Способ определения эксцентриситета ротора асинхронного электродвигателя

Изобретение относится к электротехнике и может быть использовано для определения эксцентриситета ротора электрических машин, в частности асинхронного электродвигателя. Технический результат - возможность определения наличия и величины эксцентриситета ротора асинхронного двигателя в режиме холостого хода. Способ определения эксцентриситета ротора асинхронного электродвигателя заключается в том, что двигатель подготавливают к пуску и запускают его. После запуска получают график зависимости частоты вращения ротора двигателя от времени, на котором затем выделяют амплитуды изменения частоты вращения ротора на участке между временем пуска и временем установившегося режима работы и находят разность амплитуд, относящихся к эталонному и испытываемому двигателям. По найденной разности амплитуд изменения частоты вращения ротора определяют относительный эксцентриситет ротора. 2 ил.

 

Изобретение относится к электротехнике и может быть использовано для определения эксцентриситета ротора электрических машин, в частности асинхронного электродвигателя.

Известен способ косвенного определения эксцентриситета воздушного зазора электрической машины, заключающийся в фильтрации, логарифмировании и повторной фильтрации сигналов с вибродатчиков [1].

Недостатками данного способа являются сложность и дороговизна диагностического устройства, большое количество неопределенных факторов, влияющих на спектр вибрации, а также сложность кепстрального анализа.

Наиболее близким техническим решением, выбранным в качестве прототипа, является способ определения технического состояния асинхронного электродвигателя в режиме пуска. Испытания проводят в режиме холостого хода. При этом снимают кривую разгона асинхронного электродвигателя от неподвижного состояния до максимальной частоты вращения. Диагностирование осуществляется путем сравнения полученного времени разгона с заданным теоретическим или эталонным значением [2].

Недостатком данного способа является то, что не представляется возможным определить конкретную неисправность, так как диагностирование осуществляется функционально.

Задачей изобретения является определение величины эксцентриситета ротора на основе анализа кривой разгона асинхронного электродвигателя.

Сущность изобретения заключается в следующем. После подготовки двигателя к пуску и его запуска получают график зависимости частоты вращения ротора двигателя от времени. На полученном графике выделяют амплитуды изменения частоты вращения ротора на участке между временем пуска и временем установившегося режима работы и находят разность амплитуд, относящихся к эталонному и испытываемому двигателям. По найденной разности амплитуд изменения частоты вращения ротора находят относительный эксцентриситет ротора. При этом в зависимости от величины эксцентриситета амплитуда колебаний частоты вращения ротора на этом участке изменяется, что позволяет определить наличие и величину эксцентриситета ротора асинхронного двигателя.

На фиг. 1 и 2 изображен способ определения величины эксцентриситета ротора асинхронного электродвигателя. При этом на фиг. 1 показана зависимость частоты вращения ротора от времени, на фиг. 2 - зависимость относительного эксцентриситета от разности амплитуд частоты вращения ротора.

Определение величины эксцентриситета осуществляют путем сравнения полученной величины амплитуды изменения частоты вращения ротора контролируемого двигателя с заданным эталонным значением (фиг. 1), где 1 - эталонная кривая; 2 - фактическая кривая; А - амплитуда изменения частоты вращения ротора технически исправного двигателя; В - амплитуда изменения частоты вращения ротора двигателя с эксцентриситетом; tп - время пуска; tуст - время установившегося режима работы. Затем определяют разность амплитуд изменения частоты вращения ротора ΔΑ по формуле: ΔΑ=В-А. По значению ΔΑ из фиг. 2 определяют величину относительного эксцентриситета.

Эталонную кривую (1) получают в результате испытания технически исправного (эталонного) электродвигателя. Фактическую кривую (2) снимают с вала испытываемого электродвигателя. С помощью датчика оборотов получают сигнал с двигателя, который затем преобразуют и подают на компьютер. Проводят анализ графика частоты вращения ротора в функции времени для установления диагноза.

В зависимости от разности амплитуд изменения частоты вращения ротора технически исправного и испытываемого электродвигателей определяют величину эксцентриситета асинхронного электродвигателя.

Определение эксцентриситета осуществляется следующим образом. Покажем это на примере электродвигателя АИР 80 В4 (Рн=1,5 кВт, nс=1500 об/мин). На фиг. 1 изображены эталонная (1) и фактическая (2) кривые пуска этого электродвигателя, где А=373 об/мин, В=478 об/мин. Из рисунка видно, что разность изменения амплитуд частоты вращения составляет 105 об/мин. При определении величины эксцентриситета микрометром было установлено, что его величина для данной разности амплитуд частоты вращения составляет 27%.

Таким образом, найден способ определения эксцентриситета асинхронного двигателя, который позволяет определить наличие и величину эксцентриситета асинхронного двигателя в режиме холостого хода.

ИСТОЧНИКИ ИНФОРМАЦИИ

1. АС СССР №1065789, G01R 31/34, 07.01.1984.

2. Патент РФ №2485534, G01R 31/34, Н02K 15/02, 20.06.2013 - прототип.

Способ определения эксцентриситета ротора асинхронного электродвигателя, при котором подготавливают двигатель к пуску, запускают его, получают сигнал с двигателя, преобразуют его и подают на компьютер, с помощью которого определяют параметры пуска в функции времени и сопоставляют их с параметрами технически исправного двигателя, отличающийся тем, что после подготовки двигателя к пуску и его запуска получают график зависимости частоты вращения ротора двигателя от времени, на котором затем выделяют амплитуды изменения частоты вращения ротора на участке между временем пуска и временем установившегося режима работы и находят разность амплитуд, относящихся к эталонному и испытываемому двигателям, по найденной разности амплитуд изменения частоты вращения ротора определяют относительный эксцентриситет ротора.



 

Похожие патенты:

Изобретение относится к электротехнике, а именно к электромашиностроению, и может быть использовано при создании ротора из серийно выпускаемого короткозамкнутого ротора.

Изобретение относится к области электротехники, в частности к электрическим машинам с несколькими роторами и статорами. Технический результат заключается в повышении надежности.

Изобретение относится к области электротехники и может быть использовано при изготовлении короткозамкнутого ротора асинхронной машины. Технический результат - повышение КПД асинхронной машины.

Изобретение относится к электродвигателям, в частности к подвижным постоянным магнитам и/или немагнитным проводящим шунтирующим частям в роторе для преобразования двигателя из асинхронного индукционного двигателя при запуске в синхронный двигатель.

Изобретение относится к области электромеханики. Технический результат: снижение энергопотребления в режиме холостого хода.

Изобретение относится к короткозамкнутому ротору для асинхронной машины, а также к способу изготовления такого короткозамкнутого ротора. Технический результат заключается в улучшении отвода тепла от короткозамкнутого ротора асинхронной машины.

Изобретение относится к короткозамкнутому ротору для асинхронного электродвигателя. Технический результат заключается в повышении электрического коэффициента полезного действия состоящего из двух материалов короткозамкнутого ротора.

Изобретение относится к области специальных электрических машин, а именно к конструкции электрических асинхронных герметизированных двигателей, используемых в промышленных установках для работы в химически агрессивных, радиационных и взрывоопасных газообразных и жидких средах, при высоких давлениях и температуре.

Изобретение относится к области электротехники и касается особенностей конструктивного выполнения роторов (якорей) электрических машин, содержащих вал, сердечник из листов в виде колец из тонколистовой электротехнической стали, обмотку и элементы осевого крепления сердечника, в том числе на валу.

Изобретение относится к области электротехники и энергетического машиностроения, а именно - к асинхронным электрическим двигателям с короткозамкнутым ротором, и может быть использован, например, для привода мощных насосов.

Изобретение относится к испытательному нагрузочному устройству. Испытательное нагрузочное устройство 1 содержит: резистивный блок 20, который содержит одну или более резисторных групп, имеющих множество резисторов, и установлен с возможностью подключения к источнику мощности, проходящему испытания под нагрузкой; охлаждающий вентилятор 10, который охлаждает резисторы резистивного блока 20; блок 80 управления.

Изобретение относится к области определения технического состояния объекта, преимущественно электроприводного оборудования, и может быть использовано для контроля электроприводной арматуры, насосов, вентиляционного оборудования ядерных энергетических установок.

Изобретение относится к способам и устройствам для измерения переменных величин и может использоваться в железнодорожных депо для контроля износа пластин коллектора.

Изобретение относится к электротехнике и может быть использовано для определения параметров асинхронных электродвигателей. Способ определения параметров электродвигателя заключается в том, что в течение пуска и работы асинхронного электродвигателя одновременно измеряют мгновенные величины токов и напряжений на двух фазах статора и частоту вращения вала асинхронного электродвигателя, измеренные мгновенные величины токов и напряжений преобразуют из естественной координатной системы в прямоугольную стационарную систему координат, последовательно выполняют четыре временные задержки преобразованных токов и напряжений и частоты вращения вала асинхронного электродвигателя, полученные значения запоминают и используют для определения активного сопротивления и эквивалентной индуктивности обмотки статора, приведенных к статору активного сопротивления и эквивалентной индуктивности обмотки ротора, и индуктивности, обусловленной магнитным потоком в воздушном зазоре электродвигателя в реальном времени следующим образом: R 1 = − K 3 K 4   ,     R ′ 2 = K 3 − K 5 K 4 ,       L 1 = K 3 − K 5 K 2   ,     L m = L 1 ⋅ 1 − 1 K 4 ⋅ L 1   ,     σ = − R 1 K 3 ⋅ L 1   ,     T 2 = 1 K 2 ⋅ σ ⋅ L 1   ,     L 2 = T 2 R ′ 2 где R1 - активное сопротивление обмотки статора, Ом; R ′ 2 - приведенное к статору активное сопротивление обмотки ротора, Ом; L1 - эквивалентная индуктивность обмотки статора, Гн; Lm - результирующая индуктивность, обусловленная магнитным потоком в воздушном зазоре асинхронного электродвигателя, Гн; σ - коэффициент рассеяния ротора, о.е.; Т2 - постоянная времени ротора, с; L2 - эквивалентная индуктивность обмотки ротора, Гн; К1, К2, К3, К4, К5 - коэффициенты, определенные методом наименьших квадратов.

Устройство диагностики технического состояния системы «обратимая синхронная электромашина-маховик» агрегата бесперебойного питания относится к области электротехники и может быть использовано для диагностики технического состояния устройств гарантированного питания.

Изобретение относится к области электромеханики. Для измерения намагничивающего тока асинхронного двигателя с фазным ротором, работающего под нагрузкой, двигатель соединяют валом с точно таким же асинхронным двигателем, обмотку ротора первого двигателя соединяют с обмоткой ротора второго двигателя, а обмотку статора второго двигателя замыкают накоротко.

Изобретение относится к электротехнике и может быть использовано для определения параметров асинхронных электродвигателей. Способ заключается в том, что в течение пуска и работы асинхронного электродвигателя одновременно измеряют мгновенные величины токов и напряжений на двух фазах статора асинхронного электродвигателя при напряжении питания асинхронного электродвигателя ниже номинального значения, при котором ротор электродвигателя остается неподвижным.

Изобретение относится к измерительной технике и предназначено для измерения угловой скорости вращения магнитного поля. Устройство состоит из ферромагнитного ротора и магнитопроводящего статора, причем ротор выполнен в форме цилиндра с осью вращения, в средней части которого осесимметрично и бесконтактно размещена обмотка подмагничивания ротора, связанная с регулируемым источником постоянного тока, измеряемого амперметром; магнитопроводящий статор выполнен в форме двух цилиндров, оси которых совпадают с осью вращения ротора.

Изобретение относится к электротехнике и предназначено для использования при испытаниях электрических машин постоянного и переменного тока. Стенд содержит трансформатор, подключенный первичной обмоткой к питающей сети, а вторичной обмоткой - к входу управляемого выпрямителя, дроссель, один из выводов которого подключен к первой выходной шине управляемого выпрямителя, и задающий генератор.

Изобретение относится к области эксплуатации асинхронных электродвигателей и может быть использовано для определения величины скольжения электродвигателя. В способе определения скольжения ротора асинхронного электродвигателя, включающем оценку величины скольжения ротора, цифровую регистрацию мгновенной величины амплитуды потребляемого тока во времени на одной из фаз кабеля питания асинхронного электродвигателя, с помощью быстрого преобразования Фурье получают амплитудный спектр зарегистрированного сигнала, определяют максимум амплитудного спектра и соответствующую ему частоту, которая близка по значению к частоте сети, с помощью метода автокоррекции времени записи сигнала путем его последовательного уменьшения определяют точное значение частоты сети, по полученному значению частоты сети и числу пар полюсов электродвигателя вычисляют границы одного диапазона частот для двигателей с одной парой полюсов, либо двух диапазонов для двигателей с числом пар полюсов большим одного на амплитудном спектре, на каждом из полученных диапазонов определяют максимум амплитудных спектров и соответствующие им частоты, которые близки по значению к частотам гармоник от эксцентриситета ротора первого порядка, с помощью метода автокоррекции времени записи сигнала путем его последовательного уменьшения определяют точные значения частот гармоник от эксцентриситета ротора первого порядка, по которым получают для двигателей с одной парой полюсов одно значение скольжения, которое является для данных двигателей конечным результатом, а для двигателей с двумя и более парами полюсов - два значения скольжения ротора, вычисляют скольжение ротора такового асинхронного электродвигателя по среднему арифметическому данных значений.

Изобретение относится к электротехнике, а именно к стендам для проведения приемо-сдаточных испытаний частотно-управляемых гребных электродвигателей системы электродвижения. Стенд содержит синхронный генератор, соединенный с гребным электродвигателем и подключенный к рекуперативному преобразователю частоты, состоящему из выпрямителя и инвертора, при этом рекуперативный преобразователь частоты подключен к щиту сети. Для обеспечения рекуперации энергии в сеть и получения винтовой нагрузочной характеристики гребного электродвигателя применена система регулирования по каналу управления момента на валу гребного электродвигателя и каналу управления напряжения рекуперативного преобразователя частоты. Технический результат состоит в повышении эффективности испытаний системы электродвижения с частотно-управляемым гребным электродвигателем за счет снижения потерь активной мощности и обеспечения винтовой нагрузочной характеристики на валу гребного электродвигателя, а также в уменьшении объема швартовых испытаний системы электродвижения на судне. 1 ил.
Наверх