Способ переработки титанового лома

Изобретение относится к способу переработки титанового лома. Способ заключается в том, что в нагретый до температуры от 673 до 773 К реактор помещают титановый лом на кварцевой лодочке, подкладывая под него углеродное волокно. Далее пропускают через реактор пары тетрахлорида углерода с контролируемой скоростью, а к титановому лому - потенциал от источника напряжения постоянного тока величиной более 6000 В любого знака, используя для его подвода углеродное волокно. Извлеченный из лома тетрахлорид титана (TiCl4) конденсируют совместно с избыточным тетрахлоридом углерода (CCl4) и получают раствор (TiCl4-CCl4). Затем методом возгонки отделяют тетрахлорид титана от тетрахлорида углерода и барботируют тетрахлорид титана влажным воздухом. При этом в осадок выпадает дигидроксид-оксид титана TiO(OH)2, который прокаливают при температуре 873-973 К с получением диоксида титана (TiO2). Техническим результатом является увеличение скорости реакций в 2-4 раза и соответственно во столько же раз увеличивается производительность переработки титанового лома.

 

Изобретение относится к металлургической и химической областям промышленности. В частности, оно может быть использовано для интенсификаций переработки отходов производства титана и утилизации отработавших изделий, изготовленных из титана и его сплавов (лома).

Известно большое количество работ, посвященных получению тетрахлорида титана и диоксида титана путем хлорирования сырья (рутила и ильменита) как части технологии производства титана. Титаносодержащий лом можно отнести к титановым концентратам, которые при хлорировании с одновременным введением в процесс углерода практически перерабатываются нацело (Химическая технология титана. / В.А.Резниченко, B.C. Устинов, И.А. Карязин и др.. М.: Наука, 1983, с. 45).

Однако неизвестны способы по переработке титанового твердого лома способом газообразного хлорирования.

Так как в предлагаемом изобретении происходят процессы, аналогичные процессам коррозии при воздействии внешних факторов на титан и его сплавы, будем рассматривать их как аналоги изобретения с учетом того, что вредные условия при корродировании станут полезными при переработке титанового лома.

Известны способы влияния некоторых внешних факторов на корродирование титана и его сплавов (Г.Г. Улиг, Р.У. Реви. Коррозия и борьба с ней. Введение в коррозионную науку и технику: Пер. с англ. / Под ред. A.M. Сухотина. - Л.: Химия, 1989, с. 372-377).

Например, титан значительно корродирует в концентрированных горячих растворах гидроксида натрия и пероксида водорода (NaOH и Н2О2), более 50 мм/год или 696 г/м3·сут, в кипящих растворах HCl и H2SO4 (114 мм/год в 10% HCl).

При наличии на поверхности титана и его сплава с содержанием 6% Al и 4% V возникает коррозионное растрескивание под напряжением.

В результате проникновения в титан водорода при температуре выше 80°С происходит охрупчивание титана. В горячих концентрированных растворах хлорида кальция и других сходных средах наблюдается питтинговая коррозия. В дымящей азотной кислоте при комнатной температуре в течение 3…16 часов происходит межкристаллитная коррозия.

Во всех приведенных выше аналогах отсутствует изучение влияния на процесс корродирования такого внешнего фактора, как приложение к титановому лому потенциала более 6000 В.

Известен способ переработки титанового скрапа электролитическим рафинированием (Химическая технология титана. / В.А.Резниченко, B.C. Устинов, И.А. Карязин и др. М.: Наука, 1983, с. 191). При этом большое значение имеет однородность титанового скрапа по составу. Если компонентами титановых сплавов являются легирующие, которые по своим химическим свойствам близки титану (алюминий, марганец, ванадий), то рекомендуется лом из таких сплавов просто переплавлять, не стремясь к разделению компонентов.

Однако в этом случае требуется высокая культура сбора скрапа, его сортировки и хранения, а также тщательная подготовка анодного материала перед загрузкой в электролизер. Эти условия считаются недостатком способа.

Таким образом, указанный выше способ неприменим к титановому лому неоднородного состава.

Известен титанотермический способ приготовления электролита для промышленного процесса электролитического рафинирования путем восстановления тетрахлорида титана металлическим титаном в присутствии твердых или расплавленных хлоридов щелочных металлов (Химическая технология титана. / В.А.Резниченко, B.C. Устинов, И.А. Карязин и др.. М.: Наука, 1983, с. 187). По второму варианту температура восстановления не превышает 700°С. Процесс ведут в реторте из нержавеющей стали высотой 1,7 м, диаметром 0,8 м. На решетку реторты через герметический бункер загружают металлический титан (главным образом отходы) и соли (NaCl, KCl). Шихту разогревают до 850-900°С под вакуумом и в нее подают TiCl4, который при взаимодействии с титаном образует низшие хлориды, сплавляющиеся с хлоридами щелочных металлов. По окончании процесса температуру поднимают до 850-900°С и расплав посредством создания над его поверхностью избыточного давления аргона передавливают в электролизер. Недостатком данного способа является то, что используют присадку только в виде металлического титана, а не из титановых сплавов неизвестного состава, которые встречаются в титановом ломе.

Известен способ определения скорости коррозии титана в условиях комнатной температуры при воздействии на него сухого хлора. Титан в этих условиях корродирует со скоростью более 10 г/(м2·ч) (Коррозия конструкционных материалов. Газы и неорганические кислоты: Справ. изд.: В двух книгах. Кн. 1. Газы и фреоны / В.В.Батраков, В.П.Батраков, Л.Н. Пивоварова, В.В.Соболь. - М.: Металлургия, 1990. - С. 184). Недостатком данного способа является ограниченность температурных условий и отсутствие данных по воздействию других хлорагентов на скорость коррозии титана.

Известен «Способ контроля стойкости стальных изделий против локальной коррозии» (Патент РФ №2362142, МПК G01N 17/02), заключающийся в том, что от стальных изделий отбирают пробы, изготавливают образцы со специально подготовленной поверхностью. Поверхность обрабатывают электрохимическим методом в потенциодинамическом режиме реактивом, содержащим ионы хлора. Концентрацию ионов хлора в растворе поддерживают 10-30 г/л, потенциал изменяют со скоростью 1,2-2,5 В/час в интервале от (650-500) мВ до (350-250) в прямом, а затем в обратном направлении, фиксируя зависимость плотности тока от потенциала. О коррозионной стойкости судят по электрохимическим характеристикам стали, определяемым из полученной зависимости.

Так как в данном способе используют ограниченные условия процесса корродирования: только нормальная температура; только в водном агрессивном растворе; при низком потенциале, - то данный способ не позволяет определять степень корродирования металлов при экстремальных повышенных температурах и высоком электрическом потенциале.

Наиболее близким к предлагаемому способу (прототипом) является способ влияния внешних факторов на степень коррозии титана и его сплавов, описанный в ст.: «Механизм и кинетические параметры газовой коррозии титанового сплава ВТ6 в тетрахлориде углерода» / В.Ф. Горюшкин, Ю.В. Бендре, С.А. Зенцова и др. // Вестник СибГИУ. - 2014 - №2(8), с. 40-43.

Этот способ заключается в том, что в нагретый до температуры от 673 до 773 К реактор помещают образцы титанового сплава марки ВТ6 в виде дисков диаметром 19-20 мм и толщиной 1-4 мм на кварцевой лодочке, подкладывая под них углеродное волокно. Далее пропускают через реактор пары тетрахлорида углерода с контролируемой скоростью и выдерживают в таких условиях от одного до пяти часов. После охлаждения в реакторе образцы извлекают из реактора, удаляют механическим путем графитную пленку, образовавшуюся на образцах, взвешивают и обмеряют, как это делалось до эксперимента, и производят расчеты количества титана, перешедшего из сплава в парообразный тетрахлорид титана, и скорость коррозии.

В данном способе только одного повышения температуры, которое вызывает усиление коррозии, недостаточно для ускорения процесса.

Техническим результатом предлагаемого изобретения является интенсификация взаимодействия титанового лома с тетрахлоридом углерода и полного извлечения титана из лома в виде тетрахлорида титана, раствора тетрахлорида титана с тетрахлоридом углерода и диоксида титана.

Для достижения технического результата в нагретый до температуры от 673 до 773 К реактор помещают титановый лом на кварцевой лодочке, подкладывая под него углеродное волокно, далее пропускают через реактор пары тетрахлорида углерода с контролируемой скоростью, а в течение пропускания паров тетрахлорида углерода через реактор к лому подводят потенциал величиной более 6000 В любого (положительного или отрицательного) знака через углеродное волокно. При этом вторую клемму источника напряжения оставляют ни с чем не соединенной. В таких условиях проводят извлечение титана из лома. Извлеченный из лома тетрахлорид титана конденсируют совместно с избыточным тетрахлоридом углерода и получают раствор (TiCl4-CCl4). Затем способом возгонки отделяют тетрахлорид титана от тетрахлорида углерода, который барботируют влажным воздухом с выпадением в осадок дигидроксид-оксида титана [TiO(OH)2]. Твердый дигидроксид-оксид титана [TiO(OH)2] прокаливают при температуре 873…973 К и получают диоксид титана (TiO2).

Эксперименты на ломе из чистого титана и на сплаве титана показали, что при подаче потенциала в 6000 В интенсивность реакции увеличивается в 2-4 раза и, соответственно, увеличивается производительность процесса.

Показываем один из экспериментов с применением способа переработки титанового лома на шлифованных образцах из сплава ВТ6 в виде дисков диаметром 19-20 мм и толщиной 1-4 мм в количестве 8 шт.

Образцы выдерживали в герметичном кварцевом реакторе в потоке паров тетрахлорида углерода при температуре 673 К в течение четырех часов. К образцам подводили отрицательный потенциал величиной 6000 В от источника напряжения постоянного тока, используя в качестве проводника углеродное волокно, на которое укладывались образцы, помещаемые в реактор. При этом положительную клемму источника напряжения в 6000 В ни с чем не соединяли.

Титан образцов вступал в химическое взаимодействие с хлорагентом с образованием на поверхности образцов пористой незащитной пленки аморфного углерода и паров тетрахлорида титана, которые потоком выносились из горячей зоны и конденсировались на выходе в специальном резервуаре в смеси с избыточным тетрахлоридом углерода, не вступившим во взаимодействие с титаном:

Tiтв+CCl4пар→Ств+TiCl4пар.

Скорость реакции хлорирования, которую оценивали гравиметрическим методом, по потере массы образцов в условиях опыта оказалась равной (Р=0,95; f=7), где Р - доверительная вероятность при определении погрешности измеряемой величины, f - число степеней свободы (определяется как число образцов минус единица). В этих же условиях, но без подведения потенциала скорость реакции составляет: (Р=0,95; f=30). То есть техническим результатом предлагаемого способа в примере является увеличение скорости реакции в 2,2 раза.

За время хлорирования в емкости для сбора конденсата образовалось около 10 мл раствора TiCl4-CCl4, которые, как известно, неограниченно растворимы друг в друге. Для отделения тетрахлорида титана от тетрахлорида углерода применяли возгонку раствора (TiCl4-CCl4).

Затем очищенный конденсат тетрахлорида титана перелили из емкости в стакан и в течение 0,5 ч барботировали при комнатной температуре, пропуская через него влажный воздух для выделения осадка дигидроксида-оксида титана TiO(ОН)2, образующегося в результате химического взаимодействия тетрахлорида титана с водой:

ТiСl+3Н2Опар→TiO(ОН)2тв+4НСlгаз.

Масса отфильтрованного и высушенного осадка оказалась равной 3,6 г.

Осадок прокалили на воздухе при 773 К в течение 0,5 ч и получили 2,9 г диоксида титана.

Способ переработки титанового лома, включающий нагрев до температуры 673-773 К помещенного в кварцевый реактор титанового лома на кварцевой лодочке с подкладыванием под него углеродного волокна, пропускание через реактор паров тетрахлорида углерода (CCl4) с контролируемой скоростью, причем в период пропускания паров тетрахлорида углерода через реактор к титановому лому прикладывают потенциал от источника напряжения постоянного тока величиной более 6000 В любого знака с использованием для его подвода углеродного волокна, извлеченный из лома парообразный тетрахлорид титана (TiCl4) конденсируют совместно с избыточным тетрахлоридом углерода и получают раствор тетрахлорида титана с тетрахлоридом углерода (TiCl4-CCl4), который возгоняют с удалением из раствора тетрахлорида углерода, затем барботируют очищенный тетрахлорид титана влажным воздухом и выпавший при этом в осадок твердый дигидроксид-оксид титана (TiO(ОН)2) прокаливают при температуре 873-973 К с получением диоксида титана (TiO2).



 

Похожие патенты:

Изобретение относится к переработке мелкодисперсного красного шлама на основе оксидов металлов и кремниевых соединений. В предложенном способе измельчение производят с одновременным разделением красного шлама на оксиды металлов и оксиды кремния путем пропускания красного шлама через дезинтегратор с вращающимся электромагнитным полем с частотой вращения в диапазоне от 110 до 130 Гц и напряженностью от 100 до 160 А/м.

Изобретение относится к способу переработки фторуглеродсодержащих отходов производства алюминия электролизом расплавленных солей. Способ включает высокотемпературную обработку отходов в присутствии кислородсодержащего газа с получением вторичного сырья для производства алюминия, обработку отходов осуществляют путем газификации с получением горючего фторсодержащего синтез-газа и твердых продуктов газификации.

Изобретение относится к способу обработки содержащего загрязнения углеродсодержащего сыпучего материала. Техническим результатом является повышение эффективности обработки углеродсодержащего материала.

Изобретение относится к области металлургии и может быть использовано на заводах машиностроительной и металлургической промышленности для переработки стальной и чугунной стружки в плотные, прочные брикеты, свободные от загрязнений.

Изобретение относится к способу кучного выщелачивания золота из исходного сырья в виде золотосодержащих упорных руд и техногенного минерального сырья. Способ включает агломерацию исходного сырья путем добавки к нему связующего материала, формирование штабеля, выщелачивание золота путем подачи в штабель раствора выщелачивающего реагента, рециркуляцию рабочих растворов, сбор продуктивных растворов и выделение из них золота.

Изобретение относится к способу плавки металлолома в печи. Способ включает загрузку шихты твердого металлолома в печь, подачу в печь топлива и обогащенного кислородом окислителя, сжигание топлива с окислителем для генерирования тепла внутри печи, расплавление шихты твердого металлолома в печи посредством тепла, выпуск расплавленного металла из печи, при этом после стадии загрузки шихты твердого металлолома в печь топливо сжигают с окислителем для сформирования одного или более видимых факелов пламени в печи над шихтой, и перед стадией выпуска расплавленного металла из печи топливо сжигают с окислителем с обеспечением генерирования беспламенного горения в печи над расплавленным металлом.

Изобретение относится к металлургии вторичных цветных металлов. Реактор включает футерованный корпус, расположенный внутри корпуса графитовый пенал, выполненный в виде двух стаканов, один из которых расположен в зоне нагрева, а другой - в зоне конденсации, нагревательный элемент, размещенный с внешней стороны стакана в зоне нагрева и соединенный через графитовые электроды с трансформатором, и размещенную в месте контакта стаканов перегородку с осевым отверстием, которая уплотнена высокотемпературной прокладкой.
Изобретение может быть использовано в химической промышленности. Для получения кристаллов нитрата кобальта высокой чистоты отработанные катализаторы Co/SiO2 кальцинируют на воздухе, охлаждают и измельчают в порошок.
Изобретение относится к извлечению рутения из отработанного катализатора в виде оксида алюминия, содержащего рутений. Способ включает его сушку, прокаливание, охлаждение и измельчение в черный порошок, содержащий оксид рутения.

Изобретение относится извлечению металлического кобальта, рутения и алюминия из отработанного катализатора Co-Ru/Al2O3 для синтеза Фишера-Тропша. Катализатор подвергают воздействию прокаливанием и восстановительной обработке.

Изобретение относится к переработке лейкоксеновых концентратов с высоким содержанием кремния. Способ и устройство для переработки упомянутых концентратов основаны на плазменно-дуговой восстановительной плавке концентрата при температуре 2500-3000 К и атмосферном давлении.
Изобретение относится к получению губчатого титана. Готовят смесь тетрахлорида титана и тетрахлорида углерода при соотношении 1:(0,009-0,01) и подают на восстановление металлическим магнием при избыточном давлении аргона.

Группа изобретений относится к области обработки красного шлама. Способы включают выщелачивание красного шлама с использованием HCl с получением продукта выщелачивания, содержащего ионы первого металла, например алюминия, и твердое вещество.
Изобретение относится к способу извлечения титана из шлака, полученного при выплавке чугуна и стали из титаномагнетитового концентрата. Способ включает измельчение и сернокислотное выщелачивание шлака с переводом металлов из шлака в сернокислотный раствор в виде сульфатов.

Изобретение может быть использовано в химической, горнорудной промышленности. Восстановление железа, кремния и восстановление диоксида титана до металлического титана проводят путем генерации электромагнитных взаимодействий частиц SiO2, кремнийсодержащего газа, частиц FeTiO3 и магнитных волн.

Изобретение относится к способу алюмотермического получения титана из его тетрахлорида. Восстановление ведут во встречных турбулентных потоках с дисперсным алюминием в инертном газе.

Изобретение относится к способу обработки сырья, содержащего минерал и/или оксид/силикат металла, полученный из минерала или ассоциируемый с минералом. В способе осуществляют обработку исходного сырья при взаимодействии минерала и/или оксида/силиката металла, полученного из минерала или ассоциируемого с минералом, с кислым фтористым аммонием, имеющим общую формулу NH4F·xHF, в которой 1<х≤5.

Предложен способ получения титана восстановлением его из тетрахлорида с применением жидкого тетрахлорида и дисперсного алюминия в качестве восстановителя. Процесс проводят в температурном диапазоне от -23°C до +137°C и массовом соотношении исходных тетрахлорида титана и алюминия не менее, чем 5,27 к 1,00 при интенсивном перемешивании.

Изобретение относится к слоистой огнеупорной футеровке печи, используемой в процессе обогащения титановой руды с образованием обогащенного оксидом титана и оксидом железа жидкого шлака, к стойкому к разрушению средству в присутствии обогащенного оксидом титана и оксидом железа жидкого шлака, к способу его получения и к предварительно сформованной слоистой огнеупорной футеровке.

Изобретение относится к химической очистке тетрахлорида титана от примесей. Установка включает емкость для хранения тетрахлорида титана, группу установленных в ряд и соединенными между собой наклонными переливными трубами реакторов, сгуститель, емкость для очищенного тетрахлорида титана и кюбель для твердого остатка.
Изобретение относится к способу переработки пиритного огарка. Способ включает смешивание пиритного огарка с хлоридом аммония и хлорирование при нагреве.
Наверх