Способ оценки совместимости взрывчатых веществ с конструкционными материалами и устройство для его реализации

Группа изобретений относится к исследованию изменения свойств взрывчатых веществ (ВВ) с помощью воздействия тепловых средств, а также закономерностей процессов термического разложения ВВ в присутствии конструкционных материалов. В способе оценки совместимости взрывчатых веществ с конструкционными материалами, включающем приведение в контакт исследуемого взрывчатого вещества с конструкционными материалами и последующий лабораторный анализ газообразной среды, выделяющейся при взаимодействии анализируемых материалов, на основании которого делается оценка совместимости, сначала измельчают совместно взрывчатые, например тэн, и конструкционные материалы, металлы или органические вещества, затем помещают их в реакционную камеру, выполненную в виде термонагревательного устройства, включают нагрев, чередуя изотермические и неизотермические режимы нагрева реакционной камеры, наблюдения в режиме онлайн ведут путем регистрации измеряемых параметров анализируемой газовой среды с получением измерительного сигнала, с одновременным сочетанием учета графических результатов термогравиметрического, дифференциально-термического методов анализа и метода ИК-спектрометрии, которые системой сопряженного с ИК-спектрометром интерфейса и программного обеспечения ПК, основанного на алгоритме построения графиков зависимостей измеряемых параметров газовой среды от времени наблюдения, преобразованы из Грам-Шмидт профиля в графический вид системы пиков ИК-спектра. Представлено также устройство для осуществления вышеуказанного способа. Достигается возможность достоверного установления факта развития критических условий несовместимости контактирующего с ВВ конструкционного материала, а также повышение информативности оценки. 2 н.п. ф-лы, 14 ил., 7 табл., 3 пр.

 

Изобретение относится к области исследования изменения свойств взрывчатых веществ (ВВ) с помощью воздействия тепловых средств, а именно исследования совместимости ВВ с конструкционными материалами, и может быть использовано для исследования закономерностей процессов термического разложения ВВ в присутствии конструкционных материалов.

Известны методики исследования закономерностей взрывных быстропротекающих процессов и характеристик ВВ, в которых достигается точность оценки изменения свойств ВВ, наблюдение за изменением свойств ВВ при испытаниях (патент РФ №2486512, МПК G01N 33/22, опубл. 27.06.2013 г.).

Известны методы исследования состояния ВВ в среде хранения и при контакте с материалами (индикатором) путем динамического наблюдения за анализируемой газообразной средой с одновременным установлением факта развития критических условий разложения ВВ по наличию характерных продуктов такого взаимодействия (SU №01623119, МПК С06В 21/00, опубл. 27.08.1996 г.).

Однако известные методы не предусматривают достоверного установления факта развития критических условий несовместимости (риска взрыва или возгорания) контактирующего с энергетическим материалом конструкционного материала.

Известен в качестве прототипа заявляемого способ исследования и оценки совместимости энергетического материала с конструкционными в процессе их хранения и эксплуатации (патент РФ №2454661, МПК 33/22, опубл. 27.06.2012 г.), согласно которому производят динамические наблюдения за термостатируемыми при заданных температурах энергетическими и конструкционными материалами с построением графических зависимостей изменения значений измеряемого параметра энергетического материала от продолжительности термостатирования, с последующим определением изменения показателя качества энергетического материала.

Задачей авторов изобретения является разработка способа оценки совместимости ВВ с конструкционными материалами, позволяющего установить факт совместимости ВВ с конструкционными материалами одновременно с возможностью проведения время-зависимых измерений выделяющихся при их взаимодействии продуктов разложения.

Новый технический результат, обеспечиваемый при использовании предлагаемого способа анализа совместимости ВВ с конструкционными материалами, заключается в обеспечении повышения информативности и достоверности способа за счет возможности динамического наблюдения за анализируемой газообразной средой в режиме онлайн с одновременным достоверным установлением факта развития критических условий несовместимости по наличию характерных продуктов такого взаимодействия.

Дополнительный технический результат заключается в обеспечении возможности более подробного изучения влияния конструкционного материала на механизм термического разложения ВВ.

Указанные задача и новый технический результат достигается благодаря способу оценки совместимости взрывчатых веществ (ВВ) с конструкционными материалами, включающему приведение в контакт исследуемого взрывчатого вещества с конструкционными материалами и последующий лабораторный анализ газообразной среды, выделяющейся при взаимодействии анализируемых материалов, на основании которого делается оценка совместимости (ВВ) с конструкционными материалами, отличающемуся тем, что сначала измельчают совместно взрывчатые, например тэн, и конструкционные материалы, металлы или органические вещества, затем помещают их в реакционную камеру, выполненную совмещенной с термонагревательным устройством, включают нагрев, чередуя изотермические и неизотермические режимы нагрева реакционной камеры, наблюдения в режиме онлайн ведут путем регистрации измеряемых параметров анализируемой газовой среды с получением измерительного сигнала, с одновременным сочетанием учета графических результатов термогравиметрического, дифференциально-термического методов анализа и метода ИК-спектрометрии, которые системой сопряженного с ИК-спектрометром интерфейса и программного обеспечения персонального компьютера (ПК), основанного на алгоритме построения графиков зависимостей измеряемых параметров газовой среды от времени наблюдения, преобразованы из Грам-Шмидт профиля в графический вид системы пиков ИК-спектра, а оценка совместимости (ВВ) с конструкционными материалами формируется поэтапно, на соответствие критериям совместимости, сначала по виду и времени появления и/или исчезновения продуктов взаимодействия исследуемых материалов, по изменению термических характеристик ВВ.

Кроме того, предлагаемый способ предусматривает проведение анализа совместимости ВВ и конструкционных материалов в изотермическом режиме нагрева реакционной камеры.

Известно в качестве прототипа заявляемому устройство для исследования закономерностей взрывных быстропротекающих процессов с использованием ВВ и исследования физических и механических свойств (патент РФ №02455614, МПК F42D 5/04, опубл. 10.07.2012 г.), содержащее локализующее устройство с размещенной в нем взрывной камерой, в металлическом корпусе которой соосно с зазором установлен на опорной площадке энергетический материал (взрывоопасный объект).

Недостатком устройства-прототипа является отсутствие возможности достоверного установления факта развития критических условий несовместимости (риска взрыва или возгорания) контактирующего с ВВ конструкционного материала.

Задачей авторов предлагаемого изобретения является разработка устройства, использование которого обеспечило бы возможность достоверного установления факта развития критических условий несовместимости контактирующего с ВВ конструкционного материала.

Новый технический результат, обеспечиваемый предлагаемым устройством, заключается в возможности достоверного установления факта развития критических условий несовместимости контактирующего с ВВ конструкционного материала.

Указанные задача и новый технический результат обеспечиваются тем, что в отличие от известного устройства для реализации способа оценки совместимости взрывчатых веществ с конструкционными материалами, содержащего реакционную камеру с помещенными в нее исследуемыми ВВ и конструкционными материалами, которая подключена к измерительным приборам, формирующим измерительные сигналы, и к приборам, преобразующим и обрабатывающим измерительные сигналы, согласно предлагаемому реакционная камера выполнена совмещенной с термонагревательным устройством и подключена газовой магистралью через сопряженный с ИК-спектрометром интерфейс с ПК.

Предлагаемые способ оценки совместимости взрывчатых веществ с конструкционными материалами и устройство для его реализации поясняются следующим образом.

Первоначально в реакционную камеру, выполненную совмещенной с термонагревательным устройством, помещают ВВ, в качестве которого использован порошкообразный тэн, а в качестве контактирующего с ним конструкционного материала - титан и цианакрилатный клей, которые смешивают в измельченном виде в массовом соотношении 1:1. После чего задают необходимый режим нагрева, чередуя изотермические и неизотермические режимы нагрева реакционной камеры, выполненной совмещенной с термонагревательным устройством. Такое выполнение реакционной камеры дает возможность оптимальным образом задавать и поддерживать температурный режим нагрева исследуемых материалов без дополнительных трудозатрат, связанных с перемещениями испытуемых материалов с этапа реакционного взаимодействия на этап термовоздействия. Реакционная камера 1 подключена газовой магистралью через сопряженный с ИК-спектрометром интерфейс с ПК, что дает возможность наблюдения в режиме онлайн за изменением молекулярного состава выделяющихся газообразных продуктов разложения ВВ и за их концентрацией в объеме реакционной камеры.

Реакционная камера 1 снабжена измерительными приборами, формирующими измерительные сигналы, и приборами, преобразующими и обрабатывающими эти измерительные сигналы в аналоговые сигналы посредством математической обработки с использованием программного обеспечения ПК.

Затем осуществляют наблюдения в режиме онлайн за исследуемыми материалами и производят лабораторный анализ текущего состояния газообразной среды, выделяющейся при взаимодействии анализируемых материалов, на основании результатов которого производится оценка совместимости (ВВ) с конструкционными материалами.

Одновременно ведут динамический контроль за изменением термических характеристик исследуемых образцов, который сопровождается регистрацией измеряемых параметров анализируемой газовой среды с получением измерительного сигнала. Данные этих измерений сведены в таблицы.

Полнота и достоверность оценки совместимости ВВ с конструкционными материалами основана на совокупном учете графических результатов, полученных при сочетании термогравиметрического, дифференциально-термического методов анализа и метода ИК-спектрометрии.

Термогравиметрический метод основан на измерении изменений массы ВВ от времени эксперимента, при применении которого получают ТГ-кривые.

Дифференциально-термический метод основан на выявлении типа термических эффектов (экзо- или эндоэффектов, имеющих место при разложении ВВ), в результате применения этого метода получают ДТ-кривые, фиг. 2-4.

Совмещением дифференциально-термического и термогравиметрического методов получают ДТ/ТГ кривые термического разложения ВВ, что делает возможным выявить влияние конструкционного материала на процесс термического разложения ВВ и позволяет определить термические характеристики как чистого ВВ, так и ВВ в смеси с конструкционным материалом (температуру плавления, температуру начала интенсивного разложения ВВ).

С помощью метода ИК-спектрометрии (традиционно используемого для идентификации типа вещества на основе его молекулярного строения) удается выявить молекулярную структуру газообразных продуктов, выделяющихся при разложении ВВ (фиг. 5-9) на основе анализа получаемых ИК-спектров, связанных с Грам-Шмидт профилем, в выбранном термическом режиме проведения эксперимента (неизотермическом или изотермическом). Метод ИК-спектрометрии предусматривает использование интерферометра, производящего единственный тип сигнала, в котором «закодированы» все инфракрасные частоты. Результирующий сигнал (интерферограмма) несет информацию обо всех регистрируемых ИК-частотах. Для идентификации вида газообразных продуктов требуется спектр частот (значения интенсивности в зависимости от отдельной частоты), полученная интерферограмма не может быть обработана непосредственно. Декодирование (расшифровка) отдельных частот осуществляется с помощью математического метода (например, преобразованием Фурье).

Требуемый графический вид результатов измерений получают в результате преобразования системой сопряженного с ИК-спектрометром интерфейса и программного обеспечения персонального компьютера (ПК) из Грам-Шмидт профиля и интерферограммы, с выдачей на экран монитора ПК результирующего ИК-спектра.

Оценка совместимости (ВВ) с конструкционными материалами производится поэтапно на соответствие критериям совместимости: по виду и времени появления и/или исчезновения продуктов взаимодействия исследуемых материалов, по изменению термических характеристик ВВ.

В качестве критериев для оценки совместимости методом ДТ/ТГ анализа выбраны следующие термические характеристики при сравнении чистого ВВ и ВВ в смеси с конструкционными материалами:

- температура плавления;

- температура начала интенсивного разложения.

При сравнении состава газообразных продуктов разложения для чистого ВВ и для конструкционного материала определяют продукты, характерные только для термического разложения каждого из компонентов. В качестве критерия для оценки совместимости при сравнении чистого ВВ и ВВ в смеси с конструкционным материалом выбирают время появления и/или исчезновения газообразных продуктов реакции при термическом разложении испытуемых образцов.

На основании данных, полученных в ходе совместно проведенных методов ДТ/ТГ/ИКС анализа (тепловые эффекты, изменение массы, состав газовой фазы в определенный момент времени), составлялся прогноз о возможном механизме термического разложения образца, а также о влиянии конструкционного материала на ВВ.

По результатам исследований на данном этапе можно судить о совместимости ВВ и конструкционного материала:

- если хотя бы один из критериев для оценки совместимости показал несоответствие для чистого ВВ и ВВ в смеси, то дальнейшее изучение взаимного влияния проводят в режиме изотермического нагрева для более детального изучения совместимости исследованных материалов.

По ДТ/ТГ кривым, полученным в ходе изотермического нагрева, рассчитывают кинетические параметры термического разложения исследуемого образца и строят зависимость константы скорости реакции и энергии активации термического разложения от времени и от глубины разложения, которые являются критериями для оценки совместимости.

На основании данных ИК-спектрометрии строят кинетические кривые образования одного из газообразных продуктов реакции, характерного для термического разложения одного из компонентов, по изменению оптической плотности характеристической полосы продукта во времени (дополнительный критерий совместимости при изотермическом режиме нагрева).

При анализе кинетической кривой при изотермическом режиме нагрева реакционной камеры выявляют особенности термического разложения одного из компонентов и/или делают прогноз о возможном виде взаимодействия ВВ и конструкционного материала.

На основании совместного учета результатов трех методов (термогравиметрического, дифференциально-термического и ИК-спектрометрии) производят оценку совместимости ВВ и конструкционного материала (по критериям совместимости), а также о возможном влиянии конструкционного материала на механизм термического разложения ВВ.

На фиг. 1 изображена реакционная камера с наблюдаемыми объектами, подключенная к ИК-спектрометру и ПК (на фиг. 1 не показан), где 1 - реакционная камера, выполненная совмещенной с термонагревательным устройством, 2 - ИК-спектрометр, 3 - интерфейс, 4 - газовая магистраль.

На фиг. 2 представлены ДТ/ТГ кривые термического разложения ВВ тэн (графики зависимости разности температур между исследуемым ВВ и эталоном от времени (1 - ДТ) и изменения массы ВВ от времени (2 - ТГ), построенные по результатам динамических наблюдений за исследуемым объектом, помещенным в реакционную камеру 1 в течение заданного времени эксперимента. Данные графики получены в условиях неизотермического режима нагрева (до 500°C, время эксперимента 100 минут).

На фиг. 3 представлены ДТ/ТГ кривые термического разложения смеси тэна и цианакрилатного клея в режиме неизотермического нагрева (1 - ДТ), (2 - ТГ), на фиг. 4 - ДТ/ТГ кривые термического разложения смеси тэна и титана в неизотермическом режиме.

Ниже в таблице 1, в которой приведены термические характеристики чистого ВВ тэн, смеси тэна с цианакрилатным клеем и смеси тэна с титаном, представлены термические характеристики исследованных веществ.

Как видно из фиг. 2, на ДТ-кривой наблюдается эндотермический эффект в диапазоне температур 138-144°C, соответствующий плавлению тэна. Экзотермический эффект в интервале температур 187-190°C с убылью массы приблизительно 93% соответствует разложению вещества.

При анализе полученных при исследовании смеси тэна и цианакрилатного клея данных (фиг. 3) установлено влияние конструкционного материала на термическую стойкость ВВ тэн. Так, эндотермический эффект, соответствующий плавлению ВВ тэн, наблюдается в диапазоне температур 133-140°C (тогда как для чистого тэна эндотермический эффект, соответствующий плавлению ВВ тэн, наблюдается в диапазоне температур 138-144°C), экзотермический эффект, соответствующий разложению тэна, выявлен в интервале температур 176-191°C (для чистого тэна - 187-190°C).

При исследовании смеси тэна и титана взаимодействие компонентов указанной смеси не наблюдается. Как видно из фиг. 2 и 4, термические характеристики тэна и смеси тэна и титана находятся на одном уровне с исследуемым ВВ - тэн.

На тех участках, где имеет место изменение хода ДТ/ТГ кривых, проводили уточнение характера процесса, проходящего в ходе термического разложения образца, с помощью связанных ИК-спектров, дающих более детальное представление о характере протекающих процессов термораспада. В результате для интересующего участка ДТ/ТГ кривых при совмещении данных по времени с данными Грамм-Шмидт профиля регистрировали ИК-спектр выделившейся при нагреве исследуемого образца смеси продуктов разложения в данный момент времени.

Момент начала вступления во взаимодействие ВВ с конструкционными материалами оценивали по времени появления газообразных продуктов разложения, что вело к изменению состава газовой фазы в реакционной камере 1 (данные приведены в таблице 2).

В таблице 2 представлен состав газообразной смеси продуктов реакции в период разложения ВВ в интервале температур 176-190°C, что соответствует на ДТ/ТГ кривой разложению тэна.

Как видно из таблицы 2, состав газообразных продуктов разложения неодинаков для чистого тэна и смеси тэна с цианакрилатным клеем. При термическом разложении данной смеси выделяются продукты, источником которых (при взаимодействии) может являться как тэн, так и цианакрилатный клей (HCN, NO, N2O).

На фиг. 5, 6 и 7 представлены результаты испытаний образцов чистого ВВ тэн, образцов смеси ВВ тэн с цианакрилатным клеем, цианакрилатного клея в неизотермическом режиме:

- Грам-Шмидт профиль и связанный ИК-спектр ВВ тэн на момент времени 0,575 мин с начала эксперимента;

- Грам-Шмидт профиль и связанный ИК-спектр смеси ВВ тэн и цианакрилатного клея на момент времени 0,574 мин с начала эксперимента;

- Грам-Шмидт профиль и связанный ИК-спектр цианакрилатного клея на 0,574 мин с начала эксперимента.

На фиг. 8 и 9 представлены результаты испытаний образцов смеси ВВ тэн с титаном в качестве конструкционного материала и титана в неизотермическом режиме:

- Грам-Шмидт профиль и связанный ИК-спектр смеси ВВ тэн с титаном на 0,533 мин с начала эксперимента;

- Грам-Шмидт профиль и связанный ИК-спектр титана на 0,533 мин с начала эксперимента.

Для более детального изучения состава продуктов термического разложения компонентов и их смеси рассматривали связанные ИК-спектры на протяжении всего эксперимента.

В таблицах 3, 4, 5 и 6 представлен состав газовой фазы, образовавшейся при разложении тэна, конструкционного материала и смеси тэна с конструкционным материалом в неизотермическом режиме в зависимости от текущего времени эксперимента с указанием глубины разложении образца, рассчитанной по ТГ-кривой.

Как видно из таблиц 3, 4, 5, газы HCN, NO, N2O выделяются только при термическом разложении тэна, однако начинают появляться на более ранней стадии, что свидетельствует о влиянии цианакрилатного клея на механизм термического разложения тэна.

При исследовании пары тэна с титаном (анализ данных, представленных в таблицах 3 и 6 и на фиг. 2 и 4) не выявлено изменений ни на ДТ/ТГ кривых, ни в качественном составе газообразных продуктов разложения, что свидетельствует об их совместимости, тогда как в паре тэн и цианакрилатный клей при тех же условиях произошло взаимодействие, приведшее к ухудшению термических характеристик тэна и изменению качественного состава газообразных продуктов разложения. Для этой пары были сделаны предположения о возможных реакциях и проведен эксперимент с нагревом в изотермических условиях (температура 135°C, время эксперимента 300 минут).

Так же как и в случае неизотермического режима нагрева, наблюдения в режиме онлайн ведут путем регистрации измеряемых параметров анализируемой газовой среды с получением измерительного сигнала, с одновременным сочетанием учета графических результатов термогравиметрического, дифференциально-термического методов анализа и метода ИК-спектрометрии. Эти результаты системой сопряженного с ИК-спектрометром интерфейса и программного обеспечения ПК, основанного на алгоритме зависимостей измеряемых параметров газовой среды от времени наблюдения, преобразованы из Грам-Шмидт профиля в графический вид системы пиков ИК-спектра.

На фиг. 10 представлены ДТ/ТГ кривые термического разложения тэна, смеси тэна с цианакрилатным клеем и цианакрилатного клея в режиме изотермического нагрева, по которым рассчитывали кинетические параметры термического разложения исследуемого образца и строили зависимость константы скорости реакции и энергии активации термического разложения от времени и от глубины разложения (1 - тэн, 2 - смесь тэна и цианакрилатного клея, 3 - цианакрилатный клей).

Так же как и в случае неизотермического режима нагрева, на участках ДТ/ТГ кривых, где имеет место изменение хода ДТ/ТГ кривых, проводили уточнение проходящих процессов с помощью метода ИК-спектроскопии. Изучали состав газообразных продуктов разложения для тэна, цианакрилатного клея и их смеси за временной интервал 225-240 мин (соответствует глубине разложения 19-22%) в каждый момент времени на протяжении всего эксперимента. Качественный состав продуктов разложения не менялся на протяжении всего эксперимента и представлен в таблице 7.

Расчет кинетических параметров термического разложения исследуемых образцов (константа скорости (К, с-1) и энергия активации (Е, кал/моль)) проводили по ТГ-кривой. За начало участка ТГ-кривой, по которому проводили расчеты кинетических параметров термического разложения ВВ, принимали время, соответствующее установлению стационарного режима нагрева при заданной температуре эксперимента в пределах точности измерений. Результаты расчетов кинетических параметров термического разложения исследованных образцов (константа скорости (К, с-1) и энергия активации (Е, кал/моль)) в зависимости от глубины разложения тэна, цианакрилатного клея, смеси тэна с цианакрилатным клеем при постоянной температуре 135°C представлены в графическом виде на фиг. 11 и 12. При рассмотрении зависимости кинетических констант термического разложения (К и Еакт) от глубины разложения для компонентов смеси и самой смеси установлено изменение механизма протекания реакции термического разложения в смеси тэна с цианакрилатным клеем.

Для подтверждения изменения в механизме термического разложения тэна при взаимодействии тэна с цианакрилатным клеем на основании данных ИК-анализа строили кинетические кривые образования одного из продуктов, характерного только для термического разложения одного из компонентов. При анализе кинетической кривой следует выявить особенности термического разложения одного из компонентов и/или предположить возможный вид взаимодействия ВВ и конструкционного материала. Графические зависимости изменения оптической плотности газа NO2 во времени при термическом разложении тэна (1) и смеси тэна с цианакрилатным клеем (2) представлены на фиг. 13. Построенная кривая накопления продукта NO2 при термическом разложении тэна (1) и смеси тэна с цианакрилатным клеем (2) во времени приведена на фиг. 14. На основании проведенных исследований делали окончательный вывод о совместимости ВВ и конструкционного материала, а также о возможном влиянии конструкционного материала на механизм термического разложения ВВ. Результаты обработки данных, полученных при изотермическом нагреве для пары тэн и цианакрилатный клей также показали несовместимость этого конструкционного материала с тэном.

Благодаря реализации настоящего изобретения в режиме неизотермического и изотермического нагрева с одновременным сочетанием графических результатов термогравиметрического (ТГ), дифференциально-термического (ДТ) методов анализа и метода ИК-спектрометрии (ИКС) реализуется повышение информативности и достоверности способа за счет возможности динамического наблюдения за анализируемой газообразной средой в режиме онлайн с установлением факта развития критических условий несовместимости исследуемого ВВ с конструкционным материалом по наличию характерных продуктов такого взаимодействия. Сочетание трех видов анализа (ДТ/ТГ/ИКС) ДТ/ТГ кривых и связанных ИК-спектров исследуемых материалов и их смесей позволяет делать обоснованные выводы о возможном механизме протекания взаимодействия (или его отсутствия) между ВВ и конструкционным материалом, которые могут быть использованы при совершенствовании моделей безопасности изделий с ВВ.

Возможность промышленной реализации предлагаемого способа подтверждается следующими примерами.

Пример 1. В лабораторных условиях был опробован предлагаемый способ с использованием в качестве ВВ - тэна, а конструкционного материала - цианакрилатного клея (клей «СуперМомент»).

Первоначально осуществляют приведение в контакт предварительно измельченных до требуемой дисперсности ВВ и конструкционного материала (частицы конструкционного материала должны быть соразмерными с частицами ВВ в состоянии россыпи), а именно - тэна и цианакрилатного клея в массовом соотношении 1:1. Приготовленную смесь помещают в тигель, включают нагрев в реакционной камере (печи термоанализатора), подключенного газовой магистралью через сопряженный с ИК-спектрометром интерфейс с персональным компьютером (ПК). Эксперименты по оценке совместимости ВВ с конструкционным материалом проводили на термоанализаторе SDT-Q600 и ИК-Фурье спектрометре «NEXUS», соединенных с помощью ТГА интерфейса, что обеспечивало детектирование газообразных продуктов реакции в режиме реального времени (онлайн).

В ходе проведения экспериментов в режиме неизотермического нагрева для смеси тэна с цианакрилатным клеем установлено изменение в термических характеристиках и составе газообразных продуктов разложения.

Пример 2. В условиях примера 1, но в качестве ВВ - тэн, а конструкционного материала - титан. При наблюдении в режиме онлайн за исследуемыми материалами с учетом хода графических кривых не отмечалось проявлений взаимодействия между ними. На основании проведенных исследований сделано заключение об их совместимости.

Пример 3. В условиях примеров 1, 2, но в условиях изотермического нагрева образцов, что показательно для более подробного изучения влияния цианакрилатного клея на механизм термического разложения тэна.

Результаты испытаний по примерам сведены в таблицы 1-7.

Как показали эксперименты, на первом этапе анализ ДТ/ТГ кривых и связанных ИК-спектров исследованных материалов и их смесей, полученных в ходе неизотермического нагрева, позволил сделать предварительные оценки о совместимости/несовместимости ВВ и конструкционного материала.

При исследовании пары тэна с титаном в режиме неизотермического нагрева не было замечено никаких изменений ни на ДТ/ТГ кривой, ни в качественном составе газообразных продуктов разложения и было сделано заключение об их совместимости.

Результаты обработки данных, полученных при неизотермическом нагреве для пары тэн и цианакрилатный клей, показали несовместимость этого конструкционного материала с тэном. При проведении исследования совместимости данной пары в изотермическом режиме (при рассмотрении зависимости кинетических констант термического разложения (К и Еакт) от глубины разложения) для компонентов смеси и самой смеси установлено изменение механизма протекания реакции термического разложения в смеси тэна с цианакрилатным клеем. Анализ газообразных продуктов разложения и кинетической кривой образования продукта NO2 также позволил выявить влияние цианакрилатного клея на тэн, заключающееся в реакции нуклеофильного присоединения продуктов разложения тэна по нитрильной функции цианакрилатного клея. Это позволило сделать окончательный вывод о взаимном влиянии ВВ и конструкционного материала.

Таким образом, показана принципиальная возможность расширения информативности экспериментов по исследованию совместимости ВВ с конструкционными материалами при сочетании ДТ/ТГ/ИКС анализов по сравнению с применяемыми методами оценки совместимости.

1. Способ оценки совместимости взрывчатых веществ с конструкционными материалами, включающий приведение в контакт исследуемого взрывчатого вещества с конструкционными материалами и последующий лабораторный анализ газообразной среды, выделяющейся при взаимодействии анализируемых материалов, на основании которого делается оценка совместимости, отличающийся тем, что сначала измельчают совместно взрывчатое вещество и конструкционные материалы - металлы или органические вещества, затем помещают их в реакционную камеру, выполненную совмещенной с термонагревательным устройством, включают нагрев, используя изотермический режим нагрева реакционной камеры, ведут наблюдения в режиме онлайн путем регистрации измеряемых параметров, которые системой сопряженного с ИК-спектрометром интерфейса и программного обеспечения персонального компьютера (ПК), основанного на алгоритме построения графиков зависимостей измеряемых параметров газовой среды от времени наблюдения, преобразованы из Грамм-Шмидт профиля в графический вид системы пиков ИК-спектра, с последующим сравнением состава газообразных продуктов термического разложения, выделяемых ВВ, и состава газообразных продуктов термического разложения, выделяемых совместно ВВ и конструкционным материалом, а оценка совместимости ВВ с конструкционным материалом формируется поэтапно на соответствие критериям совместимости, сначала по виду и времени появления и/или исчезновения продуктов взаимодействия исследуемых материалов, а затем по изменению термических характеристик ВВ, получаемых на основе учета графических результатов термогравиметрического и дифференциально-термического методов анализа, при этом, если хотя бы один из критериев для оценки совместимости показал несоответствие для чистого ВВ и ВВ в смеси с конструкционным материалом, то дальнейшее изучение взаимного влияния проводят в режиме изотермического нагрева для более детального изучения совместимости исследуемых материалов, отсутствие изменений на дифферециально-термических и термогравиметрических кривых и в качественном составе газообразных продуктов термического разложения свидетельствует о совместимости, в ином случае ВВ и конструкционный материал считаются несовместимыми.

2. Устройство для реализации способа по п. 1, содержащее реакционную камеру, которая подключена к измерительным приборам, формирующим измерительные сигналы, с помещенными в нее исследуемыми ВВ и конструкционными материалами, реакционная камера выполнена в виде термонагревательного устройства и подключена газовой магистралью через сопряженный с ИК-спектрометром интерфейс с ПК.



 

Похожие патенты:

Изобретение относится к химическим способам экспертизы взрывчатых веществ и криминалистических идентификационных препаратов. Способ маркировки взрывчатого вещества заключается во введении во взрывчатое вещество, полученное смешиванием отдельных компонентов, маркирующей композиции, содержащей идентификаторы, количество которых равно количеству технических показателей, подлежащих маркировке.

Изобретение относится к исследованию жидких углеводородных топлив и может быть использовано при разработке новых и оценке существующих топлив. Способ включает определение цетанового индекса (ЦИ) по номограмме жидких углеводородных топлив с использованием шкал плотности при 20°С, температуры выкипания 50% об.

Изобретение относится к области определения октановых чисел н-алканов исследовательским методом. Согласно способу проводят измерение такого информационного параметра, как удельная магнитная восприимчивость и последующий расчет соответствующего значения октанового числа по эмпирической зависимости вида где Z - октановое число по исследовательскому методу, ед.; χ - удельная магнитная восприимчивость, 106, г-1.

Изобретение относится к способам оценки склонности автомобильных бензинов к образованию отложений на инжекторах двигателей внутреннего сгорания. Согласно предложенному способу осуществляют прокачку испытываемого бензина через нагретый до температуры 180±3°С инжектор в течение не более четырех суток, в каждые сутки из которых в течение 18 часов осуществляют впрыск топлива через нагретый инжектор в течение 0,2 с, с интервалом между впрысками 300 с, а в течение последующих 6 часов этих суток, при выключенном нагреве, инжектор выдерживают в нерабочем состоянии.

Изобретение относится к области дезинфекции, дезактивации поверхностей объектов и обнаружения следов взрывчатых веществ на основе полинитроароматических соединений типа тетранитротолуола.

Изобретение относится к лабораторным методам оценки эксплуатационных свойств моторных топлив, в частности позволяет оценить стойкость к окислению бензинов, содержащих антиокислительную присадку Агидол-1, и рассчитать оптимальную дозировку присадки для получения бензина с требуемым индукционным периодом.

Изобретения могут быть использованы в коксохимической промышленности. Способ производства кокса включает формирование смеси углей путем смешения двух или более типов угля и карбонизацию указанной смеси углей.

Группа изобретений относится к испытанию топлив и масел и может быть использована для оценки их эксплуатационных свойств. Способ оценки диспергирующих и солюбилизирующих свойств топлив и масел включает испытание пробы исследуемого материала при оптимальной температуре в замкнутой циркуляционной системе, при котором осуществляют контакт циркулирующего оцениваемого масла или топлива с поверхностью растворяемого контрольного вещества, предварительную подготовку которого осуществляют путем его постепенного нагрева до температуры 360°C с последующей выдержкой в течение 4 часов, растворяют это вещество в процессе контакта с потоком циркулирующего масла или топлива, периодически фиксируют параметры его растворения в зависимости от температуры циркулирующего масла или топлива, интенсивности их циркуляции, величины поверхности контакта контрольного вещества с потоком циркулирующего масла или топлива, времени контакта циркулирующего масла или топлива с поверхностью контрольного вещества, при этом диспергирующие и солюбилизирующие свойства масла или топлива оценивают по скорости растворения контрольного вещества, которую оценивают по убыли веса контрольного вещества по мере его контактирования с потоком масла или топлива и по содержанию контрольного вещества в составе циркулирующего потока масла или топлива.

Изобретение относится к области исследования характеристик высокоэнергетических материалов (ВЭМ) и может быть использовано для определения времени задержки зажигания ВЭМ лучистым тепловым потоком.

Использование: для определения объемного содержания воды в нефти. Сущность изобретения заключается в том, что способ основан на определении изменений параметров электромагнитного поля в потоке исследуемой жидкой среды при изменении ее компонентного состава, поток жидкости в зоне измерений разбивают на множество изолированных потоков, каждый из которых взаимодействует с резонатором электромагнитного поля через выделенный участок поверхности контакта, в результате чего в резонаторе формируется электромагнитное поле, обобщающее влияния всех изолированных потоков жидкости, параметры которого принимают за среднее взвешенное для совокупности потоков в изолированных каналах и сопоставляют с соответствующими показателями продукта-аналога, обладающего известными свойствами, которые могут быть эмпирически идентифицированы как доля воды в смеси с углеводородной жидкостью.

Изобретение относится к способу управления производственным процессом. Технический результат - управление производственным процессом без простоя производства за счет разработки моделей прогнозирования с использованием информации взаимодействующего зондирующего излучения, параметров управления процессом и событий рабочих прогонов в ходе фактических рабочих прогонов.

Изобретение относится к области измерения спектральных характеристик объекта, которые позволяют неинвазивно измерять биологические компоненты или оценивать дефекты полупроводника.

Изобретение относится к инфракрасной (ИК) спектроскопии поверхности металлов и полупроводников, а именно к определению амплитудно-фазовых спектров как самой поверхности, так и ее переходного слоя, путем измерения характеристик направляемых этой поверхностью поверхностных плазмонов (ПП).

Изобретение относится к области измерительной техники и может быть использовано для определения концентрации сажи в моторном масле двигателей внутреннего сгорания.

Изобретение относится к измерительной технике и может быть использовано для измерения влажности древесины в процессе сушки и хранения. Способ измерения влажности древесины заключается в том, что устанавливают источник и приемник ИК-излучения поперек волокон древесины на выбранную глубину, измеряют поток ИК-излучения, прошедший через древесину, сравнивают полученные измерения с заранее определенной калибровочной зависимостью, связывающей изменение потока ИК-излучения, прошедшего через древесину с влажностью древесины, определенной весовым способом в фиксированные моменты времени, и вычисляют влажность древесины.

Изобретение относится к оптическим устройствам детектирования и идентификации газовых сред и предназначено для качественного анализа состава молекулярных газов, которое найдет применение в качестве оптоэлектронного идентификатора для детектирования токсичных газов, контроля качества пищевых продуктов, мониторинга окружающей среды и для профилактики болезней дыхания по составу выдыхаемого воздуха.

Изобретение относится к области измерительной техники и касается способа обнаружения микроконцентраций горючих и токсичных газов. Способ включает в себя пропускание инфракрасного излучения на рабочей и опорной длинах волн через контролируемый объем.

Изобретение относится к области исследования состава и свойств многокомпонентных углеводородных систем в процессе разработки нефтегазоконденсатных месторождений методами ИК-спектрометрии.

Изобретение предназначено для определения компонентов текучего неоднородного вещества в среднем инфракрасном диапазоне. Система измерения затухания содержит проточную трубку (4), средство (10) переноса для создания потока образца через трубку (4), средство (14) измерения затухания в среднем инфракрасном диапазоне и средство (18) вычисления, причем средство (14) измерения затухания функционирует с синхронизацией по времени со средством (10) переноса, а средство (18) вычисления обеспечено прогнозирующей моделью.

Предложена система наблюдения. Система включает одно полое оптическое волокно, проходящее через зону с людьми.
Изобретение относится к области экологической аналитической химии. Способ включает отбор проб массой 2-4 г, их сушку, измельчение и двухкратную экстракцию целевых компонентов дихлорметаном при воздействии на пробу ультразвуковых колебаний, фильтрование объединенного экстракта и упаривание досуха при давлении не выше 0,1 мм рт.ст. и температуре 65-70°C, обработку экстракта 2 см3 2%-ного спиртового раствора едкого натра при температуре 60-65°C в течение 60 мин, после чего к экстракту прибавляют дистиллированную воду, двукратно экстрагируют целевые компоненты дихлорметаном, объединенный экстракт очищают на патроне, заполненном силикагелем и безводным сульфатом натрия, после чего его упаривают досуха, а сухой остаток растворяют в 1 см3 четыреххлористого углерода и делят на две равные части, из которых одну используют для определения общих углеводородов методом инфракрасной спектрометрии, а вторую часть сушат, отдувают азотом, а сухой остаток перерастворяют в ацетонитриле и используют для определения содержания полициклических ароматических углеводородов методом обращенно-фазовой высокоэффективной жидкостной хроматографии в режиме градиентного элюирования с использованием флуоресцентного детектирования. Достигается повышение точности и упрощение анализа. 3 табл., 3 пр.
Наверх