Способ неразрушающего контроля литых корпусных деталей

Использование: для неразрушающего контроля литых корпусных деталей. Сущность изобретения заключается в том, что выполняют секторное сканирование датчиком ФАР посредством качания луча с одновременным перемещением датчика ФАР по участку контроля сначала в поперечной, а затем в продольной плоскости в прямом и обратном направлении, причем направление перемещения датчика ФАР осуществляют в плоскости качания луча, проводят автоматическую запись результатов ультразвукового контроля совместно с записью координат перемещений датчика ФАР на поверхности участка контроля, посредством анализа записанных данных для каждого угла ввода секторного сканирования находят координаты ФАР на поверхности участка контроля, в которых амплитуда эхо-сигнала превышает уровень фиксации амплитуды эхо-сигнала, соответствующий дефекту, по найденным координатам на поверхности участка контроля и с учетом углов ввода секторного сканирования для каждой координаты, на которых определена максимальная амплитуда эхо-сигнала, определяют координаты точек в сечении отливки с амплитудой эхо-сигнала, превышающей уровень фиксации, причем условную протяженность дефекта определяют как расстояние между крайними положениями проекции определенных точек на плоскость сканирования. Технический результат: повышение достоверности выявления дефектов литых корпусных изделий. 4 ил.

 

Изобретение относится к области неразрушающих методов контроля литых корпусных деталей и предназначено как для первичного контроля изделий литейного производства, так и для контроля изделий, находящихся в эксплуатации. В частном случае заявленное изобретение может быть использовано для неразрушающего контроля при производстве корпусов магистральных насосных агрегатов.

Для литых корпусных изделий характерны следующие дефекты: поры, раковины, рыхлоты, трещины, включения. Поры и раковины имеют директрисы рассеивания близкие к круговым. Плоскостные дефекты (в том числе трещины) имеют ярко выраженные направленные директрисы рассеивания, что приводит к сложности их выявления ультразвуковыми методами контроля. Для снижения вероятности пропуска дефектов отечественные стандарты [ГОСТ 24507-80 Контроль неразрушающий. Поковки из черных и цветных металлов. Методы ультразвуковой дефектоскопии] рекомендуют проведение ультразвукового контроля (УЗК) датчиками, имеющими нормальный угол ввода (0 градусов к вертикали к поверхности контроля, фиг. 1), а также наклонным датчиком, имеющим один фиксированный угол ввода. Причем контроль наклонным датчиком производится в четырех взаимно перпендикулярных направлениях. При УЗК сложных литых изделий, таких как корпуса насосов, эти рекомендации не всегда позволяют достоверно выявлять дефекты с произвольной ориентацией.

Известен способ ультразвукового контроля [заявка на изобретение JP 2001343370 А, опубл. 14.12.2001, МПК: G01N 29/22, G01N 29/30, G01N 29/44]. Известный способ направлен на разработку ультразвукового метода контроля, способного выполнять дефектоскопию материальных объектов, имеющих грубую кристаллическую структуру, таких как участки металлических сварных швов, литых изделий и т.п. Данные, зависимые от угла падения, получают посредством выполнения дефектоскопии испытуемого образца путем изменения угла падения ультразвуковой волны, и затем получают данные взвешенных функций на основе данных зависимостей угла падения. Получают данные зависимостей частоты путем выполнения дефектоскопии, посредством передачи ультразвуковой волны, имеющей полосу частот, или т.п., и получают данные о взвешенных функциях по данным зависимостей частоты. Дефектоскопии выполняется с фактической дефектоскопией материального объекта путем изменения угла падения ультразвуковой волны, а вес задается данными о взвешенных функциях. Для получения фактических данных дефектоскопии выполняют дефектоскопию ультразвуковой волной, имеющей полосу частот, для улучшения отношения сигнал/шум и обнаружения дефекта. Угол падения изменяется с помощью метода фазированных решеток, а полоса частот расширяется с помощью зонда, снабженного пьезоэлектрическим преобразователем составного типа.

Наиболее близким аналогом заявленного изобретения является способ обнаружения включения тяжелых альфа-частиц в титановых отливках [заявка на изобретение WO 0171337 A1, опубл. 27.09.2001, МПК: G01N 29/04, G01N 29/06, G01N 29/26, G01N 29/265], при котором проводят неразрушающий контроль сеточной или близкой к сеточной по форме отливки на основе титана, полученной по выплавляемым моделям, для чего сканируют внутреннее пространство отливки под ее наружной поверхностью при помощи ультразвуковых волн, образованных фазированной решеткой (ФАР) для контроля случайным образом расположенных внутри отливки включений альфа-частиц, раковин, образованных в процессе литья, и других вызывающих образование трещин включений, имеющихся в микроструктуре отливки. Способ наиболее полезен и имеет преимущества по отношению к детектированию включений альфа-частиц в микроструктуре критичных к разрушению областей конструктивной корпусной отливки на основе титана, полученной по выплавляемым моделям.

К недостаткам наиболее близкого аналога можно отнести проведение сканирования согласно известному способу таким образом, что зоны отливки прозвучиваются не во всем максимально возможном диапазоне углов ввода, а также отсутствие методики оценки условных размеров протяженных дефектов с использованием данных сканирования.

Задачей, на решение которой направлено заявленное изобретение, является повышение надежности контроля литых корпусных изделий.

Техническим результатом является повышение достоверности выявления дефектов литых корпусных изделий, что позволяет снизить вероятность пропуска опасных дефектов, снижающих прочность литых корпусных изделий.

Указанная задача решается, а технический результат достигается тем, что способ неразрушающего контроля литых корпусных деталей содержит этапы, на которых разбивают поверхность литой корпусной детали на участки контроля и наносят на них контактную смазку, проводят ультразвуковое сканирование выделенных участков литой корпусной детали по поперечно-продольной схеме передвижения датчика с фазированной решеткой (ФАР): выполняют секторное сканирование датчиком ФАР посредством качания луча с одновременным перемещением датчика ФАР по участку контроля сначала в поперечной, а затем в продольной плоскости в прямом и обратном направлении, причем направление перемещения датчика ФАР осуществляют в плоскости качания луча, проводят автоматическую запись результатов ультразвукового контроля совместно с записью координат перемещений датчика ФАР на поверхности участка контроля, посредством анализа записанных данных для каждого угла ввода секторного сканирования находят координаты ФАР на поверхности участка контроля, в которых амплитуда эхо-сигнала превышает уровень фиксации амплитуды эхо-сигнала, соответствующего дефекту, по найденным координатам на поверхности участка контроля и с учетом углов ввода секторного сканирования для каждой координаты, на которых определена максимальная амплитуда эхо-сигнала, определяют координаты точек в сечении отливки с амплитудой эхо-сигнала, превышающей уровень фиксации, причем условную протяженность дефекта определяют как расстояние между крайними положениями проекции определенных точек на плоскость сканирования.

Заявленное изобретение поясняется чертежами (фиг. 1-4), на которых изображены:

фиг. 1 - схема определения условной протяженности дефекта при традиционном ультразвуковом контроле;

фиг. 2 - ультразвуковое сканирование выделенных участков литой корпусной детали по поперечно-продольной схеме;

фиг. 3 - секторное сканирование: а) контроль поперечной волной,

б) контроль продольной волной;

фиг. 4 - схема определения условной протяженности дефекта.

Для контроля литых корпусных изделий используют дефектоскопы с ультразвуковыми фазированными решетками, включенными в режиме секторного сканирования (т.е. с изменяющимся углом ввода). Сканирование производится в продольном направлении датчика вдоль плоскости качания луча. Таким образом, один и тот же дефект фиксируется на разных углах ввода ультразвукового сигнала. Данный способ применим как для контроля через плоские и цилиндрические поверхности, так и на радиусных переходах.

Применение вышеуказанного метода сканирования дает возможность определить эквивалентную площадь отражателя (непротяженного дефекта) при большом числе углов ввода, а также позволяет:

- оценить тип дефекта - объемный или плоскостной;

- оценить направленность и ширину директрисы рассеивания, что дает возможность оценить ориентацию плоскостного дефекта;

- для дефектов, размер которых больше ширины диаграммы направленности ультразвукового луча, появляется возможность определить его эквивалентные размеры, оценить форму и положение границ дефекта.

Заявленный способ неразрушающего контроля литых корпусных деталей осуществляют следующим образом.

Первоначально проводят настройку дефектоскопа с ультразвуковыми фазированными решетками, обеспечивающую требуемую чувствительность контроля. Настройка проводится таким образом, чтобы соблюдалось условие, при котором для всех дефектов, имеющих одинаковую эквивалентную площадь, будет получена одинаковая амплитуда эхо-сигнала во всем диапазоне контроля.

После настройки дефектоскопа проводят подготовку поверхности литой корпусной детали для обеспечения соответствия шероховатости ее поверхности значениям, пригодным для проведения ультразвукового сканирования. Стандартное значение шероховатости поверхности изделия для проведения ультразвукового контроля (УЗК) составляет Rz-40. Для контроля поверхности стальных литых изделий допускается значение шероховатости Rz-80 и более. Подготовка поверхности литой корпусной детали для соблюдения этого требования проводится посредством пескоструйной, дробеструйной обработки или т.п.

Разбивают поверхность литой корпусной детали на участки контроля. Количество и размеры участков контроля выбираются в зависимости от сложности поверхности литой корпусной детали. На контролируемые участки поверхности наносят контактную смазку для обеспечения передачи ультразвукового сигнала от датчика непосредственно в изделие.

Проводят ультразвуковое сканирование выделенных участков литой корпусной детали по поперечно-продольной схеме (фиг. 2). При сканировании датчик с фазированной решеткой (ФАР) выполняет секторное сканирование, посредством качания луча, с одновременным перемещением датчика ФАР по линиям сканирования. Плоскость качания луча ФАР должна совпадать с направлением перемещения датчика. Сканирование участка контроля производят в четырех перпендикулярных направлениях: в двух взаимно перпендикулярных направлениях при контроле продольными волнами (фиг. 2 а) и в)) и в двух перпендикулярных направлениях при контроле поперечными волнами со сканированием в прямом и обратном направлении (фиг. 2 а), б), в) и г)).

При контроле поперечной волной и секторном сканировании передвижение датчика ФАР показано на фиг. 3(a). Диапазон «качания» луча устанавливают в диапазоне +40…+75 градусов (возможно отклонение от указанного диапазона, учитывающее специфику конкретного объекта контроля), соответственно дефект «озвучивается» во всем указанном диапазоне углов ввода. При сканировании в обратном направлении диапазон углов сканирования составляет -40…-75 градусов. При контроле продольной волной передвижение датчика ФАР показано на фиг. 3(б), диапазон «качания» луча может составлять, например, -45…+45 градусов. Таким образом, дефект озвучивается в максимальном диапазоне углов ввода, что повышает вероятность его обнаружения.

В процессе сканирования проводят автоматическую запись результатов ультразвукового контроля совместно с записью координат перемещений датчика ФАР на поверхности участка контроля. Для точной привязки к координатам на поверхности участка контроля сканирование производят с использованием датчика пути. Такой режим записи позволяет определить, при каком угле ввода амплитуда эхо-сигнала максимальна для каждой точки сечения контролируемого объекта. Знание зависимости амплитуды эхо-сигнала, отражаемого от поверхности дефекта, от расположения датчика ФАР позволяет оценить форму поверхности дефекта: объемный, плоскостной, и его ориентацию в теле литой детали.

Анализ записанных данных проводят следующим образом. 1. Находят совокупность координат датчика ФАР на поверхности участка контроля, на которых амплитуда эхо-сигнала превышает уровень фиксации амплитуды эхо-сигнала, соответствующего дефекту.

2. Для каждой из найденных координат датчика ФАР на поверхности участка контроля находят угол ввода ультразвуковой волны, на котором значение эхо-сигнала от дефекта максимально (фиг. 4).

3. С учетом найденных координат датчика ФАР и углов ввода ультразвуковой волны на данных координатах определяют координаты точек в сечении литой детали с максимальными значениями эхо-сигнала от дефекта.

4. Величину условной протяженности дефекта определяют как расстояние между проекциями крайних точек с максимальным значением эхо-сигнала в сечении литой детали на поверхность контроля (точки Х1′ и Х3′ на фиг. 4).

Условную протяженность дефекта определяют как расстояние между крайними положениями проекций найденных точек в сечении детали на плоскость сканирования по формуле (1).

где а - условная протяженность;

X1 и Х3 - крайние положения датчика ФАР при уменьшении эхо-сигнала до уровня фиксации;

α1 - угол ввода при максимальной величине эхо-сигнала от дефекта в положении датчика ФАР в точке X1;

α3 - угол ввода при максимальной величине эхо-сигнала от дефекта в положении датчика ФАР в точке Х3;

L1 - расстояние по лучу от поверхности до точки отражения на дефекте при максимальной величине эхо-сигнала от дефекта в положении датчика ФАР в точке X1;

L3 - расстояние по лучу от поверхности до точки отражения на дефекте при максимальной величине эхо-сигнала от дефекта в положении датчика ФАР в точке Х3;

X1′ - значение координаты X точки максимального эхо-сигнала от дефекта в положении датчика ФАР в точке X1;

Х3′ - значение координаты X точки максимального эхо-сигнала от дефекта в положении датчика ФАР в точке Х3.

Для определения формы и условных размеров найденного дефекта проводят сканирование и определение условной протяженности дефекта по всем четырем перпендикулярным направлениям.

Пример.

Был проведен ультразвуковой контроль литой корпусной детали -фланца, поверхность которого разбивали на участки контроля размером 300×100 мм. На контролируемые участки поверхности наносилась гелевая контактная смазка. Далее было проведено ультразвуковое сканирование прямым датчиком ФАР выделенных участков литой корпусной детали по поперечно-продольной схеме. При контроле поперечной волной и секторном сканировании диапазон «качания» луча устанавливался в диапазоне +40…+75 градусов, при сканировании в обратном направлении диапазон углов сканирования составлял -40…-75 градусов. При контроле продольной волной диапазон «качания» луча составлял -45…+45 градусов.

По результатам сканирования в теле фланца был обнаружен дефект. Максимальный размер между положениями датчика ФАР по линии сканирования на поверхности контроля, на которых уровень эхо-сигнала превышает уровень фиксации, составлял Х3-X1=65-10=55 (мм). Для каждого положения датчика ФАР, на котором уровень эхо-сигнала превышал уровень фиксации, были определены углы ввода ультразвуковой волны, при которых эхо-сигнал от данного дефекта максимален. Углы для найденных крайних положений датчика ФАР X1 и Х3 составили α1=+40° и α3=-35° соответственно. Расстояния по ультразвуковому лучу от поверхности сканирования до точки отражения на дефекте при максимальной величине эхо-сигнала от дефекта в положении датчика ФАР в точках X1 и Х3 составили L1=25 мм, L3=30 мм. Затем были найдены соответствующие точкам X1 и Х3 координаты дефекта в сечении литой детали X1′ и Х3′.

Условная протяженность дефекта, определенная как расстояние между крайними положениями проекций найденных точек в сечении детали на плоскость сканирования, была определена по формуле (1) и составила:

а=Χ3′-X1′=(65+30·sin(-35°))-(10+25·sin(+40°))≈21,7 (мм)

Был сделан вывод о недопустимости дефекта с выявленной условной протяженностью.

Способ неразрушающего контроля литых корпусных деталей, характеризующийся тем, что он содержит этапы, на которых разбивают поверхность литой корпусной детали на участки контроля и наносят на них контактную смазку, проводят ультразвуковое сканирование выделенных участков литой корпусной детали по поперечно-продольной схеме передвижения датчика с фазированной решеткой (ФАР): выполняют секторное сканирование датчиком ФАР посредством качания луча с одновременным перемещением датчика ФАР по участку контроля сначала в поперечной, а затем в продольной плоскости в прямом и обратном направлении, причем направление перемещения датчика ФАР осуществляют в плоскости качания луча, проводят автоматическую запись результатов ультразвукового контроля совместно с записью координат перемещений датчика ФАР на поверхности участка контроля, посредством анализа записанных данных для каждого угла ввода секторного сканирования находят координаты ФАР на поверхности участка контроля, в которых амплитуда эхо-сигнала превышает уровень фиксации амплитуды эхо-сигнала, соответствующий дефекту, по найденным координатам на поверхности участка контроля и с учетом углов ввода секторного сканирования для каждой координаты, на которых определена максимальная амплитуда эхо-сигнала, определяют координаты точек в сечении отливки с амплитудой эхо-сигнала, превышающей уровень фиксации, причем условную протяженность дефекта определяют как расстояние между крайними положениями проекции определенных точек на плоскость сканирования.



 

Похожие патенты:

Изобретение относится к способам оценки напряженно-деформированного состояния (НДС) и может быть использовано для определения механических напряжений и деформаций элементов сложных конструкций расчетно-экспериментальным методом.

Использование: для ультразвукового контроля изделия по всему сечению. Сущность: заключается в том, что на поверхность контролируемого изделия устанавливают систему пьезоэлектрических преобразователей, чередующих работу совмещенного и раздельного режимов излучения-приема ультразвуковых колебаний и, перемещая систему пьезоэлектрических преобразователей вдоль продольной оси контролируемого изделия, излучают в него наклонным пьезоэлектрическим преобразователем ультразвуковые колебания и регистрируют эхо-сигналы, отраженные от вертикальных, вертикально ориентированных, горизонтальных и горизонтально ориентированных стандартных и нестандартных отражателей (дефектов), расположенными в проекции плоскости распространения ультразвуковых колебаний в контролируемом изделии одним или множеством прямых пьезоэлектрических преобразователей, при этом излучение ультразвуковых колебаний в контролируемое изделие производится одним пьезоэлектрическим преобразователем с заданным углом ввода ультразвуковых колебаний, а прием эхо-сигналов одним или множеством прямых пьезоэлектрических преобразователей с углом приема эхо-сигналов 0° в одном цикле.

Использование: для неразрушающего контроля изделий из ферромагнитных материалов. Сущность изобретения заключается в том, что электромагнитно-акустический преобразователь для контроля изделий из ферромагнитного материала содержит каркас из немагнитного материала, в котором закреплены узел подмагничивания и выполненные в виде последовательно разнесенных в пространстве решеток излучатель и приемник, при этом приемник размещен на обращенном к изделию полюсе постоянного магнита или электромагнита узла намагничивания, а излучатель размещен на держателе, закрепленном в корпусе, при этом шаг между синфазными проводниками приемника пропорционален длине возбуждаемой волны, а шаг между синфазными проводниками излучателя пропорционален удвоенной длине возбуждаемой волны.

Использование: для оперативной оценки результатов ультразвуковой (УЗ) дефектоскопии. Сущность изобретения заключается в том, что устройство отображения рельсового дефектоскопа содержит подсистему измерения, содержащую несколько акустических блоков, каждый из которых содержит несколько электроакустических преобразователей, соединенных с многоканальным ультразвуковым дефектоскопом, устройство отображения результатов ультразвуковых зондирований на дисплее в виде мнемонического изображения рельса с акустическими блоками, напротив каждого из которых расположены метки электроакустических преобразователей, содержащихся в соответствующем акустическом блоке, устройство автоматического обнаружения дефектов по результатам ультразвукового зондирования, обеспечивающего выделение на дисплее меток акустических блоков и электроакустических преобразователей, обнаруживших дефект, а также отображение сигналов от дефектов и местоположение дефектов на мнемоническом изображении рельса.

Использование: для неразрушающего контроля качества сварных швов с использованием метода акустической эмиссии. Сущность изобретения заключается в том, что акустическое устройство обнаружения и определения местоположения дефектов в сварных швах содержит измерительный канал, включающий установленный на безопасном расстоянии от сварного шва преобразователь акустических сигналов, первый предварительный усилитель, полосовой фильтр, а также первый аналого-цифровой преобразователь, блок оперативного запоминания акустических сигналов и компьютер с монитором отображения выходных данных, при этом оно снабжено коммутатором, включенным между выходом преобразователя акустических сигналов и входом первого предварительного усилителя, первым амплитудным дискриминатором, соединенным с выходом первого аналого-цифрового преобразователя, вход которого подключен к выходу полосового фильтра, вход которого подключен к выходу первого предварительного усилителя, вторым амплитудным дискриминатором, причем выходы первого амплитудного дискриминатора соединены с соответствующими входами блока оперативного запоминания акустических сигналов и второго амплитудного дискриминатора, блоком записи эталонных сигналов, вход которого соединен с выходом второго амплитудного дискриминатора, блоком вычисления нормированных взаимно корреляционных функций и их максимальных значений.

Изобретение относится к области определения одной из основных характеристик шумоизолирующих материалов - коэффициента их звукопоглощения. Способ оценки звукопоглощения волокнисто-пористых материалов заключается в измерении удельного сопротивления протеканию потоком воздуха RS и определении коэффициента звукопоглощения α на заданной частоте по регрессионным уравнениям, связывающим RS и α.

Изобретение относится к области ракетной и измерительной техники и может быть использовано при выходном контроле на предприятии-изготовителе корпуса ракетного двигателя и входном контроле на предприятии-изготовителе твердотопливного заряда.

Использование: для дефектоскопии изделий из титановых сплавов непосредственно после отливки с применением ультразвуковых волн для обнаружения внутренних дефектов.
Использование: для определения состояния подземной части железобетонных опор контактной сети. Сущность заключается в том, что возбуждают собственные колебания опоры, воздействуя на опору ударным импульсом в зоне раздела подземной и надземной частей, а о состоянии подземной части опоры судят по зависимости частот и энергий колебаний от времени из получаемой спектрограммы, сравнивая спектрограмму с эталонными спектрограммами для остродефектной, дефектной и нормальной опор данного типа.

Использование: для определения толщины стенки трубопровода. Сущность изобретения заключается в том, что измеряют толщину стенки трубопровода как функцию от положения с использованием распространения ультразвука.

Использование: для обнаружения и контроля дефектов изделий из металла. Сущность изобретения заключается в том, что металлическое изделие сканируют зондирующим сигналом, формирующимся передающим устройством, а возникающий в дефектном металлическом изделии сигнал принимают с помощью приемного устройства, при этом зондирующий сигнал формируют в виде 1-й гармоники сигнала, а в качестве отраженного от металлического изделия принимают 3-ю гармонику этого сигнала, возникающую в дефекте. Технический результат: повышение достоверности обнаружения дефектов. 2 з.п. ф-лы, 5 ил.

Использование: для исследования дефектов. Сущность изобретения заключается в том, что способ исследования дефектов включает в себя: первый этап подачи высокочастотного сигнала во множество катушек индуктивности, которые расположены смежно по отношению друг к другу таким образом, что они частично накладываются друг на друга, в электромагнитном ультразвуковом зонде для генерации ультразвукового колебания в исследуемом объекте; второй этап приема B-эха ультразвукового колебания с использованием каждой из множества катушек индуктивности; третий этап приема F-эха ультразвукового колебания с использованием каждой из множества катушек индуктивности; четвертый этап корректировки интенсивности сигнала B-эха, принятого каждой из множества катушек индуктивности, на основе рабочего состояния каждой из множества катушек индуктивности; и пятый этап вычисления отношения посредством деления интенсивности сигнала F-эха на интенсивность скорректированного сигнала B-эха для каждой из множества катушек индуктивности и оценки внутреннего дефекта исследуемого объекта на основе результата вычисления отношения. Технический результат: повышение точности оценки внутреннего дефекта независимо от изменения промежутка между поверхностью обследуемого объекта и катушкой индуктивности. 2 н. и 7 з.п. ф-лы, 9 ил.

Использование: для определения среднего диаметра зерна металлических изделий посредством ультразвукового излучения. Сущность изобретения заключается в том, что определение среднего диаметра зерна DЗ металла выполняют с использованием градуировочного графика отношения U′ величины структурного шума USN к импульсу релеевской волны UR, описываемого линейной зависимостью DЗ=a+b·U′, где a и b - структурные коэффициенты. При этом устройство для определения среднего диаметра зерна металлических изделий дополнительно предварительно калибруют, проводя испытания n образцов, вычисляя n значений отношения U′ и измеряя с помощью металлографического светового микроскопа n соответствующих им значений среднего диаметра зерна DЗ испытываемых образцов. Технический результат: обеспечение возможности высокой точности определения среднего диаметра зерна металлических изделий. 2 н. и 2 з.п. ф-лы, 4 ил.

Использование: для оценки качества участка сварки в стальном материале неразрушающим методом с использованием ультразвуковых волн. Сущность изобретения заключается в том, что модуль задания точки измерений задает произвольную точку измерений рядом с участком сварки внутри стального материала и предполагает виртуальную отражающую поверхность, которая содержит эту точку измерений и параллельна направлению линии сварки. Вычислительный модуль для управления матричным зондом передает ультразвуковые волны в виде волны сдвига, удовлетворяющие произвольному выражению, и фокусирует их в точке измерений через согласующую среду под заданным углом падения относительно виртуальной отражающей поверхности. Модуль выделения уровня эхо-сигнала регистрирует отраженные волны переданных ультразвуковых волн на границе раздела между участком основного металла и участком сварки. Контроллер оценивает форму участка сварки на основе отраженных волн. Технический результат: повышение достоверности оценки качества участка сварки в стальном материале. 2 н. и 6 з.п. ф-лы, 26 ил.

Изобретение относится к геофизическим, в частности сейсмоакустическим, устройствам исследований и может быть использовано для контроля характеристик преобразователей, применяющихся при мониторинге различных технических объектов. Устройство содержит излучающий элемент, монолитный блок, лазер, фотоприемное устройство, генератор, регистрирующее устройство и калибруемый сейсмоакустический преобразователь. В монолитном блоке выполнено отверстие. Калибруемый сейсмоакустический преобразователь установлен на монолитном блоке центром своей рабочей поверхности на отверстие. На центре рабочей поверхности калибруемого сейсмоакустического преобразователя закреплено зеркало. Излучающий элемент используется с отверстием и закреплен снизу монолитного блока. Отверстия монолитного блока и излучающего элемента установлены концентрично. Приемный модуль расположен в отверстии, не касаясь зеркала, а его выход соединен с помощью оптического волокна с оптическим разветвителем, фотоприемным устройством, лазером. Регистрирующие устройства подсоединены к выходу калибруемого сейсмоакустического преобразователя и фотоприемного устройства. Обеспечивается повышение достоверности и упрощение устройства. 1 ил.

Изобретение относится к геофизическим, в частности сейсмоакустическим, методам исследований и может быть использовано для калибровки характеристик сейсмоакустических преобразователей. Используют монолитный блок с двумя отверстиями малого диаметра симметрично от центра на диагонали. Устанавливают два - эталонный и калибруемый - сейсмоакустических преобразователя на монолитный блок центрами рабочих поверхностей на отверстия. Контролируют акустический контакт эталонного и калибруемого преобразователей с монолитным блоком. Определяют непосредственно смещение рабочих поверхностей эталонного и калибруемого сейсмоакустических преобразователей раздельно через отверстия интерференционными измерителями линейных перемещений. В качестве измерителей линейных перемещений используют многолучевые оптические интерферометры, которые развязаны с монолитным блоком, источником излучения, установленным на монолитном блоке. Возбуждают колебания так, чтобы смещения рабочих поверхностей эталонного и калибруемого сейсмоакустических преобразователей были одинаковы в один и тот же заданный момент времени. Затем измеряют электрические сигналы с выходов эталонного и калибруемого сейсмоакустических преобразователей, по которым проводят калибровку. Обеспечивается повышение достоверности калибровки сейсмоакустических преобразователей. 1 ил.

Использование: для обнаружения дефектов при ручном и автоматическом контроле. Сущность изобретения заключается в том, что возбуждают с помощью ультразвукового преобразователя в контактной среде импульс продольной волны, которая падает на поверхность объекта контроля под углом, значение которого больше первого критического угла и меньше второго критического угла, анализируют амплитуду зарегистрированных эхосигналов. Согласно изобретению с целью повышения достоверности оценки глубины дефектов измеряют угол падения ультразвуковых импульсов на поверхность объекта контроля, измеряют амплитуду наибольшего эхосигнала и амплитуду эхосигнала при угле ввода 45…50°, а о глубине дефекта судят по величине отличия измеренных амплитуд. Технический результат: повышение достоверности диагностических данных при оценке глубины мелких трещин трубопровода в процессе ультразвукового неразрушаюшего контроля. 4 ил.

Использование: для оценки исчерпания ресурса деталей из металлов и их сплавов. Сущность изобретения заключается в том, что выполняют установку на поверхность контролируемой детали в месте контроля материала детали раздельно-совмещенного пьезоэлектрического преобразователя, ввод импульсов ультразвуковых колебаний в материал детали через ее внешнюю поверхность и прием смеси отраженных ультразвуковых колебаний от неоднородностей структуры материала детали, причем при приеме смеси отраженных ультразвуковых колебаний от неоднородностей структуры материала детали дискретно измеряют величины сигналов с момента заданного времени t1 по момент заданного времени t2 с дискретностью (t2-t1)/n, где n число измерений в интервале времени от t1 до t2, запоминают величины измеренных значений, определяют среднее значение измеренных значений отраженных ультразвуковых колебаний и стандартное отклонение смеси отраженных ультразвуковых колебаний относительно вычисленного среднего значения в интервале времени (t2-t1), после чего определяют стандартное отклонение смеси отраженных ультразвуковых колебаний Uпр для детали, соответствующей предельному состоянию материала, которое определяют экспериментально, доводя материал детали до состояния, предшествующего ее разрушению, что приводит к невозможности эксплуатации детали, далее определяют первую величину стандартного отклонения смеси отраженных ультразвуковых колебаний U1 для детали после выпуска из производства из того же материала, что и деталь, соответствующая предельному состоянию материала, затем определяют вторую величину стандартного отклонения смеси отраженных ультразвуковых колебаний U2 для детали из того же материала, по времени эксплуатации соответствующей первому плановому обслуживанию, далее по двум измеренным предыдущим значениям стандартного отклонения смеси отраженных ультразвуковых колебаний U1 и стандартного отклонения смеси отраженных ультразвуковых колебаний U2 определяют линейную зависимость времени эксплуатации детали от стандартного отклонения смеси отраженных ультразвуковых колебаний T(U), далее на основании полученных параметров проводят оценку исчерпания ресурса деталей из металлов и их сплавов. Технический результат: обеспечение определения возможности дальнейшей эксплуатации детали. 11 ил.

Использование: для контроля качества изготовления и оценки усталостной прочности литых лопаток с направленной кристаллизацией высокотемпературных турбомашин. Сущность изобретения заключается в том, что возбуждают в материале изделия поверхностные ультразвуковые механические импульсы, фиксируют изменение времени прохождения ультразвуковыми механическими волнами определенного расстояния по поверхности изделия и по количеству и местоположению зафиксированных изменений времени распространения определяют количество макрозерен и местоположение границ макрозерен. Технический результат: увеличение точности оценки физико-механических свойств материалов и изделий, состоящих из нескольких макрозерен, каждое из которых обладает своей собственной и неизвестной ориентацией в пространстве и/или физико-механическими свойствами, отличающимися от других макрозерен. 1 ил.

Использование: для коррекции позиции дефекта. Сущность изобретения заключается в том, что способ коррекции позиции дефекта включает в себя: генерацию ультразвуковой вибрации на поверхности объекта обследования, к которому присоединена проводящая лента; регистрацию F-эхосигнала и B-эхосигнала ультразвуковой вибрации; выявление псевдодефектов с помощью проводящей ленты на основании обнаруженных значений F-эхосигнала и B-эхосигнала; получение позиционной информации псевдодефектов; получение разности между фрагментами позиционной информации псевдодефектов на основании позиционной информации псевдодефектов; и коррекцию позиционной информации внутренних дефектов на основании разности. Технический результат: повышение точности определения позиции дефекта. 6 з.п. ф-лы, 29 ил.
Наверх