Системная сеть передачи сообщений многомерного тора с хордовыми связями

Изобретение относится к вычислительной технике, в частности к построению системных сетей для суперкомпьютеров в виде многомерных торов. Технический результат изобретения заключается в возможности существенного уменьшения времени доставки сообщений за счет сокращения диаметра сети (расстояния между узлами в каждом измерении тора) и уменьшения времени ожидания передачи (нахождения в очереди для передачи по сети). В системной сети передачи сообщений в сгруппированных попарно кольцах любого измерения первое кольцо образовано последовательным соединением коммутаторов всех узлов данного измерения, а второе кольцо образовано хордовыми связями с шагом p для данного кольца, то есть соответствующий данному кольцу порт коммутатора i-го узла соединен с соответствующим данному кольцу портом коммутатора (i+p)-го узла, при этом коммутатор узла для этой пары колец имеет функции передачи сообщений как по своему кольцу, так и функции перекрестной передачи из одного кольца в другое. Причем улучшение характеристик может быть достигнуто не только преобразованием пар дуплексных колец в дуплексные мультикольца, но и при замене дуплексных колец на симплексные мультикольца. 1 н. и 2 з.п. ф-лы, 10 ил.

 

Изобретение относится к области вычислительной техники.

Известно построение системных сетей современных высокопроизводительных параллельных МВС (суперкомпьютеров) в виде многомерных торов (Дмитрий Макагон, Евгений Сыромятников. Сети для суперкомпьютеров. // Открытые системы. 2011. №07). Сети с топологией торов представляют собою решетки, у которых в каждом измерении, кроме связей между соседними узлами, имеются связи между крайними узлами, таким образом, в каждом измерении образуется кольцевой канал передачи данных (далее кольцо). Сеть «Ангара», например, имеет топологию 4-мерного (4D) тора (Михеев В.А. и др. Реализация высокоскоростной сети для суперкомпьютерных систем: проблемы, результаты, развитие. // URL: http://2013.nscf.ru/TesisAll/Section%201/12 2761 SimonovAS S1.pdf). На фиг. 1 изображена эта сеть с 3-мя узлами в каждом измерении (3×3×3×3).

В качестве прототипа выбрана сеть «Gemini» (The Gemini System Interconnect ALVERSON R., ROWETH D. AND KAPLAN L. The Gemini System Interconnect // 18th IEEE Symposium on High Performance Interconnects. 2009. P. 3-87.). В конкретном 3-мерном решении, представленном на фиг. 2, измерения X и Y включают по 32 узла, которые связывают 4 дуплексных кольца, а измерение Ζ соответственно 16 узлов и 2 дуплексных кольца (дуплексное кольцо представляет собою пару встречных симплексных колец). Многомерные торы применяются в первую очередь для сокращения времени доставки пакетов по системной сети и повышения ее пропускной способности за счет пространственного распараллеливания при сравнительно невысокой сложности сетевых узлов.

Недостатком топологии, примененной в прототипе, является неоптимальность использования множества колец. В каждом измерении все кольца имеют одинаковую топологию (последовательность соединения узлов). Использование колец с разной топологией открывает возможность существенного уменьшения времени доставки сообщений и повышения пропускной способности множества колец каждого измерения. Целью изобретения является повышение быстродействия системной сети многомерного тора.

Технический результат заключается в повышение быстродействия тора за счет сокращения времени передачи пакетов по кольцам отдельных измерений. Время передачи по отдельному кольцу складывается из времен доставки пакетов по кольцу и времени ожидания передачи в это кольцо. Время доставки по дуплексному кольцу может быть уменьшено за счет сокращения его диаметра (расстояния между узлами в кольце измерения). Время ожидания передачи в дуплексное кольцо (нахождения в очереди к нему) может быть уменьшено за счет повышения его пропускной способности.

Технический результат достигается тем, что каждая пара кольцевых каналов передачи сообщений любого измерения образует мультикольцо, в котором первое кольцо образовано последовательным соединением коммутаторов всех узлов данного измерения, то есть соответствующий порт коммутатора i-го узла каждого кольца соединен с соответствующим портом коммутатора (i+1)-го узла, а второе кольцо образовано хордовыми связями с шагом p для данного кольца, то есть соответствующий данному кольцу порт коммутатора i-го узла соединен с соответствующими данному кольцу портом коммутатора (i+p)-го узла, где Ν - количество узлов в данном измерении тора, 0≤i≤Ν, Ν≥4, p≥2 и номер следующего узла вычисляется по modN, при этом коммутатор узла для этой пары колец имеет функции передачи сообщений как по своему кольцу, так и функции перекрестной передачи из одного кольца в другое.

Кольцевые каналы передачи сообщений являются симплексными, и коммутатор передает сообщения в направлении возрастания номеров узлов.

Кольцевые каналы передачи сообщений являются дуплексными, и коммутатор может передавать сообщения по любому симплексному кольцу любого дуплексного кольца как в направлении возрастания номеров узлов, так и в направлении убывания номеров узлов.

Техническая сущность и принцип действия предложенной сети поясняются следующими иллюстрациями.

Фиг. 1. Системная сеть 4D-тор «Ангара».

Фиг. 2. Системная сеть 3D-тор «Gemini».

Фиг. 3. Дуплексное кольцо.

Фиг. 4. Дуплексное ДМКМ {9, (1, 4)}.

Фиг. 5. Симплексное МКМ {9, (1, 4)}.

Фиг. 6. Отношения диаметров α=DДК/DМКМ и β=DПДК/DДМКМ

Фиг. 7. Отношения емкостей µ=СМКМДК и τ=СДМКМПДК

Фиг. 8. Симплексное МКМ {9, (1, 3)}.

Фиг. 9. Маршруты МКМ {9, (1, 3)}: 1, 2, 5; 5, 6, 0; 0, 3, 4; 4, 5, 8; 3, 6; 6, 7, 8.

Фиг. 10. Диаграмма передачи сообщений МКМ {9, (1, 3)}.

Опишем предложенную системную сеть.

Для начала рассмотрим работу дуплексного кольца (ДК), которое является непременным элементом любого измерения известных торов, фиг. 3.

В описании предположим сегментированную передачу сообщений (пакетов), хотя в предлагаемой сети могут быть использованы разные методы доступа к каналу (в частности, вставка регистра). При сегментированной передаче в кольце перемещается постоянное число сегментов (выделенных, например, синхрометками) со скоростью ν, в кольце помещается целое число сегментов. Абонент-источник «помещает» готовый к выдаче пакет длины сегмента в проходящий мимо него свободный сегмент; и абонент-приемник забирает пакет из кольца, очищая сегмент для последующего использования другими источниками. Таким образом, сегмент за один проход по кольцу может быть использован многократно. Среднее число пакетов, перенесенное сегментами за один проход (при постоянной готовности абонентов к выдаче) называется его емкостью С (этот параметр также характеризует среднее число параллельных передач в одном сегменте). Последовательность узлов, через которые проходит пакет от источника до приемника, называется маршрутом. Среди возможных маршрутов между источником и приемником есть минимальный. Самый длинный маршрут из множества всех минимальных маршрутов в кольце - есть его диаметр D. Пропускная способность W определяется как произведение Cv. На фиг. 3 изображено дуплексное кольцо (ДК), состоящее из двух встречных симплексных колец, и указаны его основные параметры. Разными линиями показаны маршруты передач, выполняемые в одном сегменте каждого симплексного кольца: по внешнему кольцу 9→3 (9, 1, 2, 3); 3→5 (3, 4, 5); 6→8 (6, 7, 8), по внутреннему кольцу 2→7 (2, 1, 9, 8, 7); 7→4 (7, 6, 5, 4).

Для построения системной сети многомерного тора с хордовыми связями предлагается в каждом измерении из сгруппированных пар колец образовывать минимальные коммутируемые мультикольца (МКМ), одно из которых применительно к дуплексным каналам представлено на фиг. 4. Маршрут в таком мультикольце может начинаться и заканчиваться в одном кольце или быть перекоммутирован в другое и там завершиться. Коммутируемые мультикольца были введены в статье Алленов А.В., Подлазов B.C. Пропускная способность набора кольцевых каналов II. Кольцевые коммутаторы // Автоматика и телемеханика. 1996. №4. С. 162-172.

Дуплексное минимальное коммутируемое мультикольцо (ДМКМ) с N узлами, перенумерованными целыми числами из [0, N-1], состоит из двух дуплексных колец: одно с шагом S=±1, а другое с шагом S=±p, где 0≤i≤Ν, N≥4, p≥2, знак «+» означает соединение и передачу по симплексному кольцу в направлении возрастания номеров узлов, а знак «-» означает соединение и передачу по симплексному кольцу в направлении убывания номеров узлов. Номер j-го узла, подсоединенного в кольце к i-му узлу, определяется по формуле j=(i+S)modN. Будем обозначать такое минимальное коммутируемое мультикольцо в виде {N, (1, p)}. На фиг. 4 приведено дуплексное ДМКМ {9, (1, 4)}, а на фиг. 5 симплексное МКМ {9, (1, 4)}, которое является однонаправленной частью ДМКМ {9, (1, 4)}. В МКМ в пары группируются симплексные кольца, а в ДМКМ - дуплексные кольца.

Коммутаторы узлов позволяют передавать сообщения во всех заданных выше направлениях по любому симплексному кольцу.

Вариантом системной сети многомерного тора с хордовыми связями, также повышающим быстродействие сети, является сеть, полностью построенная на МКМ в каждом измерении. Такую сеть, например, можно организовать, если каждое дуплексное кольцо (ДК) прототипа заменить на МКМ.

На фиг. 4 и фиг. 5 приведены вычисленные значения диаметров для этих топологий (в предположении, что число узлов N=np), которые показывают преимущество их использования в многомерных торах по сравнению с топологиями, имеющей одинаковые кольца: повышение быстродействия происходит не за счет увеличения числа колец, а за счет изменения топологии, число входов сетевых коммутаторов не меняется, а изменяется вид связей и алгоритм коммутации в узлах.

Аналитические выкладки и имитационное моделирование показали (Подлазов B.C. Повышение характеристик многомерных торов. Управление большими системами // 2014. Вып. 51. С. 60-81), что в практически важном диапазоне 16≤N≤64 имеет место, во-первых, уменьшение диаметра МКМ в 1,3÷2,3 раза и диаметра ДМКМ - в 2÷4 раза, и, во-вторых, увеличение пропускной способности МКМ в 1,2÷2,1 раза и пропускной способности ДМКМ - в 1,4÷3,1 раза по сравнению с обычным ДК и парой дуплексных колец (ПДК) соответственно. Графики отношений диаметров α=DДК/DМКМ и β=DПДК/DДΜΚΜ приведены на фиг. 6, а графики отношений пропускной способности, определяемые емкостью С мультиколец, µ=СМКМДК и τ=СДМКМПДК приведены на фиг. 7, где С приводятся для тех р, при которых они достигают максимума.

Покажем возможность реализации данного изобретения на примере работы МКМ {9, (1, 3)}. Первое полное кольцо этой МКМ помечено цифрой 1, второе хордовое кольцо в данном случае состоит из 3-х миниколец 2А, 2В и 2С, фиг. 8. На МКМ заданы несколько маршрутов передачи: 1, 2, 5; 5, 6, 0; 0, 3, 4; 4, 5, 8; 3, 6; 6, 7, 8, изображенных на фиг. 9 разными линиями. Они представлены в виде дуг, по которым должна осуществляться передача сообщений. На фиг. 10 изображена возможная диаграмма передачи сообщений для заданных маршрутов в этом МКМ. Диаграмма представлена в виде отрезков, пара цифр над которыми указывает дугу маршрута, по которой осуществляется передача, стрелки означают переход с одного кольца на другое. Все мультикольца предлагаемого многомерного тора работают аналогично. При использовании мультиколец ДМКМ передача сообщений в них осуществляется с учетом использования двух встречных МКМ и возможности передачи сообщений из одного в другое. В приведенном примере все маршруты осуществляются параллельно за один проход сегментов по каждому кольцу.

1. Системная сеть передачи сообщений многомерного тора с хордовыми связями, характеризующаяся тем, что каждая пара кольцевых каналов передачи сообщений любого измерения образует мультикольцо, в котором первое кольцо образовано последовательным соединением коммутаторов всех узлов данного измерения, то есть соответствующий порт коммутатора i-го узла каждого кольца соединен с соответствующим портом коммутатора (i+1)-го узла, а второе кольцо образовано хордовыми связями с шагом р для данного кольца, то есть соответствующий данному кольцу порт коммутатора i-го узла соединен с соответствующим данному кольцу портом коммутатора (i+p)-го узла, где N - количество узлов в данном измерении тора, 0≤i≤N, N≥4, р≥2 и номер следующего узла вычисляется по modN, при этом коммутатор узла для этой пары колец имеет функции передачи сообщений как по своему кольцу, так и функции перекрестной передачи из одного кольца в другое.

2. Системная сеть передачи сообщений по п. 1, характеризующаяся тем, что кольцевые каналы передачи сообщений являются симплексными и коммутатор передает сообщения в направлении возрастания номеров узлов.

3. Системная сеть передачи сообщений по п. 1, характеризующаяся тем, что кольцевые каналы передачи сообщений являются дуплексными и коммутатор может передавать сообщения по любому симплексному кольцу любого дуплексного кольца как в направлении возрастания номеров узлов, так и в направлении убывания номеров узлов.



 

Похожие патенты:

Изобретение относится к вычислительной технике. Технический результат заключается в предоставлении параметров уровня услуг (SLS), необходимых для эксплуатации взаимосвязанного компьютерного узла обновленного инфраструктурного уровня.

Изобретение относится к лабораторному оборудованию и может быть использовано в учебном процессе при получении курсантами военных академий знаний по управлению войсками.

Изобретение относится к лабораторному оборудованию и может быть использовано в учебном процессе при получении курсантами военных академий знаний по управлению войсками.

Изобретение относится к системам аутентификации с использованием аутентификационной информации из веб-обозревателя. Технический результат заключается в обеспечении устройством обработки информации уведомления сервера относительно завершения операции управления без дополнительной обработки по аутентификации.

Изобретение относится к системе контроля территорий и управления силами и средствами охраны. Технический результат заключается в автоматизации управления средствами охраны.

Изобретение относится к вычислительной технике и предназначено для сбора информации от внешних источников, последующей ее обработки и выработки сигналов управления различным корабельным оружием.

Изобретение относится к управлению безопасностью вычислительных ресурсов. Технический результат - эффективное управление безопасностью вычислительных ресурсов.

Изобретение относится к способу, машиночитаемому запоминающему устройству и компьютерной системе для выполнения классификации зон сообщений электронной почты. Технический результат заключается в повышении безопасности передачи данных сообщений электронной почты.

Изобретение относится к машиночитаемому носителю данных и способам предоставления для клиента деталей оптимизации хранения данных в сервере хранения данных. Технический результат заключается в оптимизации хранения и передачи данных.

Изобретение относится к области информационных технологий, а именно к техническим средствам, обеспечивающим проведение совещаний участников, находящихся на удалении друг от друга, с использованием видеоконференц-связи.

Изобретение относится к удаленному просмотру и направлено на генерацию и управление возобновляемым контекстом удаленного просмотра на провайдере распределенных вычислений. Технический результат - возможность продолжения пользователем сессии просмотра, начатой на первом клиентском вычислительном устройстве, открывая программное приложение браузера на другом клиентском вычислительном устройстве. Для этого клиентское вычислительное устройство запрашивает удаленный экземпляр возобновляемого контекста просмотра на провайдере распределенных вычислений. Провайдер распределенных вычислений предоставляет результаты обработки, соответствующие обработанным представлениям запрашиваемого контента, на клиентское вычислительное устройство. Возобновляемый контекст просмотра может быть сохранен провайдером распределенных вычислений после того, как пользователь заканчивает свое взаимодействие с приложением браузера на клиентском устройстве. Клиентское вычислительное устройство может впоследствии запросить доступ к возобновляемому контексту просмотра, сохраненному на устройстве распределенных вычислений и хранения данных. 3 н. и 19 з.п. ф-лы, 17 ил.

В различных вариантах осуществления пользователь взаимодействует с удаленно выполняющимися мобильными приложениями из транспортного средства. Транспортное средство может включать в себя по меньшей мере один компьютер, который включает в себя человеко-машинный интерфейс (HMI) для управления с помощью пользователя. Мобильные приложения могут быть выполняющимися на сервере приложений, который удален от транспортного средства и осуществляет связь с по меньшей мере одним компьютером. Кроме того, мобильные приложения могут быть выполнены с возможностью принимать вводы из и передавать выводы на по меньшей мере один компьютер. Приложение HMI, выполняющееся на по меньшей мере одном компьютере, может обеспечивать возможность предоставления одной или более служб HMI мобильным приложениям, так чтобы мог осуществляться обмен вводами и/или выводами для мобильных приложения. Таким образом, может предоставляться возможность основанной на транспортном средстве работы мобильных приложений с по меньшей мере одного компьютера посредством HMI. 3 н. и 17 з.п. ф-лы, 3 ил.

Изобретение относится к способу и системе связи по сети между клиентом и сервером, который обрабатывает запросы от клиента к серверу. Технический результат заключается в повышении безопасности осуществления связи с серверными вычислительными устройствами и достигается за счет того, что выполняют прием первым компьютерным устройством, предназначенным для управления первым доменом, запроса от второго компьютерного устройства во втором домене на осуществление связи в качестве и от имени клиента с третьим компьютерным устройством. Определяют, что третье компьютерное устройство находится в первом домене. Проверяют условие соответствия требований политики для делегирования полномочий по осуществлению связи с третьим компьютерным устройством, причем эти одно или более требований политики заданы третьим компьютерным устройством и введены в действие первым компьютерным устройством. Принимают конфигурационную информацию касаемо второго компьютерного устройства и четвертого компьютерного устройства. Формируют подписанный билет сервиса, представляющего собой совокупность информации для удовлетворения упомянутого запроса на осуществление связи. 3 н. и 17 з.п. ф-лы, 6 ил.

Изобретение относится к области сред связи с сетевой структурой. Техническим результатом является сопоставление обнаруженных оповещений с действиями по восстановлению для автоматического разрешения проблем в среде связи с сетевой структурой. Оповещения, основанные на обнаруженных аппаратных и/или программных проблемах в среде комплексного распределенного приложения, сопоставляются с действиями по восстановлению для автоматического разрешения проблем. Несопоставленные оповещения передаются по инстанции назначенным людям или группам посредством циклического способа передачи по инстанции, который включает в себя подтверждающее уведомление о передаче обработки от назначенного человека или группы. Информация, собранная для каждого оповещения, как, впрочем, и решения посредством процесса передачи по инстанции, могут записываться для расширения базы знаний автоматизированного разрешения. 3 н. и 17 з.п. ф-лы, 6 ил.

Изобретение относится к области обеспечения торговой площадки для услуг программного обеспечения. Техническим результатом является эффективное обеспечение услуг программного обеспечения. Раскрыта система торговой площадки, обеспечивающая торговую площадку для услуги программного обеспечения (ПО), разработанной разработчиком. Система торговой площадки может регистрировать услугу ПО, конфигурировать сервер для обеспечения услуги ПО и направлять объявления об услуге ПО потенциальным потребителям (например, другим разработчикам). Система торговой площадки может принимать запрос на вызов услуги ПО, направлять запрос в сервер, сконфигурированный для обеспечения услуги ПО, и записывать (например, учитывать) использование услуги ПО. Когда потребитель вызывает услугу ПО, система торговой площадки может начислять плату потребителю за использование услуги ПО. Кроме того, система торговой площадки может формировать и обеспечивать отчет, в котором указывается использование услуги ПО. 4 н. и 16 з.п. ф-лы, 10 ил.

Изобретение относится к способу и системе для интеграции процесса функционирования различных подсистем при управлении подземными работами. Технический результат - автоматизация управления подземными работами. Данные, относящиеся к подземной работе, получают от одного или нескольких функциональных блоков в централизованном функциональном блоке. Эти полученные данные используются в указанном централизованном функциональном блоке по-разному, в том числе для передачи данных в подсистему снабжения для координирования действий по обеспечению доступности материалов для предстоящей работы; передачи данных в подсистему технической поддержки работ для выполнения по меньшей мере одной из следующих функций: координирования действий по обеспечению доступности персонала для выполнения одной или нескольких подземных работ и проверки качества касательно одной или нескольких подземных работ; и передачи данных в подсистему логистики для управления мобилизацией персонала для выполнения одной или нескольких подземных работ. 2 н. и 14 з.п. ф-лы, 4 ил.

Изобретение относится к области защиты данных от несанкционированной передачи, а именно к обнаружению устройства для связи среди устройств связи в сети, с которым разрешен обмен данными. Техническим результатом является ускорение обнаружения связанных устройств и предотвращение передачи данных несвязанным устройствам. Для этого, в случае когда первое устройство обнаружено в первой сети, выполняется опрос устройства во второй сети в отношении того, является ли обнаруженное первое устройство устройством, обладающим действительной привязкой к данному устройству. Если в результате опроса, определено, что обнаруженное первое устройство является устройством, обладающим действительной привязкой к данному устройству, то получают данные от обнаруженного первого устройства. С другой стороны, если определено, что обнаруженное первое устройство не является устройством, обладающим действительной привязкой к данному устройству, то не получают данные от обнаруженного первого устройства. 3 н. и 9 з.п. ф-лы, 16 ил.

Изобретение относится к области взаимодействия нескольких компьютеров. Технический результат - предоставление клиенту возможности возобновить соединение с сервером путем удаленного сохранения информации о состоянии клиента в связи с ключом возобновления. Система предоставляет фильтр ключа возобновления, функционирующий на сервере, который обеспечивает хранение непостоянной информации о состоянии сервера. Информация о состоянии может включать в себя такую информацию, как уступающие блокировки, аренды, предоставленные клиенту, и рабочие операции над дескриптором файла. Драйвер фильтра ключа возобновления находится выше файловой системы, что позволяет нескольким протоколам доступа к файлу использовать этот фильтр. В результате события отработки отказа, такого как сервер, выходящий из строя или теряющий возможность подключения к клиенту, система может ввести в эксплуатацию другой сервер или тот же сервер и восстановить состояние для дескрипторов файлов, удерживаемых различными клиентами, с использованием фильтра ключа возобновления. 3 н. и 17 з.п. ф-лы, 4 ил.

Изобретение относится к распределенным системам хранения данных. Технический результат заключается в оптимизации работы распределенной системы хранения данных и достигается за счет использования инфраструктурного уровня, который обеспечивает в каждом из взаимосвязанных компьютерных узлов, включающих ресурсы для обработки, поиск наиболее подходящего компьютерного узла для решения задачи хранения данных. При этом каждый компьютерный узел сконфигурирован для выполнения USPD (унифицированная платформа распределенная данных), сконфигурированного для получения задачи, имеющей задания вычисления степеней, так, что каждая степень является показателем заданий и, в то же время, соответствует по меньшей мере одному требованию соглашения об уровне услуги (SLS). Степень вычисляется относительно данных параметров ресурсов, связанных с хранением. На основании вычисленных степеней задача передается в наиболее подходящий компьютерный узел. Усовершенствованный инфраструктурный уровень создается в ответ на добавление взаимосвязанных компьютерных узлов и выполнение заданий следующих задач или маршрутизацию следующих задач в наиболее подходящий компьютерный узел на основании вычисленных степеней. 6 н. и 45 з.п. ф-лы, 23 ил.

Изобретение относится к технике обработки цифровых данных с помощью программируемых специализированных вычислительных устройств и может быть использовано при разработке специализированных вычислительных устройств обработки цифровых данных на борту боевых летательных аппаратов. Технический результат - повышение надежности и гибкости реконфигурации платформы интегрированной модульной авионики боевых комплексов (ИМА БК). Платформа ИМА БК включает следующие элементы: универсальный вычислительный процессорный модуль - УВМ 1; модуль графического контроллера - МГК 2; модуль ввода/вывода - МВВ 3; модуль коммутатор - МК 4; канал информационного обмена - КИО 5; программируемый контроллер модуля - ПКМ 6; канал телевидеоизображения - КТВИ 7; сетевой канал информационного обмена - СКИО 8; сервисный канал информационного обмена - СервКИО 9. 2 з.п. ф-лы, 3 ил.
Наверх