Способ получения лигатуры алюминий-скандий-иттрий

Изобретение относится к области металлургии цветных металлов и может быть использовано для производства лигатуры алюминий-скандий-иттрий, применяемой для модифицирования алюминиевых сплавов. Способ получения лигатуры алюминий-скандий-иттрий включает приготовление флюса, содержащего смесь солей фторида иттрия, фторида алюминия, фторида скандия, фторида калия, хлорида магния, плавление алюминиевого сплава и флюса и осуществление высокотемпературной обменной реакции фторида скандия с алюминием в среде расплавленных галогенидов металлов, при этом флюс содержит компоненты в следующем соотношении, мас.%: фторид иттрия 3-10, фторид алюминия 11-15, фторид скандия 21-24, фторид калия 13-20, хлорид магния - остальное, причем в качестве восстановителя используют алюминиево-магниевый сплав, содержащий от 15 до 30% магния, который подают через приемник на пенокерамические фильтры через расплавленные фториды во встречном потоке аргона, выдерживают в тигле и затем разделяют расплав солей и алюминиево-скандиево-иттриевый сплав. Изобретение направлено на получение слитков лигатуры с равноосной мелкозернистой структурой, стабилизацию и упрощение процесса. 3 пр., 1 ил.

 

Изобретение относится к области металлургии цветных металлов и может быть использовано для производства лигатуры алюминий-скандий-иттрий, применяемой для модифицирования алюминиевых сплавов.

Известен способ получения лигатуры скандий-алюминий (его варианты) (патент RU №2124574, опубл. 10.01.1999 г.), включающий алюминотермическое восстановление в среде расплавленных галогенидов металлов.

Недостатком данного способа является то, что процесс проводят не в инертной атмосфере. Это приводит к увеличению времени контакта солевого расплава, содержащего скандий с расплавленным алюминием и кислородом воздуха. При этом скандий может переходить в шлак в форме оксифторида (ScOF), который плохо растворим в солевом расплаве - это объясняет невысокий выход по скандию, равный 77%.

Известен способ получения алюминий-скандиевой лигатуры (патент RU №2218436, опубл. 10.12.2003 г.), включающий восстановление фторсодержащих соединений скандия с алюминием в присутствии хлоридов и фторидов калия и натрия при нагревании под слоем покровного флюса из хлоридов натрия и калия, отличающееся тем, что перед восстановлением смешивают гранулы металлического алюминия с размером частиц 2-7 мм с гексафторскандиатом натрия и фторидом натрия, взятых в соотношении (вес): гранулы алюминия:гексафторскандиат натрия:фторид натрия, равном (8,7-9,1):1:(1,2-1,8).

Недостатком данного способа является невысокое извлечение за счет окисления скандия кислородом оксидной пленки алюминия при длительной выдержке расплава (60-90 мин). Для реализации способа требуются энергоемкие предварительные операции по тщательному перемешиванию шихты.

Известен способ получения лигатуры алюминий-скандий (варианты) (патент RU №2213795, опубл. 10.10.2003 г.), включающий высокотемпературную обменную реакцию фторида или оксида скандия с алюминием в среде расплавленных галогенидов металлов, а именно в присутствии фторида скандия, хлорида калия, фторида натрия или оксида скандия, фторида алюминия, фторида натрия и хлорида калия или фторскандиата щелочного или щелочноземельного элемента и хлорида калия или натрия с использованием покровного флюса, содержащего хлорид калия и хлорид натрия, в температурном интервале 850-1050°C с выдержкой 15-30 минут.

Недостатком способа является использование солей натрия, которые в процессе высокотемпературных обменных реакций попадают в получаемый сплав алюминия.

Известен способ производства алюминиево-скандиевой лигатуры (патент WO №2006079353, опубл. 25.01.2005 г.), включающий катодное осаждение алюминия и скандия с использованием параметров процесса электролиза для производства электролитическим способом алюминия и оксида скандия или скандиевых солей, растворенных в криолит-глиноземном расплаве.

Недостатком способа является низкая растворимость оксида скандия в криолит-глиноземном расплаве, что приводит к большим потерям скандия. Лигатура в электролизере получается в результате алюмотермического восстановления скандия из электролита на границе с металлом, а не при электрохимическом осаждении скандия с алюминием, т.к. промышленная плотность тока на катоде недостаточна для реализации процесса восстановления.

Известен способ получения лигатуры алюминий-скандий, флюс для получения лигатуры и устройство для осуществления способа (патент RU №2361941, опубл. 20.07.2009 г.), принятый за прототип, включающий высокотемпературную обменную реакцию фторида или оксида скандия с алюминием в среде расплавленных галогенидов металлов.

Недостатком способа является неоднородность получаемой продукции, относительно невысокое извлечение скандия в лигатуру (83,7% среднее), наряду с перегревом расплава алюминия за счет того, что тигель с расплавами галогенидов требует более высокой температуры для расплавления его содержимого, это приводит к угару металла.

Техническим результатом изобретения является получение слитков лигатуры алюминий-скандий-иттрий с равноосной мелкозернистой структурой, стабилизация и упрощение процесса.

Технический результат достигается тем, что используют флюс, содержащий фторид иттрия, фторид алюминия, фторид скандия, фторид калия и хлорид магния при следующем соотношении компонентов, мас. %: фторид иттрия от 3 до 10, фторид алюминия от 11 до 15, фторид скандия от 21 до 24, фторид калия от 13 до 20, хлорид магния остальное, при этом в качестве восстановителя используют алюминиево-магниевый сплав, содержащий от 15 до 30% магния, который подают через приемник на пенокерамические фильтры через расплавленные фториды во встречном потоке аргона, выдерживают в тигле и затем разделяют расплав солей и алюминиево-скандиево-иттриевый сплав.

Способ поясняется чертежом:

фиг. 1 - таблица с исходными данными и результатами процесса получения лигатуры алюминий-скандий-иттрий высокотемпературной обменной реакцией.

Способ обеспечивает получение тонкодисперсной гомогенной лигатуры с равномерным распределением интерметаллидов алюминия (Al3Sc, Al3Y) по всему объему. В случае наличия в шихте соединений иттрия синтезируются игольчатые кристаллы, состоящие из Al3Y и Mg5Y24. Синтезируемые многочисленные тонкие образования интерметаллидов иттрия характеризуются постепенным увеличением содержания иттрия от границы матрицы к центру кристалла. На основе синтезированной лигатуры Al-Mg-Sc-Y получены алюминиевые сплавы с тонкой микроструктурой и повышенными прочностными характеристиками (на 100 МПа выше стандартных).

Использование выбранного флюса обусловлено следующим.

Фторид алюминия, входящий в состав выбранного флюса, обладает высокой рафинирующей способностью по отношению к алюминию и его сплавам.

Хлорид магния, входящий в состав выбранного флюса, обладает относительно высокой реакционной способностью к алюминию. В порядке возрастающей реакционной способности по отношению к алюминию эти соли располагаются в ряд: BaCl2, KCl, CaF2, СаС12, BaF2, NaCl, MgF2, NaF, KF, MgCl2, AlF3 [Г.В. Галевский, H.M. Кулагин, М.Я. Минцис, Металлургия вторичного алюминия, 1998].

Фторид калия, входящий в состав выбранного флюса, имеет относительно невысокую летучесть при температуре проведения процесса.

Аргон пропускают встречным потоком через расплав галогенидов металлов в качестве защитной атмосферы расплава, а также для дегазации последнего.

Способ получения лигатуры алюминий-скандий-иттрий осуществляется следующим образом. Проводится металлотермическое восстановление фторидно-хлоридного расплава металлов, содержащего, мас. %: фторид иттрия от 3 до 10, фторид алюминия от 11 до 15, фторид скандия от 21 до 24, фторид калия от 13 до 20, хлорид магния - остальное, сплавом алюминий-магний, содержащим от 15 до 30% Mg. Восстановление фторидов скандия и иттрия сплавом Al-Mg в предлагаемом процессе осуществляется в основном магнием, более активным элементом, чем алюминий, благодаря чему усвоение скандия и иттрия возрастает. Поэтому в качестве восстановителя используют сплав алюминий-магний, в котором алюминий играет роль коллектора, а магний - восстановителя.

Готовят смесь прогретых солей, содержащую фторид алюминия, фторид скандия, фторид иттрия, хлорид натрия и хлорид магния при следующем соотношении компонентов, мас. %: фторид иттрия от 3 до 10, фторид алюминия от 11 до 15, фторид скандия от 21 до 24, фторид калия от 13 до 20, хлорид магния - остальное. Предварительно расплавляем сплав Al-Mg. Затем приготовленную шихту, состоящую из галогенидов металлов, помещают в пространство между пенокерамическими фильтрами и включают нагревательное устройство и при достижении температуры 760-790°C на поверхность пенокерамического фильтра подают алюминиевый сплав, через который встречным потоком пропускают аргон через расплавленные фториды скандия и иттрия. С выдержкой при температуре 760-790°C 10-15 мин затем разделяют расплав солей и образовавшийся алюминиево-скандиево-иттриевый сплав. Таким образом синтезируется четверная лигатура Al-Mg-Sc-Y, которая обладает более низкой температурой плавления, чем тройная - Al-Sc-Y и двойная - Al-Sc.

Предлагаемый способ поясняется следующими примерами.

Пример 1. Готовят смесь прогретых солей (фиг. 1): 41,6 г MgCl2 (52 мас. %), 16,8 г ScF3 (21 мас. %), 10,4 г KF (13 мас. %), 8,8 г AlF3 (11 мас. %), 2,4 г YF3 (3 мас. %). Смесь перемешивают и растирают в ступе. Затем приготовленную шихту, состоящую из галогенидов металлов, помещают в пространство между пенокерамическими фильтрами и включают нагревательное устройство и при достижении температуры 760-790°C на поверхность пенокерамического фильтра, через который встречным потоком пропускают аргон через расплавленные фториды скандия и иттрия, подают расплавленный алюминиевый сплав (255 г.). С выдержкой при температуре 760-790°C 10-15 мин расплав солей сливают в тигель и отдельно сливают алюминиево-скандиево-иттриевый сплав в изложницу из чугуна.

Охлажденный слиток алюминиевого сплава (лигатуры) отмывают от остатков солей в вибрационной ванне со слабой соляной кислотой (1-5%) и анализируют.

Получены следующие результаты:

Исходное содержание Sc в смеси солей (по расчету) - 7,41 г.

Исходное содержание Y в смеси солей (по расчету) - 1,46 г.

Содержание в лигатуре 2,51% Sc.

Содержание в лигатуре 0,48% Y.

Получено лигатуры - 252,4 г.

Всего перешло в лигатуру Sc 0,025·252,4=6,3 г или 85% от исходного.

Всего перешло в лигатуру Y 0,0048·252,4=1,21 г или 83% от исходного.

Пример 2. Способ осуществляют, как описано в примере 1. Состав исходного флюса (фиг. 1):44,0 г MgCl2 (44 мас. %), 22,0 г ScF3 (22 мас. %), 15,0 г KF (15 мас. %), 12,0 г AlF3 (12 мас. %), 7,0 г YF3 (7 мас. %) и алюминиевого сплава берут 300 г. Выдержка после пропускания через пенокерамические фильтры составляет 10 мин.

Получены следующие результаты:

Исходное содержание Sc в смеси солей (по расчету) - 9,71 г.

Исходное содержание Y в смеси солей (по расчету) - 4,27 г.

Содержание в лигатуре 2,86% Sc.

Содержание в лигатуре 1,20% Y.

Получено лигатуры - 298,3 г.

Всего перешло в лигатуру Sc 0,0286-298,3=8,53 г или 87% от исходного.

Всего перешло в лигатуру Y 0,012-298,3=3,58 г или 83% от исходного.

Пример 3. Способ осуществляют, как описано в примере 1. Состав исходного флюса (фиг. 1): 15,5 г MgCl2 (31 мас. %), 12,0 г ScF3 (24 мас. %), 10,0 г KF (20 мас. %), 7,5 г AlF3 (15 мас. %), 5,0 г YF3 (10 мас. %) и алюминиевого сплава берут 215 г. Выдержка после пропускания через пенокерамические фильтры составляет 10 мин.

Получены следующие результаты:

Исходное содержание Sc в смеси солей (по расчету) - 5,29 г.

Исходное содержание Y в смеси солей (по расчету) - 3,05 г.

Содержание в лигатуре 2,08% Sc.

Содержание в лигатуре 1,17% Y.

Получено лигатуры - 214,4 г.

Всего перешло в лигатуру Sc 0,0208-214,4=4,46 г или 83% от исходного.

Всего перешло в лигатуру Y 0,0117-214,4=2,51 г или 82% от исходного.

Легирование алюминия иттрием повышает на 7,5% электропроводность изготовленных из него проводов. Иттрий имеет высокие предел прочности и температуру плавления, поэтому способен создать значительную конкуренцию в любых областях применения ввиду того, что большинство сплавов с иттрием обладает большей прочностью, чем сплавы без иттрия. У сплавов с иттрием отсутствует «ползучесть» под нагрузкой, которая ограничивает области применения сплавов без иттрия.

При наличии в шихте соединений иттрия синтезируются игольчатые кристаллы, состоящие из Al3Y. Путем изменения состава исходных реагентов, добавок легирующих редких элементов, выбора различных технологических режимов процесса (температуры, перемешивания и др.) можно заранее прогнозировать технологические характеристики синтезируемых лигатур на основе алюминия. Вследствие того, что поверхности эндогенно образованных интерметаллидов свободны от примесей и обладают повышенной активностью, образуются материалы с более высокими технологическими свойствами.

Способ получения лигатуры алюминий-скандий-иттрий, включающий приготовление флюса, содержащего смесь солей, плавление флюса и сплава на основе алюминия и осуществление высокотемпературной обменной реакции фторида скандия с алюминием в среде расплавленных галогенидов металлов, отличающийся тем, что готовят флюс, содержащий фторид алюминия, фторид скандия, фторид калия, фторид иттрия и хлорид магния при следующем соотношении компонентов, мас.%:

фторид иттрия 3-10
фторид алюминия 11-15
фторид скандия 21-24
фторид калия 13-20
хлорид магния остальное,

плавление флюса осуществляют со сплавом на основе алюминия, содержащим от 15 до 30% магния, который подают через приемник на пенокерамические фильтры через расплавленные фториды во встречном потоке аргона, выдерживают в тигле и затем разделяют расплав солей и алюминиево-скандиево-иттриевую лигатуру.



 

Похожие патенты:

Изобретение относится к высокопрочным кованым изделиям из алюминиевых сплавов и способам их получения. Кованое изделие, выполненное из деформируемого алюминиевого сплава, упрочняемого термообработкой, имеет кристаллическую микроструктуру, содержащую зерна первого типа с отклонением зерен от ориентации текстуры ≤3°, имеющие среднее отношение размеров в плоскости LТ-ST по меньшей мере 3,5:1, и зерна второго типа, отличные от зерен первого типа, причем зерна первого типа содержатся в количестве от 5 об.% до 50 об.%, при этом максимальная интенсивность текстуры по графику ODF составляет по меньшей мере 30.

Изобретение относится к области металлургии, в частности к деформируемым сплавам на основе алюминия системы Al-Fe-Si в виде тонколистового проката, фольги, листов, плит, прессованных профилей, проволоки и др.

Изобретение относится к области металлургии, в частности к составам антифрикционных сплавов на основе алюминия, а также к способам изменения их металлографической структуры сочетанием термической обработки и пластической деформации, и может быть использовано, например, в производстве подшипников скольжения.

Группа изобретений относится к способу и устройству получения содержащего алюминий и титан сплава - интерметаллида. Способ включает получение сплава из водной суспензии частиц руд, содержащих соединения алюминия и титана.

Изобретение относится к металлургии, в частности к производству литейных алюминиевых антифрикционных сплавов, используемых в машиностроении при изготовлении монометаллических подшипников скольжения.

Изобретение относится к алюминиевым сплавам, предназначенным для производства электропроводников, работающих при высоких температурах. Алюминиевый сплав содержит, мас.%: лантан и церий в сумме до 9, никель до 0,7, стронций до 0,001, алюминий - остальное, при соотношении церия к лантану 1,0-1,5 и никеля к сумме лантана и церия 0,1-0,3.

Изобретение относится к литейному производству. Алюминиевый сплав, содержащий в мас.%: никель 2-6, цирконий 0,1-0,4, ванадий 0,1-0,4, марганец до 5, железо до 2, титан до 1, алюминий, содержащий не более 1 мас.% производственных примесей, - остальное, заливают в форму машины литья под давлением.

Изобретение относится к получению наноструктурированного конгломерированного порошкового материала для нанесения износо-коррозионностойких покрытий гизодинамическим и газотермическим напылением.

Изобретение относится к получению упрочненных легких сплавов на основе алюминия. В расплав алюминиевого сплава при температуре 750÷800ºС вводят 6 мас.% порошка криолита Na3AlF6, через промежуток времени не менее 10 мин в расплав вводят 5÷6 мас.% модификатора при одновременной активации расплава в течение не менее 20 мин механическим перемешиванием и/или воздействием ультразвуковых колебаний частотой 10 кГц, и/или воздействием электромагнитного поля частотой 40 Гц.

Группа изобретений относится к получению сплава на основе титана из водной суспензии частиц руд, содержащих соединения титана. Способ включает генерацию магнитных полей, накладываемых на порции перерабатываемой сырьевой массы, восстановление металлов из руд при непрерывном перемешивании сырьевой массы с последующим накоплением и формированием продукта в виде кольцевого столбчатого монокристалла, состоящего из интерметаллида, выбранного из ТiАl3, TiFeAl2, TiAl2Fe, TiFe3, и его выгрузку.

Изобретение относится к области металлургии, а именно к способу изготовления порошка сплава на основе урана, и может быть использовано при производстве ядерного топлива.

Изобретение относится к области металлургии, а именно к композиционным материалам (КМ) на основе сплавов оловянных баббитов и способам их получения, и может быть использовано для изготовления подшипников скольжения узлов трения в транспорте, турбиностроении, судостроении.

Изобретение относится к области металлургии, а именно к порошку сплава на основе урана, и может быть использовано при производстве топлива экспериментальных ядерных реакторов.

Группа изобретений относится к cпеченным коррозионностойким материалам на основе железа для узлов трения, работающих в агрессивных средах. Материал по варианту 1 содержит 3÷15 мас.% хрома, 1÷10 мас.% никеля, до 1,8 мас.% молибдена, до 2,0 мас.% углерода, 14÷25 мас.% меди, 0,1÷1,0 мас.% серы, 0,3÷3,0 мас.% марганца и остальное - железо.

Изобретение относится к порошковой металлургии. Порошковый антифрикционный материал на основе меди содержит 0,2 мас.% бора, 1,5 мас.% дисульфида молибдена, 1,5 мас.% графита и 1,1-1,9 мас.% стекла.

Изобретение относится к области порошковой металлургии. Способ спекания изделий из порошков твердых сплавов группы WC-Co включает электроимпульсное прессование при давлении 50-500 МПа, плотности импульса тока 50-500 кА/см2 и длительности импульса тока не более 10-3 с.
Изобретение относится к получению гранул пенометаллов. Способ включает смешивание порошка металла с порофором, прессование полученной смеси с получением компактного образца в виде стержня или прутка, диспергирование полученного образца путем пропускания короткого импульса электрического тока с заданными амплитудой и длительностью.
Изобретение относится к порошковой металлургии. Способ изготовления спеченных заготовок из тяжелых сплавов на основе вольфрама включает приготовление смеси порошков, содержащей 90-98 мас.% вольфрама, остальное - никель, железо и кобальт, прессование в жесткой матрице, выталкивание порошковой прессовки из матрицы с последующим спеканием.

Изобретение может быть использовано при получении комбинированных пористо-монолитных имплантатов на основе никелида титана для применения в медицине. Шихта на основе порошка никелида титана содержит активирующую добавку в количестве 10-20 вес.% от общего веса шихты, включающую от 60 до 65 ат.% порошка титана электролитического с размерами частиц в интервале 40-70 мкм и от 40 до 35 ат.% порошка никеля карбонильного с размерами частиц в интервале 10-40 мкм.

Изобретение относится к получению открытопористого наноструктурного никеля. Смешивают порошкообразный кристаллогидрат нитрат никеля и жидкий многоатомный спирт в качестве газообразующего восстановителя при следующем соотношении: жидкий многоатомный спирт/порошкообразный кристаллогидрат нитрата никеля 1:(2,5-4).
Изобретение относится к области металлургии и может быть использовано при получении из вторичного алюминиевого сырья глиноземсодержащих гранул для рафинирования и формирования шлакообразующего материала при выплавке стали, а также при производстве упомянутых гранул.
Наверх