоты за счет применения фильтра высоких частот. Способ нахождения места обрыва многожильного электрического кабеля включает подачу первого переменного электрического сигнала на первый конец оборванной жилы, второго переменного электрического сигнала с частотой, отличной от частоты первого, на второй конец оборванной жилы, при этом устанавливают уровень второго переменного электрического сигнала выше уровня первого переменного электрического сигнала на втором конце оборванной жилы, но ниже уровня первого переменного электрического сигнала на первом конце оборванной жилы, затем определяют емкостным датчиком наличие электрического поля вдоль кабеля на частоте первого переменного электрического сигнала, находят место обрыва жилы по смене наличия электрического поля на отсутствие или наоборот. 2 н.п. ф-лы, 5 ил.

Изобретение относится к электроэнергетике и может быть использовано для определения места обрыва провода на воздушных линиях электропередачи на основе измерения параметров аварийного режима с двух концов линии. Технический результат: снижение трудоемкости и повышение точности при определении места обрыва за счет более полного учета параметров линий. Сущность: на предварительной стадии формируют полную модель линии в трехфазном виде с учетом взаимоиндуктивных и емкостных связей между проводами линий. При возникновении обрыва провода измеряют и регистрируют значения комплексных фазных напряжений на шинах и фазных токов в линии. Далее разбивают модель линии на равные участки, например, от опоры до опоры, формируют напряжения в конце каждого участка в каждой фазе, начиная от шин с одного и другого концов линии, формируют токи в конце каждого участка в каждой фазе, начиная от шин с одного и другого концов линии, регистрируют модули токов в каждом участке в каждой фазе, начиная от шин с одного и другого концов линии. По модулям токов строят графики с осями с двух сторон зависимости модулей токов от номера участка (от расстояния). Точка пересечения графиков с одного и другого концов линии соответствует точке обрыва.

Изобретение относится к электроэнергетике и может быть использовано для определения места короткого замыкания, совмещенного с обрывом. Технический результат: снижение трудоемкости и повышение точности за счет более полного учета параметров линий. Сущность: на предварительной стадии формируют полную модель линии, в трехфазном виде с учетом взаимоиндуктивных и емкостных связей между проводами линий. При возникновении обрыва провода, совмещенного с коротким замыканием, измеряют и регистрируют значения комплексных фазных напряжений на шинах и фазных токов в линии. Далее формируют модель линии из равных участков, например от опоры до опоры, формируют и сохраняют напряжения и токи в конце каждого участка в каждой фазе, начиная от шин с одного и другого концов линии. Выделяют модули токов и напряжений в каждом участке в каждой фазе, начиная от шин с одного и другого концов линии. Получают для трех фаз три графика токов с одного конца и три графика токов с другого конца линии, три графика напряжений с одного конца и три графика напряжений с другого конца линии. По графикам токов выбирают график той фазы и с той стороны, у которого кривая выглядит как ломаная линия, соприкасающаяся в точке излома с осью расстояний. Эта точка является точкой обрыва провода. По графикам напряжений выбирают график той фазы и с той стороны, у которого кривая выглядит как ломаная линия, близко подходящая в точке излома к оси расстояний. Эта точка является точкой короткого замыкания, совмещенного с обрывом провода в случае переходного сопротивления, равного нулю. Если переходное сопротивление отлично от нуля, то точка излома будет смещена от точки короткого замыкания. В этом случае точка короткого замыкания уточняется по графикам напряжений неповрежденных фаз, где точка пересечения графиков соответствует точке короткого замыкания, совмещенного с обрывом провода. 7 ил.

Изобретение относится к электроэнергетике и может быть использовано для определения места короткого замыкания на длинных воздушных линиях электропередач с отпайкой. Сущность: предварительно формируют модель линии, в трехфазном виде с учетом взаимоиндуктивных и емкостных связей между проводами линий и емкостных связей между проводом и землей. При возникновении короткого замыкания измеряют и регистрируют значения комплексных фазных напряжений на шинах и фазных токов в линии до и в момент короткого замыкания. Разбивают модель линии на равные участки. Формируют и сохраняют предаварийные напряжения и токи в конце каждого участка в каждой фазе. Выделяют модули фазных напряжений в конце каждого участка в каждой фазе. Из сохраненных напряжений и токов выделяют значения комплексных предаварийных фазных напряжений и токов в известной точке расположения отпайки. Находят фазные токи отпайки как разницу фазных токов участков, примыкающих к отпайке с одного и с другого концов линии, и определяют делением фазных комплексных токов отпайки на фазные комплексные напряжения в узле отпайки фазные значения проводимостей отпайки, включающие в себя проводимости линии и трансформатора от отпайки до нагрузки и проводимости нагрузки отпайки. Получают значения измеренных при КЗ фазных напряжений на шинах и токов с двух концов линии из осциллограмм цифрового регистратора аварийных процессов. Формируют и сохраняют напряжения при КЗ в конце каждого участка в каждой фазе, начиная от шин с одного и другого концов линии. Формируют и сохраняют токи при КЗ в конце каждого участка в каждой фазе, начиная от шин с одного и другого концов линии. Выделяют модули фазных напряжений в конце каждого участка в каждой фазе, начиная от шин с одного и другого концов линии. По модулям напряжений при КЗ строят графики с осями с двух сторон зависимости модулей напряжений от номера участка (от расстояния). Точка пересечения графиков с одного и другого концов линии, отличная от точки отпайки, соответствует точке короткого замыкания. Технический результат: повышение точности места повреждения. 1 з.п. ф-лы.

Изобретение относится к электроизмерительной технике и может быть использовано для бесконтактного дистанционного контроля рабочего состояния опорных высоковольтных изоляторов. Технический результат: обеспечение возможности определения момента возникновения преддефектного состояния за счет выявления областей с повышенной напряженностью электрического поля и измерения градиентов напряженности электрического поля в этих областях с последующим выделением дефектов. Сущность: локацию областей с повышенной напряженностью электрического поля и измерение градиентов напряженности поля осуществляют электрооптическим датчиком контроля напряженности электрического поля по значению коэффициента отражения лазерного пучка от указанного датчика, которое пропорционально напряженности электрического поля. Предварительно электрооптический датчик градуируют путем внесения его в калиброванное переменное электрическое поле. Затем для каждого типа изоляторов, которые подлежат диагностике, определяют в ходе стендовых измерений усредненные значения напряженности переменных электрических полей, соответствующие рабочему высокому напряжению и предельные границы градиентов напряженности электрических полей, не создающих электрический пробой или перекрытие изоляторов. Электрооптический датчик, размещенный на диэлектрической штанге и соединенный через поляризационный дискриминатор и волоконный световод, с лазерным излучателем, а также с фотоприемником, сканируют по поверхности опорного высоковольтного изолятора. При этом регистрируют пространственное положение электрооптического датчика на поверхности изолятора и соответствующую ему напряженность электрического поля, измеряют нормальные и тангенциальные компоненты градиентов напряженности электрического поля. Затем пространственное распределение повышенных нормальных и тангенциальных к поверхности градиентов напряженности электрического поля сравнивают с ранее записанным распределением значений напряженности для эталонного изолятора и выделяют области возможных внутренних пробоев и поверхностных перекрытий в изоляторе путем выделения градиентов напряженности электрического поля, превышающих уровень, безопасный для нормального функционирования. 1 з.п. ф-лы, 2 ил.

Изобретение относится к электротехнике и электроэнергетике и может быть использовано для определения места повреждения линии электропередачи. Технический результат: повышение точности определения места повреждения линии электропередачи. Сущность: фиксируют электромагнитные волны, возникающие в месте повреждения и распространяющиеся к концам линии. В моменты достижения фронтами волн концов линии измеряют и фиксируют разность времени прихода фронтов электромагнитных волн к концам линии. Место повреждения определяют путем суммирования половинной длинны линии, половинного произведения разности времени прихода фронтов электромагнитных волн на скорость распространения электромагнитных волн, а также корректирующего коэффициента. Корректирующий коэффициент определяют как произведение половинной разности времени прихода электромагнитных волн на приращение скорости распространения электромагнитных волн. При этом приращения скорости распространения электромагнитных волн формируют по результатам обходов линии электропередачи, соответствующих ранее произошедшим повреждениям. 3 табл., 3 ил.
Группа изобретений относится к области техники по определению местоположения электрических повреждений, преимущественно на железнодорожном транспорте. Технический результат: возможность определения конкретного пути, секции, номера пути (и, или группы путей), где произошло короткое замыкание и (или) повреждение как на станции, так и на перегоне, а также возможность определения участка с нарушением проектного положения элементов линии электроснабжения. Сущность: короткое замыкание (КЗ) локально фиксируется на основе порогового принципа определения тока КЗ на токоведущих частях контактной сети, на расстоянии от них, или на спусках заземления опор или мостов, тоннелей, путепроводов, или вблизи токоведущих частей в зоне магнитного (электромагнитного) влияния, или на электроподвижном составе. Фиксируется отклонение элементов линии электроснабжения от проектного положения. Информация передается в пункт приема через ретранслятор, расположенный в любом удобном месте, который обслуживает группу датчиков в зоне радиовидимости, и далее по каналам связи до ближайшей станции, трансформаторной подстанции, поста секционирования, диспетчерского пункта. 2 н. и 9 з.п. ф-лы.

Изобретение относится к электроэнергетике и может быть использовано для определения места короткого замыкания на линиях электропередачи по измерениям с двух ее концов без использования эквивалентных параметров питающих систем. Технический результат: повышение точности определении места короткого замыкания. Сущность: измеряют с двух концов линии несинхронизированные по углам комплексные фазные токи и напряжения основной частоты в момент короткого замыкания, измеряют угол между одноименными напряжениями по концам линии, доворачивают векторы напряжений и токов на втором конце на измеренный угол, расчетным путем определяют относительное значение расстояния до места короткого замыкания с использованием фазных величин токов и напряжений и продольных и поперечных фазных и междуфазных параметров линии. 1 з.п. ф-лы, 3 ил.

Изобретение относится к электроэнергетике и может быть использовано для определения места короткого замыкания на линиях электропередачи с грозозащитным тросом по измерениям с двух ее концов. Технический результат: повышение точности определения места короткого замыкания. Сущность: измеряют с двух концов линии не синхронизированные по углам комплексные фазные токи и напряжения основной частоты в момент короткого замыкания, измеряют угол между одноименными напряжениями по концам линии, например, доворачивают векторы напряжений и токов на втором конце на измеренный угол, расчетным путем определяют относительное значение расстояния до места короткого замыкания с использованием величин емкостных фазных и междуфазных проводимостей, величин полных фазных и междуфазных сопротивлений линии с учетом троса при использовании токов и напряжений троса. 2 з.п. ф-лы, 3 ил.

Изобретение относится к электроэнергетике и может быть использовано для определения мест повреждения (короткого замыкания, обрыва фаз) последовательно на всех поврежденных фазных проводах линии электропередачи по измерениям с двух ее концов значений наведенных токов или напряжений. Сущность: способ включает определение постоянной времени затухания убывающей апериодической составляющей наведенного тока или действующих значений наведенных токов или напряжений с дальнейшим определением расстояния до места короткого замыкания. Технический результат: повышение точности определения места повреждения, что обусловлено учетом действительных параметров линии электропередачи, т.е. ее распределенной емкости, индуктивности и текущего активного сопротивления. 3 н. и 1 з.п. ф-лы.
Наверх