Магнитный дефектоскоп для обнаружения дефектов в сварных швах

Использование: для неразрушающего контроля технического состояния нефте- газопроводов. Сущность изобретения заключается в том, что магнитный дефектоскоп, на котором установлены на магнитах два пояса щеток из ферромагнитного материала, контактирующие с внутренней поверхностью трубопровода, между поясами щеток из ферромагнитного материала в виде кольца на износоустойчивых основаниях установлены блоки датчиков, состоящие из вихретоковых датчиков и датчика градиента постоянного магнитного поля, который в свою очередь состоит из двух магниточувствительных элементов, являющихся полупроводниковыми преобразователями магнитного поля, смещенных на некоторое расстояние друг относительно друга в направлении нормали к контролируемой поверхности, при этом расстояние значительно меньше протяженности помех, при этом применяется система из двух вихретоковых датчиков, плоскости которых перпендикулярны друг другу и направляющей контролируемого трубопровода, при этом применяется амплитудно-фазовая обработка диагностических данных. Технический результат: обеспечение возможности улучшения обнаружения и образмеривания малоразмерных дефектов и дефектов в сварных швах. 2 ил.

 

Изобретение относится к области неразрушающего контроля технического состояния нефте-, газопроводов, нефтепродуктопроводов с помощью внутритрубных дефектоскопов и касается измерительной системы.

Известен дифференциальный метод («Eddy current flaw detector» JPS 5766353 A от 22.04.1982, МПК G01N 27/90), в котором три круговые катушки смонтированы вокруг зонда, при этом одна является эталонной и расположена в непосредственной близости между двумя другими катушками.

Известен вихретоковый дефектоскоп («Defect detection for internal chilled pipe» JPS 5855853 А от 02.04.1983, МПК B22D 19/00; C21B 7/10; G01N 27/82; G01N 27/90; G01N 29/04), который проходит внутритрубное пространство и при помощи вихретоковых датчиков исследует состояние сварных швов.

Известен зонд для вихретокового дефектоскопа («Probe for eddy current flaw detection» JPS 62130350 А от 12.06.1987, МПК G01N 27/90), состоящий из постоянных магнитов, катушек, изоляционных материалов и пр.

Известен метод контроля магнитного материала труб («Method for inspection of magnetic material pipe» JP 5169983 B2 от 27.03.2013, МПК G01N 27/90), представляющий собой зонд, в котором установлены постоянные магниты, вихретоковые датчики и линии намагниченности расположены в осевом направлении.

Известен способ магнитного контроля дефектов длинномерных ферромагнитных изделий (RU 2032898 C1 от 25.02.1992, МПК G01N 27/87), заключающийся в том, что изделия намагничивают и измеряют градиент магнитного поля рассеяния на их поверхностях с помощью двух феррозондовых преобразователей, сигналы которых вычитают и по их разности определяют дефекты в изделиях, при этом намагничивают участок изделий под одним из преобразователей до более высокого уровня, при котором разностный сигнал достигает минимального значения.

Известен способ магнитной дефектоскопии и устройство для осуществления этого способа (RU 2133032 C1 от 20.03.1997, МПК G01N 27/83, G01N 27/87), в котором для обнаружения дефектов в сварных соединениях контролируемых объектов намагничивание их стенок производят по направлению нормали к продольной оси контролируемых сварных швов, а преобразователь перемещают по объекту таким образом, чтобы обеспечить одновременное пересечение контролируемого сварного шва всеми звеньями преобразователя.

Известен способ обнаружения дефектов в длинномерных объектах (RU 2157990 C1 от 17.03.2000, МПК G01N 27/82, G01N 27/87), при котором контроль поля осуществляют по сдвигу фазы и изменению амплитуды 3-й гармоники сформированного на объекте сигнала.

Известно устройство для контроля стенок трубопроводов (RU 2453835 C1 от 11.04.2011, МПК G01N 27/82), имеющее катушки возбуждения вихретоковых датчиков, которые выполнены в виде цилиндрических катушек, а первая сигнальная катушка и вторая сигнальная катушка имеют прямоугольную форму, и вторая сигнальная катушка вставлена узкой стороной в первую сигнальную катушку под прямым углом так, что получившаяся фигура имеет форму креста, и обе катушки вставлены внутрь катушки возбуждения так, чтобы оси сигнальных катушек были перпендикулярны оси катушки возбуждения, причем первая сигнальная катушка ориентирована вдоль направления движения устройства для контроля стенок трубопроводов, а вторая сигнальная катушка ориентирована поперек направления движения устройства контроля стенок трубопроводов.

Известно устройство определения толщины магнитных отложений на поверхности труб вихретоковым методом (RU 143178 U1 от 18.12.2013, МПК G01N 27/72), содержащее генератор прямоугольных импульсов тока, вихретоковый датчик с возбуждающей катушкой, измерительной катушкой, усилитель, АЦП, микроконтроллер, индикаторы толщины и электропроводимости.

Недостатком вышеуказанных технических решений является неточность обнаружения дефектов сварных швов и невозможность образмеривания малоразмерных дефектов.

Техническим результатом заявленного изобретения является улучшение обнаружения и образмеривания малоразмерных дефектов и дефектов в сварных швах, а также компенсация случайного отхода вихретоковых датчиков от внутренней стенки трубопровода.

Технический результат достигается тем, что на магнитном дефектоскопе установлены на магнитах два пояса щеток из ферромагнитного материала, контактирующие с внутренней поверхностью трубопровода. Для обнаружения малоразмерных дефектов или дефектов сварного шва между поясами щеток из ферромагнитного материала в виде кольца на износоустойчивых основаниях установлены блоки датчиков, состоящие из вихретоковых датчиков и датчика градиента постоянного магнитного поля, который в свою очередь состоит из двух магниточувствительных элементов, являющихся полупроводниковыми преобразователями магнитного поля, смещенных на некоторое расстояние друг относительно друга в направлении нормали к контролируемой поверхности, при этом расстояние должно быть значительно меньше протяженности помех, так как поле рассеяния малоразмерных дефектов убывает по нормали к поверхности значительно быстрее, чем у протяженных дефектов, к которым относятся изменения структуры материала, в том числе и наличие сварного шва. Для компенсации случайного отхода вихретоковых датчиков от внутренней поверхности трубопровода применяется система из двух вихретоковых датчиков, плоскости которых перпендикулярны друг другу и направляющей контролируемого трубопровода, при этом применяется амплитудно-фазовая обработка диагностических данных, что позволяет обеспечить селективную чувствительность к заданному типу дефектов, например, нереагирование на риски, царапины и выбоины на поверхности при выявлении подповерхностных дефектов, а также независимость от влияния вариации неконтролируемых параметров, например, перекосов вихретоковых датчиков, что необходимо при контроле неровных поверхностей.

На фиг. 1 изображена система из двух вихретоковых датчиков, плоскости которых перпендикулярны друг другу и направляющей контролируемого трубопровода.

На фиг. 1 приняты следующие обозначения:

1 - контролируемый трубопровод;

2 - вихретоковый датчик;

3 - вихретоковый датчик.

На фиг. 2 изображено применение датчика градиента постоянного магнитного поля.

На фиг. 2 приняты следующие обозначения:

1 - контролируемый трубопровод;

4 - датчик градиента постоянного магнитного поля;

5 - магнит;

6 - магнитопровод;

7 - малоразмерный дефект;

8 - износоустойчивое основание блока;

9 - модель мешающего фактора (изменение толщины или магнитных свойств материала объекта).

Магнитный дефектоскоп, на котором установлены на магнитах два пояса щеток из ферромагнитного материала, контактирующие с внутренней поверхностью трубопровода, между поясами щеток из ферромагнитного материала в виде кольца на износоустойчивых основаниях установлены блоки датчиков, состоящие из вихретоковых датчиков и датчика градиента постоянного магнитного поля, который в свою очередь состоит из двух магниточувствительных элементов, являющихся полупроводниковыми преобразователями магнитного поля, смещенных на некоторое расстояние друг относительно друга в направлении нормали к контролируемой поверхности, при этом расстояние значительно меньше протяженности помех, при этом применяется система из двух вихретоковых датчиков, плоскости которых перпендикулярны друг другу и направляющей контролируемого трубопровода, при этом применяется амплитудно-фазовая обработка диагностических данных.



 

Похожие патенты:

Изобретение относится к области судостроения и касается способа определения места нахождения герметизированного отверстия при обрастании, заносе илом или обмерзании подводной части корпуса судна.

Изобретение относится к измерительной технике, представляет собой устройство для определения содержания феррита в материале и может быть использовано для определения содержания феррита, измерения температурных зависимостей степени ферритизации и определения по ним температур магнитных фазовых переходов магнитных материалов.

Изобретение относится к измерительной технике, а именно к способу и системе для определения магнитной массы железнодорожных вагонов. Способ заключается в том, что для определения магнитной массы железнодорожных вагонов сначала производят калибровку с учетом окружающей температуры, а также насыпной плотности груза в вагонах.

Изобретение относится к измерительной технике, представляет собой магнитошумовой способ контроля состояния прочности силовых конструкций из ферромагнитных материалов и может найти применение при проведении технического освидетельствования силовых (несущих) конструкций.

Изобретение относится к измерительной технике, представляет собой устройство экспресс-контроля магнитных характеристик листовой электротехнической стали и предназначено для измерения динамической петли гистерезиса и основной кривой намагничивания стали на частотах от 1 до 10000 Гц.

Изобретение относится к измерительной технике, представляет собой способ измерения магнитных свойств и толщины наноразмерных магнитных пленок и может быть использовано в магнитной наноэлектронике для характеризации гетерогенных магнитных элементов в устройствах памяти, в сенсорных устройствах и т.п.

Изобретение относится к измерительной технике, представляет собой магнитное устройство для изучения сил внутреннего взаимодействия в растворе и может использоваться в физической химии.

Изобретение относится к системам магнитно-импедансной томографии. Система содержит систему возбуждения, имеющую несколько катушек возбуждения для генерирования магнитного поля возбуждения с целью наведения вихревых токов в исследуемом объеме, измерительную систему, имеющую несколько измерительных катушек для измерения полей, сгенерированных наведенными вихревыми токами, при этом измерительные катушки расположены в объемной (3D) геометрической компоновке, и устройство реконструкции, предназначенное для приема измерительных данных из измерительной системы и реконструкции изображения объекта в исследуемом объеме по измеренным данным.

Предложенное изобретение относится к измерительной технике, представляет собой способ определения магнитной индукции текстурированной электротехнической стали и может применяться в случаях, когда отсутствуют устройства измерения магнитных свойств или их невозможно использовать в силу таких причин, как слишком малые вес и размер образца или слишком плохое качество его поверхности.

Группа изобретений относится к области лабораторной диагностики и может быть использована для определения наличия аналита и его количества в биологических жидкостях.

Изобретение относится к области диагностики технического состояния металлоконструкций, находящихся в рабочем состоянии. Сущность: на контролируемом участке образца (аналога) элемента (или на действующем элементе) при отсутствии внешней изгибающей силы и при приложении внешней изгибающей силы (в пределах упругих свойств элемента) каждый раз осуществляется намагничивание в целях создания симметричного магнитного поля относительно оси(осей) симметрии геометрической фигуры поперечного сечения элемента. Измеряется величина индукции магнитного поля в характерных точках на границах поперечных сечений элемента, симметричных друг другу относительно оси(осей) симметрии сечений элемента. Определяется средняя разность абсолютных величин магнитной индукции в характерных точках на контролируемом участке. По экспериментальной зависимости изгибающей силы (или средней напряженности в материале) от средней разности абсолютных значений магнитной индукции в характерных точках на контролируемом участке образца (аналога) элемента (или на действующем элементе) находится аналитическая зависимость. На контролируемом участке элемента конструкции, находящейся в рабочем состоянии, создается симметричное магнитное поле относительно геометрической фигуры сечения элемента, измеряется величина индукции магнитного поля в характерных точках сечений, определяется средняя разность абсолютных значений магнитной индукции в аналогичных характерных точках и, по полученной ранее аналитической зависимости, находится среднее оценочное значение напряженности в материале на контролируемом участке элемента действующей конструкции. Технический результат: возможность обеспечения оперативной оценки изгибных напряжений в материале элементов конструкций, находящихся в рабочем состоянии, с помощью простых мобильных технических средств. 10 ил., 1 табл.

Использование: для контроля стального листа. Сущность изобретения заключается в том, что устройство для контроля стального листа содержит магнитооптический элемент, способный определять в качестве оптической характеристики структуру магнитных доменов стального листа, световой источник для облучения магнитооптического элемента линейно поляризованным светом, детектор для обнаружения линейно поляризованного света с плоскостью поляризации, вращающейся в соответствии со структурой магнитных доменов стального листа, которая передается магнитооптическому элементу, и механизм привода для приведения в действие по меньшей мере магнитооптического элемента таким образом, чтобы приводить в контакт стальной лист и магнитооптический элемент, а также отделять их друг от друга. Технический результат: обеспечение возможности повышения выхода продукции посредством осуществления визуального наблюдения и проверки структуры магнитного домена стального листа непосредственно после выполнения процесса измельчения магнитного домена. 3 н. и 12 з.п. ф-лы, 10 ил.

Изобретение относится к области измерительной техники и может быть использовано для контроля микроструктуры металлической мишени. Варианты реализации настоящего изобретения предоставляют электромагнитный датчик (400) для детектирования микроструктуры металлической мишени, содержащий магнитное устройство (410, 420) для предоставления возбуждающего магнитного поля, магнитометр (430) для детектирования результирующего магнитного поля, индуцированного в металлической мишени; и схему (450) калибровки для создания калибровочного магнитного поля для калибровки электромагнитного датчика. Причем калибровочное магнитное поле создается электрическим током, индуцированным в схеме калибровки возбуждающим магнитным полем. Технический результат - повышение чувствительности датчика за счет исключения искажений его показаний, обусловленных помехами различной природы. 2 н. и 24 з.п. ф-лы, 10 ил.

Изобретение может быть использовано при контроле электропроводимости и коррелирующего с ней значения температуры внутренних слоев листа, например, из рафинированной меди - медной рубашки кристаллизатора путем измерения электропроводимости внутренних слоев меди. Согласно изобретению способ контроля изменений электропроводимости внутренних слоев немагнитного металла заключается в использовании накладного вихретокового преобразователя, по возбуждающей катушке которого циркулирует создаваемый генератором ток, а сигнал его измерительной катушки обрабатывают в блоке обработки, к выходу которого подключен индикатор электропроводимости, при этом в возбуждающей катушке циркулирует периодический импульсный ток в форме меандра с периодом, выбираемым таким, чтобы за время половины периода заканчивались электромагнитные переходные процессы, определяют максимальное значение ΔФмакс разностного по отношению к объекту с постоянным значением электропроводимости магнитного потока и значение интервала времени tмакс достижения этого максимума, по этим значениям, используя градуировочные кривые на плоскости состояния с осями ΔФмакс - tмакс, определяют величину изменения электропроводимости и координаты области, где имеют место эти изменения, при этом градуировочные кривые на плоскости состояния строят предварительно путем моделирования для предполагаемых законов изменения электропроводимости и хранят в памяти блока обработки. Предлагаемые способ и устройство позволяют определять электропроводимость внутри металлического листа и определять координаты изменения электропроводимости. Изобретение обеспечивает возможность контроля за параметрами металла при промышленном производстве - плавке металла и процессе его остывания, возможность определения электропроводимости (температуры) в области удаленных слоев металла (т.е. стенки кристаллизатора, контактирующей с жидким металлом), определение области изменения электропроводимости, т.е. распределения электропроводимости (температуры) по стенке металла (рубашки кристаллизатора). 2 н.п. ф-лы, 6 ил.

Изобретение относится к неразрушающему контролю металлов и сплавов, а именно к методам контроля фазового состава, и может быть использовано в металлургии, металлообработке, машиностроении, авиастроении для контроля качества продукции и стабильности технологических процессов. Прибор контроля фазового состава стали включает в себя датчик (Д), который состоит из корпуса, выполненного из немагнитного материала, и вторичный прибор (ВП) со средством алфавитно-цифровой индикации для отображения выходной информации. При этом в корпусе размещены соединенные между собой измерительный трансформатор (1), состоящий из первичной обмотки возбуждения (ОВ) и вторичной обмотки измерительной (ОИ), генератор синусоидальных колебаний (2), датчик-преобразователь тока (3), цифроаналоговый преобразователь (5), аналого-цифровой преобразователь (4). Вторичный прибор дополнительно содержит микропроцессорный модуль (7), связанный с измерительным трансформатором (1) через приемопередатчик (10) вторичного прибора, связанного с приемопередатчиком (6) датчика посредством радиосигнала, и управляющий амплитудой выходного напряжения генератора синусоидальных колебаний. Техническим результатом настоящего изобретения является повышение надежности и достоверности автоматического измерения содержания ферритной фазы в образце или пробе. 2 з.п. ф-лы, 2 ил.

Использование: для обнаружения магнитных свойств магнитного материала, содержащегося в листе бумаги. Сущность изобретения заключается в том, что устройство содержит магнитный модуль, который генерирует магнитное поле, перпендикулярное направлению транспортирования листа бумаги на пути транспортирования и параллельное поверхности транспортирования листа бумаги, причем интенсивность магнитного поля уменьшается по мере транспортирования листа бумаги в направлении транспортирования, а после достижения 0 (нуля) интенсивность магнитного поля увеличивается, при этом направление магнитного поля является противоположным направлением; и множество магнитных датчиков, расположенных в магнитном поле, генерируемом магнитным модулем в местах, в которых интенсивность магнитного поля взаимно отличается и которые обнаруживают магнитные свойства листа бумаги, транспортируемого по пути транспортирования, при этом магнитные свойства магнитного материала, содержащегося в листе бумаги, обнаруживаются на основе выходных сигналов указанного множества магнитных датчиков, получаемых при обнаружении магнитного материала. Технический результат: обеспечение возможности создания устройства детектирования магнитного свойства с малыми размерами, выполненное с возможностью дифференцирования и детектирования множества типов магнитных материалов с разной величиной коэрцитивной силы. 13 з.п. ф-лы, 28 ил.

Изобретение относится к области магнитной дефектоскопии литых заготовок из стали 110Г13Л и может быть использовано для определения качества заготовок из стали 110Г13Л, необходимого для работы изделий из них при ударном виде износа. Указанный результат достигается тем, что осуществляют замер величины магнитного последействия исследуемого участка детали для грубой оценки качества термической обработки. При этом используется устройство, в котором взаимосвязанные между собой магнит с пружиной размещены в корпусе с возможностью перемещения вдоль него и взаимодействия с микроэлектронными переключателями, которые соединены через аналого-цифровой преобразователь с индикатором, в качестве которого использован жидкокристаллический дисплей. В случае удовлетворительной термической обработки заготовку подвергают ударному воздействию, после чего осуществляют повторный замер времени магнитного последействия для сопоставления с соответствующим ему значением ударной вязкости стандартных образцов, тестированных на маятниковом копре. По величине полученных параметров судят о состоянии стали контролируемой детали (заготовки). Технический результат заключается в повышении информативности и достоверности оценки литых заготовок рабочих органов горнодобывающей техники из стали 110Г13Л неразрушающим методом для определения возможности эксплуатации их в условиях ударного износа. 2 н.п. ф-лы, 1 ил., 1 табл.

Изобретение относится к измерительной технике, а именно к испытаниям магнитных материалов, и может быть использовано для определения содержания феррита в материале, измерения температурных зависимостей степени ферритизации и определения по ним температур магнитных фазовых переходов. Устройство для определения содержания феррита в материале содержит корпус с углублением в верхней части, при этом двойные стенки корпуса снабжены каналами для прохода и патрубками для ввода и вывода охлаждающей жидкости. Патрубки через шланги соединены с термостатом. Внутри корпуса на противоположных стенках углубления закреплены два постоянных магнита, первые два противоположных полюса которых ориентированы навстречу друг другу, так что магнитные силовые линии, соединяющие их полюса, пересекают пространство внутри углубления. Другие два противоположных полюса магнитов соединены С-образным магнитопроводом, на который намотана катушка индуктивности. Выводы катушки индуктивности соединены с первым разъемом в корпусе, к которому подключен первый регистратор ЭДС индукции. В углублении корпуса установлена тепловая камера. С наружной стороны корпуса внутри углубления установлена тепловая камера, соединенная с источником тока. Внутри корпуса расположен электродвигатель, на оси которого закреплен шток. Шток вставлен в тепловую камеру через боковые отверстия в стенке углубления корпуса и тепловой камеры. Шток предназначен для размещения испытуемого материала в объеме тепловой камеры и вращения испытуемого материала с постоянной угловой скоростью в вертикальной плоскости относительно магнитных силовых линий постоянных магнитов, соединяющих их полюса. Измерительный спай термопары вставлен в объем тепловой камеры через второе боковое отверстие в ней так, что свободные концы термопары размещены внутри корпуса и соединены через второй электрический разъем в корпусе со вторым регистратором ЭДС. Техническим результатом является повышение точности определения температурных зависимостей степени ферритизации магнитных материалов. 1 з.п. ф-лы, 3 ил.

Группа изобретений относится к области медицины и может быть использована для изучения процесса накопления магнитных наночастиц в заданном участке сосудистой системы под воздействием внешнего магнитного поля. Стенд для исследования процесса магнитоуправляемой доставки наночастиц в сосудистую систему содержит У-образную трубку, единичный конец которой расположен между магнитом и регистратором и соединен с накопительной емкостью, помпу, расходомер, а также датчик давления и элемент доставки наночастиц. Выход накопительной емкости соединен через помпу и расходомер с одним из раздвоенных концов У-образной трубки, образуя замкнутый контур, имитирующий систему кровообращения, причем упомянутый раздвоенный конец У-образной трубки соединен также с датчиком давления и элементом доставки наночастиц. Элемент доставки наночастиц по первому варианту представляет собой шприц, а по второму варианту представляет собой электромагнитный зонд, соединенный с источником питания. Группа изобретений обеспечивает возможность исследования процесса магнитоуправляемой доставки наночастиц в сосудистую систему. 2 н. и 1 з.п. ф-лы, 7 ил., 1 табл., 1 пр.

Изобретение относится к неразрушающему контролю металлов и сплавов, а именно к устройствам, предназначенным для автоматизированного экспресс-контроля состава сплавов на основе железа, а именно содержания ферритной фазы в различных марках стали при литье и, прежде всего, в стальных пробах и калибровочных образцах. Устройство контроля фазового состава стали содержит источник переменного тока, состоящий из генератора синусоидального напряжения и усилителя переменного напряжения, блок, регистрирующий результат измерения и датчик тока. Согласно изобретению устройство дополнительно содержит индикатор, отображающий результат измерения, микроконтроллер, выполняющий функции генератора синусоидального напряжения и блока, регистрирующего результат измерения, позволяющий реализовать функции цифровой обработки сигналов, записи данных, их вывода на индикатор и передачи данных, при этом в качестве усилителя переменного напряжения используется отдельный усилитель мощности, представляющий собой каскадное включение усилителя напряжения, управляющим элементом которого является операционный усилитель, и каскада на комплементарных транзисторных сборках, питание которого подключено к выходам выпрямителей ±25 В, вход усилителя мощности подключен к выходу цифроаналогового преобразователя микроконтроллера, а выход к обмотке возбуждения первичного преобразователя, при этом первичный преобразователь представляет собой обмотку возбуждения и измерительную обмотку, расположенные коаксиально, причем выход измерительной обмотки подключен к предварительному усилителю, понижающий трансформатор, вторичные обмотки которого подключены к входам выпрямителей напряжения ±25 В, стабилизаторы напряжения +3,3 В и +5 В, входы которых подключены к выходу выпрямителя напряжения +25 В, отдельные предварительные усилители сигнала с датчика тока и сигнала с измерительной обмотки, входы которых подключены соответственно к датчику тока и измерительной обмотке, а выходы к двум каналам аналого-цифрового преобразователя микроконтроллера. Изобретение обеспечивает повышение надежности и достоверности автоматического измерения содержания ферритной фазы в образце или пробе, погрешность измерения ферритной фазы в пределах ±3%. 1 з.п. ф-лы, 1 ил.
Наверх