Устройство для управления двухфазным асинхронным двигателем в режиме пульсирующего движения



Устройство для управления двухфазным асинхронным двигателем в режиме пульсирующего движения
Устройство для управления двухфазным асинхронным двигателем в режиме пульсирующего движения
Устройство для управления двухфазным асинхронным двигателем в режиме пульсирующего движения
Устройство для управления двухфазным асинхронным двигателем в режиме пульсирующего движения
H02P23/04 - Управление или регулирование электрических двигателей, генераторов, электромашинных преобразователей; управление трансформаторами, реакторами или дроссельными катушками (конструкции пусковых аппаратов, тормозов или других управляющих устройств см. в соответствующих подклассах, например механические тормоза F16D, механические регуляторы скорости G05D; переменные резисторы H01C; пусковые переключатели H01H; системы для регулирования электрических или магнитных переменных величин с использованием трансформаторов, реакторов или дроссельных катушек G05F; устройства, конструктивно связанные с электрическими двигателями, генераторами, электромашинными преобразователями, трансформаторами, реакторами или дроссельными катушками, см. в соответствующих подклассах, например H01F,H02K; соединение или управление

Владельцы патента RU 2587545:

Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский Томский политехнический университет" (RU)

Изобретение относится к электротехнике, а именно к колебательным электроприводам переменного тока. Устройство для управления двухфазным асинхронным двигателем в режиме прерывистого движения содержит источник переменного тока, задающий генератор, амплитудный модулятор, фазовое звено, фазовый детектор, электронный ключ и инвертор, выход которого соединен с обмоткой управления двухфазного асинхронного двигателя. Обмотка возбуждения двухфазного асинхронного двигателя подключена к источнику переменного тока. Выход задающего генератора соединен с первым входом амплитудного модулятора, второй вход которого соединен с выходом фазового звена. Вход фазового звена подключен к источнику переменного тока. Первый вход электронного ключа соединен с выходом амплитудного модулятора, а вторым входом электронного ключа соединен с выходом фазового детектора. Первый вход фазового детектора подключен к выходу фазового звена, а второй вход - к выходу задающего генератора. Выход электронного ключа соединен с входом инвертора напряжения. Технический результат состоит в устранении высокочастотных пульсаций частоты сети и задающего генератора при формировании пульсирующего движения двухфазного асинхронного двигателя. 3 ил.

 

Изобретение относится к электротехнике, в частности к колебательным электроприводам переменного тока, и может быть использовано при создании приводов сканирования, калибровки, измерения, контроля и управления.

Известно устройство для управления двухфазным асинхронным двигателем в режиме пульсирующего движения [RU 2462810 C1, МПК H02P 8/20 (2006.01), H02P 25/02 (2006.01), H02P 27/04 (2006.01), H02P 27/10 (2006.01), опубл. 27.09.2012], содержащее источник переменного тока, задающий генератор, амплитудный модулятор, фазовое звено, модулятор и инвертор, выход которого соединен с обмоткой управления двухфазного асинхронного двигателя, обмотка возбуждения которого подключена к источнику переменного тока. Модулятор соединен первым входом с выходом амплитудного модулятора. Выход задающего генератора соединен со вторым входом амплитудного модулятора, первый вход которого соединен с выходом фазового звена, подключенного своим входом к источнику переменного тока. Выход модулятора соединен с входом инвертора, вход второго фазового звена подключен к выходу задающего генератора, а выход соединен с входом выпрямителя, выход которого подключен ко второму входу модулятора.

Данное техническое решение выбрано в качестве прототипа.

Однако несмотря на то что в данном устройстве формируется пульсирующий режим работы исполнительного двигателя с регулируемыми параметрами движения, оно не позволяет формировать гармонический пульсирующий закон движения. Кроме того, выпрямитель и модулятор вносят высокочастотные пульсации во время переходного процесса в кривые электромагнитного момента и скорости, что вызывает дополнительные динамические потери в электромеханической системе и как следствие снижение ее энергетических показателей (фиг. 1).

Задачей изобретения является расширение эксплуатационных возможностей устройства для управления двухфазным асинхронным двигателем в режиме пульсирующего движения за счет формирования пульсаций, изменяющихся по гармоническому закону во всем диапазоне регулирования частоты, и улучшение его динамических свойств во время переходных процессов.

Поставленная задача решена за счет того, что устройство для управления двухфазным асинхронным двигателем в режиме пульсирующего движения, так же как в прототипе, содержит источник переменного тока, задающий генератор, амплитудный модулятор, фазовое звено и инвертор. Выход инвертора соединен с обмоткой управления двухфазного асинхронного двигателя, обмотка возбуждения которого подключена к источнику переменного тока. Выход задающего генератора соединен с первым входом амплитудного модулятора, второй вход которого соединен с выходом фазового звена, подключенного своим входом к источнику переменного тока.

Согласно изобретению в устройство введены фазовый детектор и электронный ключ. Первый вход электронного ключа соединен с выходом амплитудного модулятора, а второй вход электронного ключа соединен с выходом фазового детектора. Первый вход фазового детектора подключен к выходу фазового звена, а второй вход фазового детектора подключен к выходу задающего генератора. Выход электронного ключа соединен с входом инвертора напряжения.

Использование фазового детектора и электронного ключа позволяет создать режим прерывистого движения по гармоническому закону, что, обеспечивая отсутствие при запуске двухфазного асинхронного двигателя пульсаций двойной частоты питающей сети в кривых электромагнитного момента и скорости, позволяет расширить эксплуатационные возможности известного устройства.

На фиг. 1 представлены временные диаграммы изменения координаты подвижного элемента асинхронного двигателя χ(t), электромагнитного момента Мэм(t) и скорости ξ(t) при запуске на частоту Ω известного устройства.

На фиг. 2 представлена блок-схема заявляемого устройства.

На фиг. 3 представлены временные диаграммы изменения координаты подвижного элемента асинхронного двигателя χ(t), электромагнитного момента Мэм(t) и скорости ξ(t) при запуске на частоту Ω заявляемого устройства.

Устройство для управления двухфазным асинхронным двигателем в режиме пульсирующего движения (фиг. 2) состоит из асинхронного двигателя 1 с обмоткой возбуждения 2 и управления 3, фазового звена 4 (ФЗ), задающего генератора 5 (ЗГ), амплитудного модулятора 6 (AM), фазового детектора 7 (ФД), электронного ключа 8 (ЭК), инвертора напряжения 9 (ИН) и источника переменного тока 10 (ИПТ).

Обмотка управления 3 асинхронного двигателя 1 снабжена клеммами и подключена к выходу инвертора напряжения 9 (ИН), а обмотка возбуждения 2 - к выходу источника переменного тока 10 (ИПТ). Вход инвертора напряжения 9 (ИН) соединен с выходом электронного ключа 8 (ЭК). Первый вход электронного ключа 8 (ЭК) подключен к выходу амплитудного модулятора 6 (AM), первый вход которого подключен к выходу фазосдвигающего звена 4 (ФЗ). Второй вход амплитудного модулятора 6 (AM) подключен к выходу задающего генератора 5 (ЗГ). Второй вход электронного ключа 8 (ЭК) связан с выходом фазового детектора 7 (ФД), первый вход которого подключен к выходу фазового звена 4 (ФЗ), а второй вход - к выходу задающего генератора 5 (ЗГ). Вход фазового звена 4 (ФЗ) соединен с выходом источника переменного тока 10 (ИПТ).

При технической реализации макетного образца заявляемого устройства амплитудный модулятор 6 (AM) был выполнен на аналоговом перемножителе 572 ПС2. Задающий генератор 5 (ЗГ) реализован на операционных усилителях серии 140 УД8. Фазовое звено 4 (ФЗ) выполнено на понижающем трансформаторе и LC-цепочке. Фазовый детектор 7 (ФД) был выполнен на дифференциальном усилителе с токопитающим каскадом на базе микросхемы К1УТ981. Электронный ключ 8 (ЭК) выполнен по схеме компаратора на операционных усилителях К140УД6 с тиристорным ключом КУ103А. В качестве инвертора напряжения 9 (ИН) использовали мостовой инвертор с транзисторными ключами.

Устройство работает следующим образом. Обмотка возбуждения 2 двухфазного асинхронного двигателя 1 подключена к источнику переменного тока 10 (ИПТ)

где Um - амплитуда напряжения источника переменного тока;

ω - круговая частота напряжения источника переменного тока;

α - начальная фаза напряжения источника переменного тока;

t - текущее значение времени,

а обмотка управления 3 подключена к выходу инвертора напряжения 9 (ИН).

Напряжение с выхода источника переменного тока 10 (ИПТ) поступает на вход фазосдвигающего звена 4 (ФЗ), где оно сдвигается по фазе относительно входного напряжения на 90 градусов

где k4 - коэффициент передачи фазосдвигающего звена 4 (ФЗ),

и подается на первые входы амплитудного модулятора 6 (AM) и фазового детектора 7 (ФД). На вторые входы амплитудного модулятора 6 (AM) и фазового детектора 7 (ФД) подается напряжение с выхода задающего генератора 5 (ЗГ)

где Um5 - амплитуда напряжения задающего генератора;

Ω - круговая частота напряжения задающего генератора;

β - начальная фаза напряжения задающего генератора.

На выходе амплитудного модулятора 6 (AM) формируются напряжение

где k6 - коэффициент передачи амплитудного модулятора.

Фазовый детектор 7 (ФД) формирует на своем выходе напряжение, пропорциональное фазовому рассогласованию между напряжениями U4 и U5

где k7 - коэффициент передачи фазового детектора.

Сформированное напряжение U7 поступает на второй вход электронного ключа 8 (ЭК), который работает по принципу компаратора. Как только напряжение, снимаемое с фазового детектора 7 (ФД), станет равным нулю, что соответствует равенству начальных фаз выходного напряжения фазового звена 4 (ФЗ) и напряжения задающего генератора 5 (ЗГ), электронный ключ 8 (ЭК) замыкается и напряжение с выхода амплитудного модулятора 6 (AM) поступает через электронный ключ на управляющий вход инвертора напряжения 9 (ИН). Инвертор напряжения 9 (ИН) усиливает входной сигнал по мощности и запитывает обмотку управления 3 асинхронного двигателя 1 напряжением

где k9 - коэффициент передачи инвертора напряжения.

В результате осуществляется пуск асинхронного двигателя 1 в режим пульсирующего движения в момент времени t, когда выполняется условие α=β.

Если: α=0; Um9=Um·Um5·k4·k6·k9, то на обмотки двухфазного двигателя в момент пуска подаются напряжения

благодаря чему устанавливается динамическое смещение нейтрали колебаний, равное амплитуде колебаний, что соответствует пульсирующему режиму работы по гармоническому закону (фиг. 3).

Точность задания и поддержания частоты пульсаций Ω определяется стабильностью задающего генератора 5 (ЗГ), а направление движения подвижного элемента двухфазного асинхронного двигателя 1 относительно нулевого значения - полярностью фазового сдвига фазового звена 4 (ФЗ). Регулирование амплитуды пульсаций осуществляется за счет изменения коэффициента передачи k9 инвертора напряжения 9 (ИН).

Ввиду отсутствия в блок-схеме заявляемого устройства дополнительной модуляции напряжения управления однополярным пульсирующим напряжением частоты Ω заявляемое устройство принципиально не содержит в законе изменения электромагнитного момента и скорости гармоник с порядковым номером 2nΩ.

Так как запуск двигателя в режим пульсирующего движения осуществляется при условии α=β, то в переходный период в законе движения электромагнитного поля отсутствуют высокочастотные пульсации двойной частоты сети и, как следствие, - в электромагнитном моменте и скорости. Все это в целом улучшает динамические и энергетические характеристики электропривода (фиг. 3).

Устройство для управления двухфазным асинхронным двигателем в режиме прерывистого движения, содержащее источник переменного тока, задающий генератор, амплитудный модулятор, фазовое звено и инвертор, выход которого соединен с обмоткой управления двухфазного асинхронного двигателя, обмотка возбуждения которого подключена к источнику переменного тока, выход задающего генератора соединен с первым входом амплитудного модулятора, второй вход которого соединен с выходом фазового звена, подключенного своим входом к источнику переменного тока, отличающееся тем, что первый вход электронного ключа соединен с выходом амплитудного модулятора, а второй вход электронного ключа соединен с выходом фазового детектора, первый вход которого подключен к выходу фазового звена, а второй вход фазового детектора подключен к выходу задающего генератора, при этом выход электронного ключа соединен с входом инвертора напряжения.



 

Похожие патенты:

Изобретение относится к области электротехники и может быть использовано в промышленности и на транспорте в системах электропривода с прямым управлением моментом асинхронных двигателей (АД).

Изобретение относится к способам для управления тяговой системой транспортных средств с электротягой. Способ управления асинхронными тяговыми двигателями включает вычисление текущих значений электромагнитного момента и потокосцепления статора в блоке DTC (Direct Torque Control) по двигателю первой оси тележки.

Изобретение относится к электротехнике, в частности к электроприводу переменного тока с режимом динамического торможения асинхронного двигателя. При отказе механического тормоза при аварийной остановке применяется электрический тормоз - электропривод переходит в режим регулируемого динамического торможения.

Группа изобретений относится к устройствам или способам управления двигателями переменного тока. Способ импульсного регулирования электрического дифференциала переменного тока (ЭД) включает в себя то, что собирают статорные обмотки двух асинхронных двигателей в общий треугольник.

Изобретение относится к области электротехники и может быть использовано в частотно-регулируемом электроприводе переменного тока, в частности в грузоподъемных механизмах, и предназначено для рекуперации электрической энергии в питающую сеть в режиме генераторного торможения при спуске тяжелого груза.

Изобретение относится к области электротехники и может быть использовано в регулируемом электроприводе переменного тока. Технический результат заключается в уменьшении тока статора в пусковом режиме, обеспечивающего заданный момент двигателя, повышении работоспособности устройства.

Изобретение относится к области электротехники и может быть использовано в системах электропривода с пониженной частотой вращения, а также в установках депарафинизации нефтяных скважин.

Изобретение относится к области электротехники и может быть использовано в следящих электроприводах с асинхронными исполнительными двигателями. Техническим результатом является повышение быстродействия следящего электропривода с асинхронным исполнительным двигателем.

Изобретение относится к области электротехники и может быть использовано в многокаскадных высоковольтных преобразователях частоты, фазы которых состоят из группы последовательно соединенных силовых преобразовательных ячеек.

Изобретение относится к области электротехники и может быть использовано в электрических системах. Техническим результатом является обеспечение быстрой реакции на управляющее воздействие, в частности на вращающий момент, и малых искажений высшими гармониками.

Изобретение относится к электротехнике, а именно к способу и устройству управления генератором, приводимым двигателем внутреннего сгорания, установленным с возможностью работы в параллель. Способ включает в себя: обнаружение контроллером каждого генератора при каждом запуске двигателя внутреннего сгорания наличия выходного напряжения, при наличии - генератор становится ведомым и синхронизирует фазы выходного напряжения с фазой обнаруженного напряжения, как опорной фазы, при отсутствии напряжения - генератор действует как задающий генератор; определение соответствующей активной мощности и эффективных значений выходных токов; определение соответствующих амплитуд выходного напряжения в падающих характеристических кривых согласно эффективным значениям выходных токов, и определение внутренних углов коэффициента мощности согласно соответствующей активной мощности; управление каждым генератором для достижения соответствующих амплитуд выходного напряжения и внутренних углов коэффициента мощности. Технический результат состоит в реализации энергетического баланса между параллельно работающими генераторами. 4 н. и 17 з.п. ф-лы, 11 ил.

Изобретение относится к электротехнике, в частности к электроприводам переменного тока периодического движения. Электропривод колебательно-вращательного движения содержит двухфазный асинхронный двигатель, обмотка возбуждения которого подключена к источнику переменного тока, а обмотка управления к выходу инвертора напряжения, преобразователь напряжение-частота, частотный демодулятор, прецизионный регулируемый блок питания постоянного напряжения, фазовое звено и два сумматора. Выход прецизионного регулируемого блока питания постоянного напряжения подключен к первому входу первого сумматора, второй вход которого соединен с выходом частотного демодулятора, вход которого подключен к источнику переменного тока, а выход соединен с входом преобразователя напряжение-частота. Выход преобразователя напряжение-частота подключен с первым входом второго сумматора, второй вход которого соединен с выходом фазового звена, а выход соединен с входом инвертора напряжения. Вход фазового звена подключен к источнику переменного тока. Технический результат состоит в обеспечении регулирования параметров движения колебательно-вращательного режима работы электропривода. 2 ил.

Изобретение относится к области электротехники и может быть использовано для привода вентиляторов, насосов и т.д. Техническим результатом является улучшение эксплуатационных характеристик. Электроприводной модуль (1) содержит электродвигатель (2) с постоянными магнитами, инвертор (3), питающий электродвигатель (2), ступень (4) постоянного тока, питающую инвертор, контроллер (8), содержащий модулятор (5), предназначенный для приведения в действие инвертора, управляемого посредством первого цифрового сигнала (Vs_act), представляющего амплитуду фазовых напряжений, прикладываемых к электродвигателю, и посредством второго цифрового сигнала (freq_act), представляющего частоту электрического тока фазовых напряжений. Приводной модуль (1) содержит аналоговую/цифровую ступень (6) для расчета оптимального значения угла (δopt) опережения по фазе напряжения, приложенного к электродвигателю относительно противоэлектродвижущей силы, в качестве линейной функции пикового значения фазового тока, и аналоговую/цифровую ступень (12) для измерения угла (ϕact) между напряжением, приложенным к электродвигателю, и фазным током. Контроллер (8) запрограммирован для определения с выборкой при частоте электрического тока угла (γact) между фазным током и противоэлектродвижущей силой как разницы между вышеупомянутым оптимальным значением угла (δopt) опережения по фазе и углом (ϕact), измеренным между напряжением, приложенным к электродвигателю, и фазным током. 6 з.п. ф-лы, 8 ил.
Изобретение относится к способу управления линейным электродвигателем, используемым в качестве привода погружного плунжерного насоса для добычи нефти. Технический результат заключается в обеспечении максимальной производительности насосной установки при заданной мощности электродвигателя и в повышении надежности его работы. Способ заключается в поочередном подключении обмоток статора, обеспечивающем плавное перемещение штока и изменение направления движения штока путем изменения очередности подключения обмоток. Подключение обмоток для рабочего хода штока начинается в исходном положении, отстоящем от нижней мертвой точки на величину, превышающую инерционный выбег штока при его обратном ходе. Нижняя мертвая точка определяется по возрастанию тока электродвигателя при контакте штока с упругим нижним упором. Рабочий ход штока задается числом последовательных подключений обмоток статора исходя из рабочего хода плунжерного насоса, и ограничен числом последовательных подключений обмоток, не доходя до верхней мертвой точки, для исключения механического упора подвижных элементов электродвигателя или плунжерного насоса. 2 з.п. ф-лы.

Настоящее изобретение относится к кондиционеру воздуха и способу управления кондиционером. Кондиционер содержит: схему конвертера; схему инвертера для функционирования двигателя, который приводит в действие компрессор; схему управления инвертером, которая приводит в действие схему инвертера, и термодатчик, который детектирует температуру наружного воздуха, вводимую в схему управления. При этом упомянутая схема управления инвертером включает в себя блок управления фиксированной подачей питания и упомянутый блок управления фиксированной подачей питания выполняет фиксированную подачу питания переменного тока или фиксированную подачу питания постоянного тока на двигатель в соответствии с температурой наружного воздуха, детектированной термодатчиком. Причем температура наружного воздуха разделена на три температурных диапазона первой установленной температурой и второй установленной температурой, которая ниже чем первая установленная температура, когда температура наружного воздуха равна или ниже чем вторая установленная температура, обогрев выполняется посредством фиксированной подачи питания постоянного тока, и когда температура наружного воздуха выше чем вторая установленная температура и равна или ниже чем первая установленная температура, обогрев выполняется посредством фиксированной подачи питания переменного тока. Это позволяет создать кондиционер воздуха низкой себестоимости и с низким потреблением мощности без увеличения размера кондиционера, обеспечив работоспособность кондиционера, когда он установлен в низкотемпературной окружающей среде, в которой температура падает ниже гарантированной минимальной температуры электронного компонента. 3 н. и 6 з.п. ф-лы, 3 ил.

Изобретение относится к электротехнике, а именно к частотно-регулируемым электроприводам. Устройство управления асинхронным двигателем содержит преобразователь частоты и напряжения, управляющие входы которого соединены соответственно с выходами первого и второго сумматоров. Первый вход второго сумматора соединен с выходом функционального преобразователя, а второй вход - с выходом статического преобразователя. Первый вход первого сумматора соединен с источником сигнала задания и входом функционального преобразователя, а второй вход - с выходом первого статического нелинейного преобразователя. Датчики тока статорной обмотки двигателя, выходы которых соединены с первым и вторым входами функционального преобразователя тока, первый выход функционального преобразователя тока, соответствующий положительной обратной связи по току статора, соединен с входом апериодического звена первого порядка, выход которого соединен с входом статического преобразователя и с входом первого статического нелинейного преобразователя. Технический результат состоит в обеспечении эффективности корректирующей положительной обратной связи по активной составляющей тока статора при сохранении устойчивости системы управления асинхронным электроприводом. 9 ил.

Изобретение относится к области электротехники и может быть использовано для управления в электроприводе с синхронными гистерезисными двигателями. Техническим результатом является предотвращение возникновения незатухающих колебаний активной мощности во всех режимах работы синхронного гистерезисного двигателя. Устройство для электропитания синхронного гистерезисного двигателя содержит инвертор, датчик тока, включенный в цепь выходного тока инвертора, задающий генератор и блок выделения низкочастотной составляющей мгновенной частоты вращения ротора синхронного гистерезисного двигателя, вход которого соединен с выходом датчика тока, а его выход - с входом управления частотой задающего генератора и с входом управления величиной выходного напряжения инвертора. 1 ил.

Изобретение относится к области электротехники и может быть использовано в промышленности и на транспорте в системах электропривода с прямым управлением моментом асинхронных двигателей (АД). Способ двухзонного регулирования скорости асинхронного двигателя, использующий прямое управление моментом. Техническим результатом является обеспечение двухзонного регулирования асинхронного двигателя в системе прямого управления моментом при более полном использовании двигателя по нагреву и мощности. В способе двухзонного регулирования скорости асинхронного электропривода определение ограничения задания на момент, вычисленного регулятором скорости, производится путем деления заданной мощности на частоту вращения ротора двигателя, причем величина заданной мощности определяется в зависимости от температуры обмотки статора двигателя, вычисляемой по модели или измеряемой датчиком температуры, по следующей формуле: где Pз - заданная мощность, Pн - номинальная мощность двигателя; θдоп - допустимая температура обмотки статора; t0 - текущая температура обмотки, а задание на потокосцепление статора определяется в первой и второй зоне регулирования по значению задания на момент на основе заранее рассчитанной зависимости потокосцепления статора от момента двигателя, обеспечивающей минимальное значение тока статора при заданном моменте и имеющей вид кривой с насыщением. 2 ил.

Изобретение относится к области электротехники и может быть использовано в системах автоматического управления нестационарными объектами - системах адаптивного управления электроприводом. Технический результат заключается в повышении точности и запасов устойчивости по амплитуде и фазе системы управления электродвигателем при действии на него координатно-параметрических помех. Система адаптивного управления электродвигателем дополнительно содержит ассоциативную память, дифференциатор, два блока умножения, три сумматора, цифровой датчик угловой скорости, три усилителя, два блока задержки, три блока определения модуля. Выход цифрового датчика угловой скорости через последовательно соединенные первый блок задержки, второй блок задержки, третий сумматор, первый блок определения модуля, ассоциативную память, первый блок умножения подключен ко второму входу второго сумматора, выход которого через цифро-аналоговый преобразователь соединен с входом электродвигателя, а через последовательно соединенные второй усилитель, четвертый сумматор, второй блок определения модуля - ко второму входу ассоциативной памяти. Выход цифрового датчика угловой скорости соединен с вторыми входами первого и четвертого сумматоров, а через последовательно соединенные пятый сумматор, третий блок определения модуля, ассоциативную память и второй блок умножения - с третьим входом второго сумматора. Выход первого блока задержки соединен со вторыми входами третьего и пятого сумматоров. Выход первого сумматора подключен через третий усилитель ко второму входу первого блока умножения, а через последовательно соединенные четвертый усилитель и дифференциатор - ко второму входу второго блока умножения. 1 ил.

Изобретение относится к области электротехники и может быть использовано для управления синхронным двигателем с постоянными магнитами. Техническим результатом является - приведение в действие поворотного электродвигателя в эффективной рабочей точке. В способе управления первичным магнитным потоком в соответствии с крутящим моментом осуществляют изменение значения команды первичного магнитного потока в соответствии с крутящим моментом для надлежащего управления посредством этого фазой тока при управлении первичным магнитным потоком. Применительно к некоторому крутящему моменту Т в тех случаях, когда амплитуда Λδ первичного магнитного потока принимает значение Λδ0(Т), амплитуда ia тока якоря минимизируется. При этом обеспечивается управление с максимальным крутящим моментом/током. Таким образом, значение Λδ0(Т) используется в качестве амплитуды значения команды первичного магнитного потока для выполнения управления первичным магнитным потоком, благодаря чему ток якоря определяется автоматически. То есть фаза β тока определяется однозначно. Одним словом, управление фазой β тока осуществляется для получения желаемой фазы в соответствии с крутящим моментом Т, чтобы поворотный электродвигатель приводился в действие в эффективной рабочей точке в соответствии с крутящим моментом. 14 з.п. ф-лы, 17 ил.
Наверх