Устройство зондирования строительных конструкций

Устройство относится к области подповерхностной радиолокации, а именно к устройствам определения расположения и формы неоднородностей и включений в строительных конструкциях и сооружениях, и может найти применение в различных областях жизнедеятельности. Достигаемый технический результат изобретения - повышение точности измерения глубины расположения подповерхностного объекта путем повышения крутизны корреляционной функции в районе ее максимума. Указанный результат достигается за счет того, что устройство содержит портативную электронно-вычислительную машину (ЭВМ), поверхность строительной конструкции, электронный блок, антенный блок, высокочастотный генератор, контроллер по обработке и вводу данных в ЭВМ, приемник высокочастотного сигнала, передающую антенну, приемную антенну, объект, триггер, коррелятор, усилитель, линию задержки, блок вычитания, интегратор, два блока деления, блок формирования эталонного напряжения, блок сравнения, аналого-цифровой преобразователь, интерфейс, ключ, жидкокристаллический индикатор, звуковой индикатор, блок автоматической регулируемой задержки, переключатель, фильтр нижних частот, экстремальный регулятор, индикатор глубины залегания подповерхностного объекта и сумматор, определенным образом соединенные между собой. 1 ил.

 

Предлагаемое устройство относится к области подповерхностной радиолокации, а именно к устройствам определения расположения и формы неоднородностей и включений в строительных конструкциях и сооружениях, и может найти применение в следующих областях:

- контрразведывательной деятельности по выявлению подслушивающих устройств;

- оперативно-розыскной деятельности правоохранительных органов;

- зондирования строительных конструкций с целью определения положения арматуры, пустот и других неоднородностей;

- зондирования особо важных строительных сооружений (взлетно-посадочных полос аэродромов, мостов, переходов, тоннелей метрополитена, вокзалов, стадионов, стартовых позиций запуска ракет и т.д.) с целью определения скрытых дефектов в них.

Известны устройства и система зондирования строительных конструкций (авт. свид. СССР №№321.783, 344.391, 385.251, 397.877, 455.307, 708.277, 746.370, 817.640, 1.078.385, 1.092.453, 1.100.603, 1.151.900, 1.300.396, 1.594.477, 1.721.566; патенты РФ №№2.044.331, 2.105.330, 2.121.671, 2.158.015; 2.234.694, 2.228.875, 2.375.729, 2.460.090; патент ФРГ №2.360.778; патент Японии №57-17.273; Петровский А.Д. Радиоволновые методы в подземной геодезии. - М., 1971; Дикарев В.И., Заренков В.А., Заренков Д.В. Методы и средства обнаружения объектов в укрывающих средах. - СПб.: Наука и техника, 2004. - 280 с. и другие).

Из известных систем и устройств наиболее близким к предлагаемому является «Устройство зондирования строительных конструкций» (патент РФ №2.460.090, G01S 13/88, 2011), которое и выбрано в качестве базового объекта.

Известное устройство позволяет повысить разрешающую способность, надежность обнаружения и идентификации неоднородностей и включений в строительных конструкциях. Это достигается путем исключений отражений от границы раздела воздух - строительная конструкция, квазистационарной составляющей, периодических вариаций электромагнитного поля Земли и использования последовательности радиоимпульсов с малым числом периодов высокочастотных колебаний в каждом из них (вплоть до одного).

Известное устройство обеспечивает повышение надежности обнаружения и идентификации подповерхностных объектов. Это достигается путем автоматического определения глубины расположения подповерхностных объектов с использованием корреляционной функции R(τ) зондирующего и отраженного сигналов.

Однако известное техническое решение, реализуя измерение временной задержки

,

где h - глубина расположения подповерхностного объекта;

c - скорость распространения радиоволн,

по максимуму корреляционной функции R(τ), обладает невысокой точностью, так как типичная зависимость коэффициента корреляционной функции описывается выражением

где f - частота сигнала,

имеет недостаточную крутизну в районе максимума.

Технической задачей изобретения является повышение точности измерения глубины расположения подповерхностного объекта путем повышения крутизны корреляционной функции в районе ее максимума.

Поставленная задача решается тем, что устройство зондирования строительных конструкций, содержащее, в соответствии с ближайшим аналогом, последовательно включенные высокочастотный генератор, выполненный в виде генератора ударного возбуждения, и передающую антенну, последовательно включенные приемную антенну, приемник высокочастотного сигнала, ключ, второй вход которого через триггер соединен со вторым выходом высокочастотного генератора, усилитель, линию задержки, блок вычитания, второй вход которого соединен с выходом усилителя, интегратор, первый блок деления, второй вход которого соединен с выходом блока вычитания, блок сравнения, второй вход которого соединен с выходом блока формирования эталонного напряжения, и аналого-цифровой преобразователь, выход которого через интерфейс связан с портативной ЭВМ, при этом соответствующие выходы интерфейса подключены к высокочастотному генератору, приемнику высокочастотного сигнала, блоку формирования эталонного напряжения, звуковому и жидкокристаллическому индикаторам, передающая и приемная антенны объединены в антенный блок, ко второму выходу высокочастотного генератора последовательно подключены блок автоматической регулируемой задержки, перемножитель, второй вход которого соединен с выходом приемника высокочастотного сигнала, и фильтр нижних частот, выход экстремального регулятора соединен со вторым входом блока автоматической регулируемой задержки, второй выход которого подключен ко второму входу триггера и к индикатору глубины залегания подповерхностного объекта, отличается от ближайшего аналога тем, что оно снабжено вторым блоком деления и сумматором, причем к выходу фильтра нижних частот последовательно подключены второй блок деления, на второй вход которого подается логическая единица, и сумматор, на второй вход которого подается логическая отрицательная единица, а выход подключен к входу экстремального регулятора.

Структурная схема устройства зондирования строительных конструкций представлена на чертеже. Устройство включает в себя: 1 - портативную ЭВМ; 2 - поверхность строительной конструкции; 3 - электронный блок в составе высокочастотного генератора 5 и приемника 7 высокочастотного сигнала; 4 - антенный блок, включающий пространственно совмещенные передающую антенну 8 и приемную антенну 9, 6 - контроллер по обработке и вводу данных в ЭВМ; 10 - объект, в качестве которого могут быть строительная арматура, пустоты и другие неоднородности, различные дефекты, подслушивающие устройства и т.д.; 12 - коррелятор, 14 - линия задержки; 13 - усилитель; 15 - блок вычитания, 16 - интегратор, 17 - первый блок деления, 18 - блок формирования эталонного напряжения, 19 - блок сравнения, 20 - аналого-цифровой преобразователь, 21 - интерфейс, 22 - ключ, 24 - звуковой индикатор, 23 - жидкокристаллический индикатор, блок 25 автоматической регулируемой задержки, перемножитель 26, фильтр 27 нижних частот, экстремальный регулятор 28, индикатор 29 глубины залегания подповерхностного объекта, второй блок 30 деления и сумматор 31.

Причем к высокочастотному генератору 5 подключена передающая антенна 8. К выходу приемной антенны 9 последовательно подключены приемник 7 высокочастотного сигнала, ключ 22, второй вход которого соединен с выходом триггера 11, усилитель 13, линия 14 задержки, блок 15 вычитания, второй вход которого соединен с выходом усилителя 13, интегратор 16, блок 17 деления, второй вход которого соединен с выходом блока 15 вычитания, блок 18 сравнения, второй вход которого соединен с выходом блока 19 формирования эталонного напряжения, аналого-цифровой преобразователь 20, интерфейс 21 и ЭВМ 1. Соответствующие выходы интерфейса 21 подключены к высокочастотному генератору 5, приемнику 9 высокочастотного сигнала, блоку 19 формирования эталонного напряжения, звуковому 24 и жидкокристаллическому 23 индикаторам.

К выходу приемника 7 высокочастотного сигнала последовательно подключены перемножитель 26, второй вход которого через блок 25 автоматической регулируемой задержки соединен со вторым выходом высокочастотного генератора 5, фильтр 27 нижних частот, второй делитель 30, сумматор 31 и экстремальный регулятор 28, выход которого соединен со вторым входом блока 25 автоматической регулируемой задержки, ко второму выходу которого подключены второй вход триггера 11 и индикатор 29 глубины залегания подповерхностного объекта.

Блок 25 автоматической регулируемой задержки, перемножитель 26, фильтр 27 нижних частот, второй блок деления 30, сумматор 31 и экстремальный регулятор 28 образуют коррелятор 12.

Принцип работы устройства основан на методе сверхширокополосного радиолокационного зондирования строительных конструкций, при котором оценивается изменение нестационарного электромагнитного поля, образованного отраженными от различных неоднородностей и включений электромагнитными волнами после их облучения зондирующим радиосигналом, в качестве которого используется последовательность радиоимпульсов с малым числом периодов высокочастотных колебаний в каждом из них (вплоть до одного). Формирование зондирующего сверхширокополосного радиосигнала осуществляется генератором 5 ударного возбуждения и передающей антенной 8. На границе раздела строительная конструкция - неоднородность, характеризующейся скачком относительной диэлектрической проницаемости и удельного затухания, формируется отраженный радиосигнал, возвращающийся к приемной антенне 9. Принимаемый сверхширокополосный радиосигнал с помощью стробоскопического приемника 7 претерпевает масштабно-временное преобразование и переводится в цифровую форму, удобную для представления и обработки. Цифровой сигнал содержит информацию как о расположении неоднородности и включений, так и о их форме, материале и т.п. Выделение полезной информации осуществляется с помощью обработки в ЭВМ 1 и отображается на экране визуального индикатора 23 в реальном масштабе времени.

Устройство зондирования строительных конструкций работает следующим образом.

Основным режимом работы устройства является режим «Поиск». Этот режим устанавливается автоматически при включении устройства и используется при поиске и распознавании различных неоднородностей и включений, находящихся в строительных конструкциях.

При включении напряжения устанавливаются исходные режимы всех блоков устройства. По команде ЭВМ 1 генератор 5 ударного возбуждения формирует зондирующий сверхширокополосный сигнал в виде одного периода синусоиды амплитудой 20 B и длительностью 1 нс, излучаемый передающей антенной 8 в направлении поверхности 2 строительной конструкции.

Обнаружение неоднородностей и включений в режиме «Поиск» осуществляется оператором путем перемещения вправо-влево, вперед-назад антенного блока 4, укрепленного на штанге и включающего пространственно совмещенные передающую 8 и приемную 9 антенны. При этом необходимо следить за тем, чтобы антенный блок 4 перемещался параллельно обследуемой поверхности 2 строительной конструкции на фиксированном расстоянии (5…10 см от нее). Скорость перемещения антенного блока 4 выбирается в зависимости от условий поиска и конфигурации строительной конструкции. При этом необходимо следить за тем, чтобы был обследован весь проверяемый участок поверхности 2 конструкции.

Электромагнитная волна, отражающаяся от неоднородности 10, воздействует на приемную антенну 9. На эту же антенну воздействуют мешающие прямое излучение генератора 5 и отраженный сигнал от границы раздела воздух - строительная конструкция. Часть энергии зондирующего сигнала с второго выхода высокочастотного генератора 5 поступает на первый вход триггера 11, который переводится в первое (нулевое) состояние. На выходе триггера 11 формируется отрицательно напряжение.

Отраженный сигнал, содержащий информацию о границе раздела сред и неоднородности 10, с выхода приемной антенны 9 поступает на первый вход приемника 7, на второй вход которого подается через интерфейс 21 короткий строб - импульс с ЭВМ 1.

Часть энергии зондирующего сигнала со второго (опорного) выхода высокочастотного генератора 5 одновременно поступает через блок 25 автоматической регулируемой задержки, обеспечивающий переменную временную задержку τ, на первый вход перемножителя 26, на второй вход которого подается отраженный сигнал с выхода приемника 7, время запаздывания которого определяется выражением:

,

где h - глубина расположения подповерхностного объекта;

C - скорость распространения радиоволн.

Полученное на выходе перемножителя 26 напряжение пропускается через фильтр 27 нижних частот, на выходе которого формируется корреляционная функция R(τ).

Вычисление отношения коэффициента ρ(τ) корреляционной функции к единичному значению дает следующее выражение:

В свою очередь, сравнение выражения (2) с единичным значением приводит к выражению

Крутизна процесса (3) равна

а у известного устройства имеем крутизну

Оценка повышения крутизны выражение (3) по сравнению с (1) дает

Анализ данного выражения показывает, что повышение крутизны, а значит, и точности измерения глубины и расположения подповерхностного объекта, как аргумента функции (3).

Экстремальный регулятор 28, предназначенный для поддержания максимального значения корреляционной функции R(τ) и подключенный к выходу фильтра 27 нижних частот, воздействует на управляющий вход блока 25 автоматической регулируемой задержки и поддерживает вводимую им задержку τ, равную τ3 (τ=τ3), что соответствует максимальному значению корреляционной функции R(τ).

Шкала индикатора 29, подключенного ко второму выходу блока 25 автоматической регулируемой задержки, позволяет непосредственно считывать измеренное значение глубины расположения подповерхностного объекта в строительной конструкции.

.

Сформированный на втором выходе блока 25 автоматической регулируемой задержки импульс, соответствующий временной задержке τ>τ3, поступает на второй вход триггера 11.

Последний переводится во второе (единичное) состояние, при котором на его выходе формируется положительное напряжение. Это напряжение поступает на управляющий вход ключа 22 и открывает его. В исходном состоянии ключ 22 всегда закрыт. Коррелятор 12 автоматически определяет глубину залегания подповерхностного объекта и обеспечивает устранение влияния прямого излучения передающей антенны 8 и сигналов, отраженных от границы раздела воздух - строительная конструкция и от слоев различной глубины залегания, т.е. осуществляется «стробирование по вертикали», которое обеспечивает последовательный просмотр подповерхностного пространства строительной конструкции от границы раздела воздух - строительная конструкция до слоев различной глубины.

«Стробирование по горизонтали» позволяет на фоне вариаций электромагнитного поля, не связанных с электромагнитной волной, отражающейся от неоднородности или включения, надежно выделять в подповерхностных слоях строительной конструкции неоднородности, включения и т.п. Для исключения влияния периодических и квазистационарных вариаций электромагнитного поля Земли осуществляется периодическое измерение напряженности поля и операция нормирования разностного сигнала двух последовательных измерений, т.е. интегрируется разностный сигнал, делится разностный сигнал на проинтегрированный разностный сигнал. Операция сравнения нормированного сигнала с заданным пороговым значением позволяет принять решение о наличии или отсутствии неоднородности или включения.

Для этого сформированный в приемнике 7 импульс, представляющий собой мгновенное значение принимаемого периодического сигнала, отраженного от неоднородности 10, через открытый ключ 22 после усиления в усилителе 13 поступает на блок 15 вычитания непосредственно и через линию 14 задержки. При этом в каждой точке наблюдения производится не менее двух последовательных измерений указанных импульсов. Затем производится операция вычитания двух последовательных измерений. Для этого импульс, соответствующий предшествующему измерению, задерживается линией 14 задержки до момента сравнения его с последующим импульсом в блоке 15 вычитания. Операции интегрирования разностного сигнала и деление разностного сигнала на проинтегрированный разностный сигнал производится в блоках 16 и 17. В блоке 18 осуществляется сравнение нормированного сигнала с пороговым значением сигнала, формируемым блоком 19. При превышении порогового уровня сигнал поступает на вход аналого-цифрового преобразователя 20, где он преобразуется в цифровую форму и поступает через интерфейс 21 на ЭВМ 1.

После аналого-цифрового преобразования данные через плату интерфейса 21 поступают в ЭВМ 1, а затем на экран жидкокристаллического индикатора 23, частоты вертикальной (строчной) и горизонтальной (кадровой) разверток которого могут варьироваться в определенных пределах. На экране индикатора 23 в реальном масштабе времени наблюдается плоская яркостная картина неоднородности и включений исследуемой строительной конструкции.

Максимальная амплитуда принимаемого сигнала сравнивается с установленным пороговым значением, при превышении которого включается звуковой индикатор 24.

Появление звукового сигнала и визуального сигнала на экране требует остановки оператора и свидетельствует о том, что в зоне обнаружения антенного блока 4 находится неоднородность и включение, природу происхождения которой следует установить, а при необходимости, уточнить ее местоположение и форму.

Для анализа обнаруженной неоднородности следует выполнить ее сканирование (перемещение антенного блока 4 от границы обнаружения до границы потери) со скоростью, определяемой световой строкой на экране индикатора 23. Режим «Сканирование» и формирование вертикального среза строительной конструкции с обнаруженной неоднородностью осуществляется переходом из режима «Поиска» нажатием кнопки «Сканирование», расположенной на передней панели устройства. Через 20 с после обработки сигнала на экране индикатора 23 появляется радиолокационный образ неоднородности или включения, дающий представление о форме и размерах неоднородности (включения).

По желанию оператора контрастность изображения можно изменять соответствующими кнопками в сторону увеличения или уменьшения.

Для идентификации обнаруженной неоднородности с имеющимися эталонами оператору необходимо обратиться к обучаемому алгоритму, при этом на экране индикатора 23 при идентификации обнаруженной неоднородности с имеющимся в памяти ЭВМ 1 эталоном высвечивается соответствующее название, например «неоднородность №2». В случае несоответствия выводится сообщение «неоднородность не опознана».

Для определения материала обнаруженной неоднородности (включения) оператор нажатием соответствующей кнопки переходит к базовому алгоритму. На экране выводится сообщение о типе материала: «Металл», «Композит», «Пластик» и т.д.

Нажатием кнопки «Сканирование» и перемещение антенного блока 4 над неоднородностью (включением) дает возможность провести при необходимости повторное обследование неоднородности (включения) по критерию базового и обучаемого алгоритмов.

Идентификация обнаруженной неоднородности (включения) по обучаемому алгоритму, распознавание типа материала по базовому алгоритму, анализ оператором изображения и «среза» неоднородности (включения) позволяет оператору принять решение о дальнейших действиях относительно обнаруженной неоднородности (включения) и продолжения разведки.

Взаимодействие ЭВМ 1 с остальными узлами устройства, а также организация управления работой осуществляется через схемы интерфейса 21.

Органы управления, коммутации и индикации вынесены на общую панель управления. Различные варианты использования дисплея в режиме поиска, а также работа устройства во вспомогательных режимах не изменяют сути описанных физических процессов, а определяются только программой работы ЭВМ 1.

Предлагаемое устройство позволяет повысить точность, разрешающую способность, надежность обнаружения и идентификации неоднородностей и включений в строительные конструкции. Это достигается путем исключения отражений от границы раздела воздух - строительная конструкция, квазистационарной составляющей, периодических вариаций электромагнитного поля Земли и использования последовательности радиоимпульсов с малым числом периодов высокочастотных колебаний в каждом из них (вплоть до одного).

Использование сигналов малой длительности в качестве зондирующих сигналов определяет ряд специфических особенностей их регистрации. Вместе с тем периодичность следования отраженных сигналов позволяет использовать стробоскопический метод обработки сигналов. Сущность данного метода заключается в том, что осуществляется регистрация не самого исследуемого сигнала, а его отдельных выборок, каждая из которых формируется в различные периоды повторения данного сигнала.

Таким образом, предлагаемое устройство по сравнению с базовым объектом и другими техническими решениями аналогичного назначения обеспечивает повышение точности измерения глубины расположения подповерхностного объекта в K раз. Это достигается повышением крутизны корреляционной функции в районе ее максимума в K раз по сравнению с прототипом.

Устройство зондирования строительных конструкций, содержащее последовательно включенные высокочастотный генератор, выполненный в виде генератора ударного возбуждения, и передающую антенну, последовательно включенные приемную антенну, приемник высокочастотного сигнала, ключ, второй вход которого через триггер соединен со вторым выходом высокочастотного генератора, усилитель, линию задержки, блок вычитания, второй вход которого соединен с выходом усилителя, интегратор, первый блок деления, второй вход которого соединен с выходом блока вычитания, блок сравнения, второй вход которого соединен с выходом блока формирования эталонного напряжения, и аналого-цифровой преобразователь, выход которого через интерфейс связан с портативной ЭВМ, при этом соответствующие выходы интерфейса подключены к высокочастотному генератору, приемнику высокочастотного сигнала, блоку формирования эталонного напряжения, звуковому и жидкокристаллическому индикаторам, передающая и приемная антенны объединены в антенный блок, к второму выходу высокочастотного генератора последовательно подключены блок автоматической регулируемой задержки, перемножитель, второй вход которого соединен с выходом приемника высокочастотного сигнала, и фильтр нижних частот, выход экстремального регулятора соединен с вторым входом блока автоматической регулируемой задержки, второй выход которого подключен ко второму входу триггера и к индикатору глубины залегания подповерхностного объекта, отличающееся тем, что оно снабжено вторым блоком деления и сумматором, причем к выходу фильтра нижних частот последовательно подключены второй блок деления, на второй вход которого подается логическая единица, и сумматор, на второй вход которого подается логическая отрицательная единица, а выход подключен к входу экстремального регулятора.



 

Похожие патенты:

Изобретение относится к области подповерхностной радиолокации и контроля насыпи железных дорог и автодорог. Влажность, загрязненность и толщину слоев насыпи определяют с помощью георадара.

Изобретение относится к области радиолокации, а именно к устройствам для определения дальности до водной поверхности и может быть использовано для определения уровня водоемов.

Изобретение относится к радиотехнике и может быть использовано в целях противодействия техническим средствам негласного перехвата аудиоинформации для поиска, обнаружения и локализации скрытых акустоэлектрических преобразователей (АЭП).

Изобретение относится к измерительным системам, а именно к средствам контроля состояния конструкции и шасси летательного аппарата, и может быть использовано в различных транспортных средствах.

Изобретение относится к области океанографических измерений и преимущественно может быть использовано для контроля загрязнения поверхности открытых водоемов при проведении экологических и природоохранных мероприятий. Технический результат - обеспечение возможности учитывать влияние длинных, по сравнению с брегговскими компонентами, поверхностных волн на характеристики рассеяния радиоволн, по которым оценивают изменения в пространстве спектра поверхностных волн, что повышает достоверность определения загрязнения акватории. Сущность: контролируемую область морской поверхности облучают одновременно радиоволнами разной длины с помощью скаттерометра и альтиметра, которые размещены на двух летательных аппаратах.

Изобретение относится к поисково-спасательной службе и может быть использовано для активного зондирования с целью объективного определения наличия в них человека с признаками жизни и оценки его состояния по частотам дыхания и пульса.

Изобретение относится к определению горизонтальной структуры древостоя с использованием радиолокации. Достигаемый технический результат - повышение качества детального анализа горизонтальной структуры древостоя.

Изобретение относится к области подповерхностной радиолокации, а именно к устройствам определения расположения и формы неоднородностей и включений в строительных конструкциях.

Изобретение относится к области радиотехники, преимущественно к радиолокации объектов, и может быть использовано для определения длины линейного контрастного по электромагнитным характеристикам относительно вмещающего пространства подповерхностного объекта.

Изобретение относится к устройствам и системам дистанционного обнаружения в контролируемом пространстве объектов и предметов (оружия, взрывчатки и наркотиков), спрятанных в теле человека, под его одеждой либо в его багаже, при массовом скоплении людей или их потоке.

Изобретение относится к способам поиска и обнаружения объекта на местности по монохромному цифровому изображению этой местности, например по радиолокационному изображению (РЛИ), формируемому в радиолокаторах с синтезированной антенной (PCА). Достигаемый технический результат - увеличение эффективности обнаружения объекта при уменьшении объема вычислений. Сущность способа состоит в том, что всю зону поиска разбивают на неперекрывающиеся участки, представляющие собой квадраты поиска размером Nп×Nп пикселей, в каждом из которых вычисляют один или несколько выборочных моментов и/или коэффициентов распределения яркости изображения и сравнивают их с пороговыми значениями. В случае превышения одного или нескольких пороговых значений принимают решение об обнаружении в этом квадрате поиска кандидата на искомый объект или его части и во всех квадратах поиска, в которых принято решение об обнаружении кандидата, проводят его допоиск и уточнение его положения. В качестве выборочного момента и выборочного коэффициента распределения яркости изображения используют коэффициент эксцесса. Размер квадрата поиска Nп выбирают соизмеримым или меньше протяженности искомых объектов, но при условии получения выборки, достаточной для вычисления выборочных коэффициентов распределения яркости в окне поиска (Nп≥20). При наличии в РСА нескольких каналов с разным разрешением при обнаружении объектов на этапе поиска используют РЛИ канала с меньшим разрешением, чем на этапе допоиска. Допоиск объекта проводят в пределах квадратов поиска, в которых произошло обнаружение, при их расширении на величину ошибок совмещения РЛИ разных каналов и на размер квадрата обнаружения. Допоиск можно проводить путем оценки выборочных моментов и/или коэффициентов распределения яркости РЛИ в скользящем окне в виде квадрата обнаружения размером Nобн×Nобн пикселей. При этом размер квадрата обнаружения Nобн выбирают меньше размера квадрата поиска при условии, что общее число независимых выборок значений яркости РЛИ в квадрате обнаружения образуют достаточную выборку (Nобн≥20). Пороги для каждого из выборочных моментов можно определить из априорной статистики этих моментов для фрагментов РЛИ фона и РЛИ обнаруживаемых объектов с фоном. 8 з.п. ф-лы, 2 табл.

Изобретение относится к способам дистанционных исследований морских акваторий и может быть использовано для определения загрязнения морской поверхности. Сущность: по трассам, содержащим тестовые участки, проводят дистанционное зондирование морской поверхности автодинным радиоволновым измерителем, установленным на авиационном носителе. Выполняют частотное детектирование сигнала измерителя. Создают базу эталонных сигналов ветрового волнения поверхности в виде их автокорреляционных функций. Одновременно получают видеоизображения участков по трассе полета соосно установленной цифровой видеокамерой высокого пространственного разрешения. Привязывают полученные видеокадры к топографическим координатам посредством навигатора системы GPS. Восстанавливают пространственный спектр волнения методом Фурье-преобразования изображений видеокадров. Вычисляют взаимную корреляционную функцию сигнала автодинного измерителя и видеокамеры. Рассчитывают индекс загрязнения участков через отношение ширины взаимной корреляционной функции к ширине эталонной автокорреляционной функции на уровне 0,1 от их максимального значения. Формируют массив данных из указанных отношений. Методами пространственного дифференцирования выделяют изолинии контуров индекса загрязнения, наносят их на контурную карту прибрежной или шельфовой зоны. Технический результат: достоверное выделение загрязненных зон морской поверхности. 6 ил.

Изобретение относится к области радиолокации и предназначено для использования на летательных аппаратах. Техническим результатом изобретения является разработка средств многофункциональной бортовой радиолокационной станции, обеспечивающих обнаружение малоразмерных неподвижных наземных и надводных целей на фоне отражений от подстилающей поверхности. Амплитудный суммарно-суммарно-разностный способ (АССР) обужения приемной диаграммы направленности антенны заключается в том, что из суммы модулей сигналов, принятых суммарной приемной диаграммой направленности, вычитают модуль суммы сигналов, принятых диаграммой обужения. Многофункциональная радиолокационная станция для летательных аппаратов содержит цифровую фазированную антенную решетку (ЦФАР), формирующую суммарную приемо-передающую диаграмму направленности и суммарную диаграмму направленности обужения, передающее устройство, приемное устройство, задающий генератор, синтезатор частот-синхронизатор, цифровой процессор данных, цифровой процессор сигналов, включающий в себя устройство обужения, блок управления лучом (БУЛ) и индикатор, а также необходимые связи между ними. 2 н.п. ф-лы, 6 ил.

Изобретение относися к радиолокации и может использоваться для определения уровня налива. Технический результат состоит в повышении точности определения уровня налива. Для этого способ включает оценку расстояния до поверхности продукта, содержащегося в резервуаре. Оценку получают из соотношения амплитуды первой гармоники IF-сигнала и амплитуды второй гармоники IF-сигнала. По существу, каждая гармоника представляет определенный диапазон расстояний. Расстояние может быть оценено путем определения полученной мощности в двух или более гармониках и их коррелирования. Зависимости от расстояния могут значительно различаться в зависимости от модуляции и других параметров и могут быть подобраны в соответствии с конкретным приложением. 2 н. и 24 з.п. ф-лы, 7 ил.
Изобретение относится к способам ведения спутниковой съемки. Сущность: на борту спутника синхронно выполняют целевую спутниковую съемку заданных районов и съемку полей облачности над заданными районами. Данные спутниковой съемки полей облачности обрабатывают на борту спутника и на их основе формируют оценки покрытия заданных районов облачностью с признаком принадлежности к конкретному заданному району. Сформированные оценки оперативно передают на сеть наземного комплекса приема, обработки и распространения спутниковой информации, где проводят их анализ и принятие решения о пригодности данных целевой спутниковой съемки заданных районов, а также формирование перечня пригодных данных целевой спутниковой съемки заданных районов и перечня непригодных данных целевой спутниковой съемки заданных районов. На основании полученных данных корректируют последовательность моментов передачи данных целевой спутниковой съемки заданных районов на сеть наземного комплекса приема, обработки и распространения спутниковой информации. Передают пригодные данные и стирают непригодные данные из бортового постоянного запоминающего устройства. Технический результат: повышение результативности целевой спутниковой съемки заданных районов за счет уменьшения количества передаваемых по радиолинии со спутника данных целевой спутниковой съемки морской и земной поверхности, непригодных для решения прикладных задач.

Изобретение относится к системам управления. Способ формирования сигнала управления для сопровождения цели заключается в том, что сигнал управления формируется по закону на основе динамических матриц внутренних связей систем, обобщенного вектора состояния системы и вектора сигналов управления. Сигнал управления состоит из взвешенной суммы фазовых координат и их производных, входящих в сигнал управления с пропорциональными коэффициентами, зависящими от несоответствия динамических свойств динамических матриц внутренних связей систем. Система формирования сигнала управления для инерционного пеленгатора включает измеритель, фильтр, усилитель, сумматор, управляющий элемент. Дополнительно введены усилители с коэффициентами, зависящими от разности матриц и фильтры высоких производных отслеживаемых координат. Значения несоответствия по производным поступают на вход сумматора. Улучшаются показатели эффективности системы. 2 н.п. ф-лы, 6 ил.

Изобретение относится к способам георадиолокационного подповерхностного зондирования всех слоев отложений торфяного пласта в режиме реального времени с целью обнаружения границы локального подземного торфяного пожара георадаром, установленным на платформе робота. Сущность заявляемого способа заключается в том, что в способе обнаружения границы локального подземного торфяного пожара, включающем в себя георадиолокационное подповерхностное зондирование всех слоев отложений торфяного пласта, заключающееся в излучении импульсов электромагнитных волн и регистрации сигналов, отраженных от границ раздела слоев зондируемой среды, имеющих различные электрофизические свойства, георадар устанавливают на платформу робота, которую перемещают по маршруту, намеченному после проведенного патрульного наблюдения за контролируемой зоной, и осуществляют георадарное профилирование на заданном маршруте, а в намеченных точках маршрута производят зондирование торфяного пласта в условиях нахождения локального подземного торфяного пожара. Сущность заявляемого устройства заключается в том, что в роботе для проведения разведки подземных торфяных пожаров, содержащем шасси на гусеничном ходу, силовые агрегаты, системы управления и наблюдения и передачи данных от проведенного наблюдения в режиме реального времени, и платформу, на последней установлен георадар для георадиолокационного подповерхностного зондирования всех слоев отложений торфяного пласта в условиях нахождения локального подземного торфяного пожара. Технический результат – обеспечение обнаружения границ локализации подземного торфяного пожара с любой глубиной залегания торфа в зонах, где размещение традиционных видов наземной техники крайне опасно. 2 н.п. ф-лы, 2 ил.

Изобретение относится к области радиолокации и может быть использовано для выявления и определения характера присутствующих на водной поверхности аномалий (областей с пониженной интенсивностью волнения). Сущность: излучают и принимают рассеянные водной поверхностью сигналы в СВЧ-диапазоне (L-X-диапазонах) на двух поляризациях (НН и VV) для двух разнесенных не менее чем в полтора раза частот под определенным углом наблюдения. Причем угол наблюдения выбирают в диапазоне 50-80° от вертикали. В качестве характеристик принятых сигналов используют разность измеренных удельных эффективных площадей рассеяния принятых сигналов на двух поляризациях для каждой из двух частот. По полученным величинам разностей определяют экспериментальные значения интенсивностей волнения на брэгговских волновых числах. Одновременно измеряют среднюю скорость ветра. Для измеренной средней скорости ветра рассчитывают теоретические фоновые значения интенсивностей волнения на брэгговских волновых числах с использованием модельного спектра. Находят спектральные контрасты волнения на водной поверхности как отношения теоретических фоновых значений интенсивностей волнения на брэгговских волновых числах к экспериментальным значениям интенсивностей волнения на брэгговских волновых числах для обеих частот для измеренного значения средней скорости ветра. Принимают решение о наличии аномалии на водной поверхности на основании сравнения величины спектрального контраста волнения на водной поверхности на максимальном из брэгговских волновых чисел с некоторой пороговой величиной. Вычисляют отношение полученных спектральных контрастов. Делают вывод о наличии на водной поверхности пленочного слика или штилевой зоны, исходя из положения значения найденного отношения контрастов для измеренного значения средней скорости ветра относительно полуэмпирической кривой зависимости отношения контрастов от скорости ветра при определенном угле наблюдения: если значение выше кривой - наблюдают пленочный слик, если ниже - штилевую зону. Технический результат: повышение точности различения аномалий на водной поверхности. 2 ил.

Изобретение относится к радиолокационным методам мониторинга морской поверхности с целью дистанционного определения скорости морских течений в приповерхностном слое. Достигаемый технический результат – повышение точности измерений малогабаритной и мобильной аппаратурой. Способ позволяет обнаружить морское течение в приповерхностном слое и дистанционно определить его скорость с помощью многочастотного СВЧ радиолокатора L-X-диапазонов, работающего на двух соосных поляризациях (HH-излучение и прием на горизонтальной поляризации, VV-излучение и прием на вертикальной поляризации) и нескольких разнесенных частотах при измерении рассеяния от морской поверхности в двух направлениях: параллельно и перпендикулярно ветру. Способ применим в широком диапазоне скоростей ветра и углах между направлением зондирования и вертикалью от 20-25 до 80-85 градусов со свайных оснований или с судов.

Изобретение относится к радиолокационным методам изучения водной поверхности с целью обнаружения переменных течений. Достигаемый технический результат заключается в том, что способ позволяет идентифицировать переменные во времени и пространстве морские течения, которые на масштабах порядка сотен метров - единиц километров обычно связаны с распространяющимися внутренними волнами. Способ основан на анализе данных наблюдений многочастотным двухполяризационным сверхвысокочастотным радиолокатором, который излучает и принимает обратно рассеянный поверхностью радиосигнал на двух соосных поляризациях (ко-поляризациях) - НН (излучение и прием сигнала на горизонтальной поляризации) и VV (излучение и прием сигнала на вертикальной поляризации) - и на нескольких рабочих частотах в диапазоне от 1 ГГц до 20 ГГц, разнесенных по величине не менее чем в 2 раза. Способ применим в условиях умеренных ветров при углах наблюдения 20-80° от вертикали со свайных оснований или с судов.
Наверх