Способ нелокальной передачи информации

Изобретение относится к технике и может использоваться в оптических системах связи. Технический результат состоит в повышении помехоустойчивости. Для этого в способе нелокальной передачи информации двумя источниками фотонов излучают фотоны попарно в запутанном квантово-механическом состоянии, направляют фотоны из каждой пары одного источника на один из двух оптически прозрачных термолюминесцентных кристаллов, содержащих квантово-механически запутанные между ними электронные центры окраски, а запутанные с этими фотонами парные фотоны направляют на измерительное устройство, модулирующее информацию в соответствии с одним из передаваемых двоичных символов, фотоны из каждой пары второго источника направляют на второй оптически прозрачный термолюминесцентный кристалл, а запутанные с этими фотонами парные фотоны направляют на детектирующее устройство таким образом, что при одном значении двоичного символа происходит нарушение интерференционной картины, а при другом его значении - восстановление интерференционной картины. Выделение информации осуществляют на детектирующем устройстве по состоянию интерференционной картины. 2 з.п. ф-лы, 2 ил.

 

Изобретение относится к технике связи и может использоваться при передаче информации на расстояние на основе нелокальной квантовой корреляции между частицами, одними из которых являются электронные центры окраски, а другими фотоны.

Известен способ передачи информации на основе нелокальной квантовой корреляции между частицами в перепутанном квантово-механическом состоянии. Для этого излучают фотоны посредством источника фотонов, направляют их по пространственному пути на передающую и приемную стороны, удаленные от источника фотонов, на передающей стороне модулируют фотоны в соответствии с передаваемыми двоичными символами «1» или «0», а на приемной стороне выделяют информацию. Фотоны излучают попарно в перепутанном по поляризации квантово-механическом состоянии, направляют их на свой пространственный путь распространения передающей стороны и приемной стороны таким образом, что между фотонами каждой пары существует нелокальная квантовая корреляция. Выделение информации осуществляют на приемной стороне по их интерференционной картине [1].

Известен способ передачи информации с использованием фотонов. В способе для каждой частицы из пары, испущенной когерентным источником квантовых частиц, формируют направленные на передающую и принимающую стороны пространственные пути распространения суперпозиционного состояния с возможностью получения между парными частицами взаимной интерференции как на передающей, так и на принимающей стороне. На передающей стороне все пришедшие к ней пространственные пути распространения модулируют и после этого сводят в детекторе квантовых частиц. Информацию кодируют и передают в виде двоичных сигналов. На передающей стороне осуществляют модуляцию с помощью физического воздействия так, что происходит нарушение интерференционной картины либо восстановление интерференционной картины на принимающей стороне. Выделение информации осуществляют по наличию или отсутствию интерференционной картины [2].

Недостатками указанных способов является необходимость наличия классических линий связи между передающей и приемной сторонами.

Под классическими линиями связи подразумеваются любая коммуникативная среда, по которой физически можно передавать фотоны, распределяя их между передающей и приемной сторонами, например свободное пространство или оптоволокно.

Известен способ и устройство дистанционной связи при интерпретации термолюминесцентных или фотолюминесцентных сигналов, вызванных запутанными захваченными электронами. Два образца из термолюминесцентного (или фотолюминесцентного) материала были облучены тормозным излучением с целью создания запутанных ловушек - электронных центров окраски. Запутанные таким образом образцы были затем пространственно разнесены. Один из образцов - «ведущий» подвергают нагреву с выстраиванием кривой этого нагрева. Одновременно с этим у второго - «ведомого» образца, который не нагревают, наблюдают высвечивание, интенсивность которого повторяет кривую нагрева «ведущего» образца. В этом случае стимуляция излучения происходит при тепловой энергии, приблизительно равной энергии опорожнения ловушек. Стимуляция роста температуры в «ведущем» образце вызывает свечение удаленного «ведомого» запутанного образца, которое воспроизводится независимо от расстояния [3].

Недостатками этого способа является то, что тепловая стимуляции приводит к высвечиванию «ведущего» образца, вследствие чего происходит опорожнение центров окраски в обоих образцах, что ведет к декогеренции - нарушению когерентного суперпозиционного состояния и, в итоге, полной невозможности их дальнейшего использования для передачи информации на основе нелокальной квантовой корреляции, кроме того, процесс интерпретации сигналов крайне сложен из-за невозможности применения в этом способе принципов бинарного кодирования информации.

Техническим результатом, на достижение которого направлено данное изобретение, является передача информации без применения классических линий связи, а также исключение тепловой стимуляции как фактора, приводящего к высвечиванию и, следовательно, нарушению когерентного суперпозиционного состояния центров окраски.

Данный технический результат достигается за счет того, что двумя источниками фотонов излучают фотоны попарно в запутанном квантово-механическом состоянии, направляют фотоны из каждой пары одного источника на один из двух оптически прозрачных термолюминесцентных кристаллов, содержащих квантово-механически запутанные между ними электронные центры окраски, а запутанные с этими фотонами парные фотоны направляют на измерительное устройство, модулирующее информацию в соответствии с одним из передаваемых двоичных символов, фотоны из каждой пары второго источника направляют на второй оптически прозрачный термолюминесцентный кристалл, а запутанные с этими фотонами парные фотоны направляют на детектирующее устройство таким образом, что при одном значении двоичного символа происходит нарушение интерференционной картины, а при другом его значении - восстановление интерференционной картины, выделение информации осуществляют на детектирующем устройстве по состоянию интерференционной картины, а также за счет того, что образование квантово-механически запутанных электронных центров окраски между двумя оптически прозрачными термолюминесцентными кристаллами осуществляют путем одновременного и совместного облучения последних запутанными рентгеновскими или гамма-квантами, а оптически прозрачные термолюминесцентные кристаллы изготавливают из легированного фторида лития.

На чертежах показана одна из возможных схем принципа реализации предлагаемого способа передачи информации. Сущность изобретения поясняется на фиг. 1-2, иллюстрирующих принцип реализации, где на фиг. 1 - иллюстрируется схема передатчика, а на фиг. 2 приемника информации по предложенному способу. Схема включает: 1-1′ - компьютеры, содержащие все необходимые элементы, например К-кодер (на фиг. 1) и Д-декодер (на фиг. 2) информации в двоичные символы, систему отображения информации в удобном для пользователя виде, 2 - измерительное устройство, 3-3′ - оптически прозрачные термолюминесцентные кристаллы, содержащие квантово-механически запутанные между ними электронные центры окраски, 4-4′ - источники запутанных парных фотонов, 5 - устройства для направления распространения фотонов по определенному пути, например зеркала или световоды, 6-7-8-9-10-11 - фотоны и пути/направления их распространения (показаны большими стрелками), 12 - поляризационный светоделитель, 13 - детектирующее устройство, 14-фазовая пластина.

В 1935 г. Эйнштейн, Подольский и Розен написали статью [4], в которой поставили под сомнение истинность концепции запутывания, следующей из теории, и предположили существование "скрытых переменных" для объяснения запутывания. В 1962 г. Дж. С.Белл [5] математически показал, что эксперименты могли бы показать истинность предсказаний квантовой механики. В 1980 г. А. Аспек [6], применив критерий Белла, экспериментально показал, что феномен запутывания фотонов подчиняется правилам квантовой механики. В период 1990-2000 г. некоторые экспериментаторы также показали, что запутанные фотоны, генерируемые нелинейными кристаллами, могли оставаться запутанными на расстоянии до 10 км [7]. Последние эксперименты показали возможность передачи запутанного состояния через спутник на расстояние 144 км [8]. Физический эффект состоял в том, что мгновенное разрушение запутанного состояния, обусловленное измерением поляризации одного из фотонов, приводило к немедленной фиксации поляризации другого фотона в соответствии с законами квантовой механики. Были также осуществлены эксперименты по квантовой телепортации [9]. При этом теоретически было изучено [10] и продемонстрировано экспериментально [11] переключение запутывания, состоящее в передаче запутывания от одной совокупности частиц к другой. В настоящее время считается, что невозможность передачи информации через запутанные состояния была обусловлена тем, что сами по себе запутанные состояния дают симметричную вероятностную картину наблюдения измеренной поляризации. Другими словами, вероятность поляризации квантовой частицы (фотона) вверх равнялась 50% и в низ также - 50%. В таких условиях выделить информацию через измерения на передатчике приемником было невозможно. Возможность передачи информации появляется в том случае, если объединить квантовый эффект запутанных состояний с эффектом коллапса волновой функции, в таком варианте исполнения появляется возможность на приемнике выделять информацию через наблюдение интерференционной картины [1, 2]. В теории квантовой механики группа запутанных частиц, будучи в отдельных физических местах, находится в том же самом квантовом состоянии (Гильбертово пространство) и описывается общей волновой функцией [4, 5, 6, 7]. Сюда же можно и отнести перепутанные состояния, возникающие в системе, состоящей из двух или более подсистем. В простейшем случае чистого состояния составной системы перепутанность состоит в невозможности факторизации волновой функции системы, т.е. в невозможности представить ее в виде произведения волновых функций ее подсистем. Однако, даже если начальное состояние факторизовано, то после взаимодействия подсистем друг с другом или через окружение их состояние становится перепутанным. Поэтому наиболее легко перепутать вначале независимые запутанные подсистемы и перевести в перепутанное состояние системы. В таком состоянии подсистемы описываются только матрицей плотности, в то время как система в целом характеризуется либо волновой функцией, либо нефакторизуемой матрицей плотности. Существует достаточно много способов создания перепутанных состояний. Во-первых, это может быть физический процесс, в результате которого возникают перепутанные состояния, другими словами, источник перепутанных состояний. Здесь следует упомянуть о процессе спонтанного параметрического рассеяния (СПР) света, имеющего место в нелинейных средах без центра инверсии. Бифотонное поле, возникающее в таком процессе, состоит из пар, коррелированных по времени, поляризации, частотам и месту рождения фотонов. На основе такого двухфотонного поля можно приготовить состояния, перепутанные не только по непрерывным переменным, импульсу или координате, но и по дискретным, например по поляризации. Другой способ заключается в приготовлении перепутанных состояний из первоначально независимых, например состояний атомов, ионов или мезоскопических объектов. Оказывается, что управление над процессом перепутывания возможно осуществить при помощи оптического излучения. Такая идея лежит в основе создания квантового повторителя (quantum repeater) - устройства, позволяющего передавать перепутанные состояния на большие расстояния [12]. Эксперименты показывают, что измерения поляризации фотона приводят к коллапсу его волновой функции, что, в свою очередь, предопределяет его поведение в момент наблюдения интерференции. В этом случае интерференция исчезает [13]. В работе [14] описаны эксперименты, а в дальнейшем на их основе был выдан патент [3] с пространственно-разделенными запутанными ТЛД - кристаллами (кристаллами для термолюминесцентной дозиметрии), находящимися в Батон-Руж, Луизиана (США) и Живарлэ (Франция) на расстоянии 8182 км. Чипы (английское chip, буквально - обломок, осколок, кусочек) из легированного фторида лития были облучены тормозным излучением с целью создания запутанных ловушек (центров окраски) в смежных ТЛД-кристаллах на медицинском ускорителе. Один из этих образцов был затем отправлен в Батон-Руж, а его запутанный партнер остался в Живарлэ. Подогрев образца, находящегося в Батон-Руж, производился в соответствии с температурой другого (запутанного с первым) образца, которая фотоумножителем измерялась в Живарлэ и была равна температуре окружающей среды. Были получены, в силу квантовых корреляций запутанных состояний электронов, сигналы при нарастании, а затем убывании (вследствие отключения подогревающего устройства в Батон-Руж) температуры (от 140 до 240°C). Момент, когда в Батон-Руж был достигнут максимум температуры ТЛД, точно соответствовал моменту максимума корреляции сигнала фотоэлектронного умножителя, записанного в Живарлэ.

Термолюминесценция происходит в материалах, содержащих включения, или примеси других атомов, или атомы легирующих веществ. Такие материалы являются диэлектриками и обладают свойством сохранять влияние, вызванное облучением рентгеновскими или гамма-лучами. Это влияние может сохраняться годами и используется для геологической и археологической датировки. Искусственные материалы используются в термолюминесцентной дозиметрии для измерения ионизирующих излучений. При нагревании энергия высвобождается в виде света. В описываемом эксперименте были использованы кристаллы именно дозиметрического типа. Сама термолюминесценции описывается в терминах зонной теории, как сформулировано ниже [15]:

- Ионизация атомной решетки, обусловленная рентгеновским или гамма-излучением, высвобождает некоторые электроны из зоны валентности.

- Образуются дырки, а электроны переходят в энергетическую область зоны проводимости.

- Эти электроны затем улавливаются ловушками, образованными включениями, атомами примесей или атомами легирующего вещества в запрещенной зоне. Там они сохраняются в метастабильном состоянии.

- Такое метастабильное состояние, в зависимости от типа материала, может сохраняться от очень короткого промежутка времени до тысяч лет.

- Тепловая (в случае термически стимулированного обесцвечивания - ТСЛ) или оптическая (в случае оптически стимулированного обесцвечивания - ОСЛ) энергия позволяет электронам вырваться из ловушек. Тогда они возвращаются в зону валентности, излучая свет, в этом и состоит феномен термолюминесценции.

Ловушкам (центрам окраски) требуется различная тепловая (ТСЛ) или оптическая (ОСЛ) энергия для высвобождения электронов в зависимости от их энергетической "глубины". "Мелкие" ловушки окажутся пустыми при низкой температуре (140°C и выше) или частоте фотонов, "глубокие" ловушки требуют более высокой температуры (240°C и выше) или частоты фотонов. Тормозное излучение - это электромагнитное излучение, генерируемое при ускорении заряженной частицы, например электрона, который отклоняется другой заряженной частицей, такой, например, как атомное ядро. Его открыл в 1888 Никола Тесла. Эффект тормозного излучения сегодня больше всего используется в процессах излучения, вызванных замедлением заряженной частицы при отклонении ее другой заряженной частицы. В представленных экспериментах [14] излучение обусловлено лучом высокоэнергетических электронов, бомбардирующих мишень из вольфрама. Поскольку один электрон создает несколько фотонов одновременно, эти фотоны в соответствии с квантовой механикой оказываются запутанными. Будучи статистически распределенными в конусе, запутанные фотоны могут сталкиваться с частицами, переключать свое запутывание с ядрами или электронами атомов. Ускорители электронов таким образом оказываются эффективным средством для облучения термолюминесцентных материалов, в процессе которого могут сохраняться запутанные электроны.

Экспериментальным путем выяснилось, что свет, магнитные и электрические поля не вызывают декогеренции, способной разрушить связи между запутанными электронными центрами окраски в термолюминесцентном кристалле, поскольку образцы, совместно облученные за несколько месяцев до описываемых экспериментов, генерировали интенсивный отклик. Очень большое число одиночных электронов одного кристалла запутаны с электронами другого кристалла и "хранятся" в относительно свободном от декогеренции пространстве центров окраски. Выяснилось, что ловушки ведут себя очень сходно с резонансными полостями в квантовой электродинамике. Описываемые эксперименты представляют собой практическое проявление феномена запутывания в квантовой механике. Две частицы называют запутанными, когда они испущены одновременно и обладают общей волновой функцией, например фотоны, испущенные ядром или электроном, причем фотоны временно интерферируют между собой. Такие частицы являются квантово-взаимосвязанными, так что взаимодействие с одной из них немедленно "чувствуется" запутанным партнером. Запутывание между двумя частицами может быть переключено на две другие частицы. Запутанные частицы, такие как электроны, могут "сохраняться" в ионных или примесных ловушках (центрах окраски) термолюминесцентных материалов и оставаться изолированными от влияния декогеренции со стороны окружения ловушек в течение значительных промежутков времени. Центрами окраски являются примесные атомы и ионы (ловушки, дефекты), захватившие электрон или дырку, в результате чего изменяются полоса поглощения вещества и его окраска. Первоначально термин "центры окраски" относился только к так называемым F-центрам, обнаруженным впервые в 30-х гг. 20 в. в кристаллах галогенидов щелочных металлов и представляющим собой анионные вакансии, захватившие электрон. В дальнейшем под центрами окраски стали понимать любые точечные дефекты, поглощающие свет вне области собственного поглощения, - катионные и анионные вакансии, междоузельные ионы, а также примесные атомы и ионы. Центры окраски обнаруживаются во многих неорганических кристаллах и стеклах, а также в природных минералах. Центры окраски могут быть разрушены при нагревании ТСЛ - (термически стимулированная люминесценция) или воздействии света ОСЛ - (оптически стимулированная люминесценция), соответствующего спектральной области поглощения самих центров окраски [16,17]. Под действием тепла (в случае ТСЛ) или света (в случае ОСЛ) один из носителей заряда, например электрон, освобождается из захватившего его дефекта и рекомбинирует с дыркой. Примесные атомы и ионы также могут захватывать электрон или дырку, в результате чего изменяют полосу поглощения вещества и его окраску. В рамках макроскопического подхода (теория Максвелла) для света существует поляризация электрически упругого смещения. В процессе вынужденных (под действием падающей световой волны) колебаний электронов с частотой вынуждающей силы периодически изменяются дипольные электрические моменты атомов, частота которых тоже равна вынуждающей силы. Среднее расстояние между атомами вещества много меньше протяженности одного цуга волн. Следовательно, вторичные волны, излучаемые большим числом соседних атомов, когерентны как между собой, так и с первичной волной. При сложении этих волн они интерферируют, в результате этой интерференции и получаются все наблюдаемые оптические явления, связанные с взаимодействием света с веществом. Оптический электрон совершает вынужденные колебания под действием возвращающей упругой силы и силы сопротивления. Под действием этих сил электроны и ионы вещества совершают вынужденные гармонические колебания (осциллируют) с частотой падающей волны, излучая при этом вторичные волны с теми же параметрами [18].

Предлагаемый способ нелокальной передачи информации использует выполнение известных, например, в оптических системах передачи информации операций, которые могут быть реализованы с помощью известных функциональных элементов. Основу предлагаемого способа нелокальной передачи информации составляют экспериментально подтвержденные явления запутанности, квантовой нелокальности запутанных частиц и эффект мгновенного коллапса волновой функции, хорошо известные в квантовой механике.

Предлагаемый способ можно реализовать следующим образом.

1) Запутанная пара фотонов - первая подсистема [12], уничтожение запутанного состояния между ними затрат энергии не требует, поскольку простое измерение хотя бы одного из этих фотонов (например, поглощением в веществе) приводит к коллапсу волновой функции [13];

2) Запутанная пара фотонов - вторая подсистема [12], уничтожение запутанного состояния между ними затрат энергии так же не требует, поскольку простое измерение хотя бы одного из этих фотонов также приводит к коллапсу волновой функции [13];

3) Запутанные электронные центры окраски между двумя системами - третья подсистема, уничтожение запутанного состояния между ними требует затрат энергии [3,14].

Фотон из первой подсистемы, в рамках макроскопического подхода [18], взаимодействует с электронными центрами окраски третьей подсистемы одной из систем. Фотон из второй подсистемы, в рамках макроскопического подхода [18], взаимодействует с электронными центрами окраски третьей подсистемы (второй системы). Образованная общая система является перепутанной. Т.е. первая и вторая подсистемы запутываются через окружение - третью подсистему (запутанные электронные центры окраски) двух систем [4,5,6,7,12]. Коллапс фотона одной из подсистем 1 или 2, вызванный его измерением, приводит к коллапсу всех фотонов этих подсистем 1 и 2 [13], но не подсистемы 3, поскольку та изначально являет собой систему и для коллапса ее волновой функции (нарушению когерентного суперпозиционного состояния) требуется затрата энергии [3, 14], по порядку величины равная той, что выделяется при нагреве от 140 до 240°C.

Перед использованием оптически прозрачных термолюминесцентных кристаллов в передатчике фиг. 1 и приемнике фиг. 2 эти кристаллы одновременно и совместно облучают квантово-механически запутанными рентгеновскими или гамма-квантами, вследствие чего в данных кристаллах образуются квантово-механически запутанные между ними электронные центры окраски. Кристаллы изготавливают из легированного фторида лития по известной и отработанной в промышленности технологии.

С помощью источника 4 запутанных парных фотонов (фиг. 1) генерируют пары фотонов в запутанном по поляризации состоянии. Один из фотонов 6 каждой пары с помощью устройства 5 направления распространения фотонов по определенному пути (показаны крупными стрелками) направляют на оптически прозрачный термолюминесцентный кристалл 3, содержащий электронные центры окраски, квантово-механически запутанные с электронными центрами окраски оптически прозрачного термолюминесцентного кристалла 3′ (фиг. 2), а другой фотон 7 с помощью устройства 5 направления распространения фотонов по определенному пути направляют на измерительное устройство 2.

С помощью источника 4′ запутанных парных фотонов (фиг. 2) генерируют пары фотонов в запутанном по поляризации состоянии. Один из фотонов 8 каждой пары с помощью устройства 5 направления распространения фотонов по определенному пути направляют на оптически прозрачный термолюминесцентный кристалл 3′, содержащий электронные центры окраски, квантово-механически запутанные с электронными центрами окраски оптически прозрачного термолюминесцентного кристалла 3 (фиг. 1), а другой фотон 9 с помощью устройства 5 направления распространения фотонов по определенному пути направляют на поляризационный светоделитель 12. В соответствии с [4,5,6,7,12] подсистему запутанных фотонов 6 и 7 запутывают с подсистемой запутанных фотонов 8 и 9 через подсистему запутанных электронных центров окраски двух систем, образованных кристаллами 3 и 3'. Другими словами, запутанную пару из фотонов 6-7 квантово-механически перепутывают с запутанной парой фотонов 8-9. Фотон 9 через поляризационный светоделитель 12 раздваивают на две «полуволны» 10-11 (показаны крупными стрелками фиг. 2), одну «полуволну» устройством 5 направляют по пути 10 на детектирующее устройство 13, а другую «полуволну» направляют по пути 11 на тот же детектор 13, при необходимости, например, через фазовую пластину 14, обеспечивающую поворот оси ее поляризации на определенный угол с таким условием, что при падении обеих «полуволн» на какую-либо плоскость они интерферируют. Если с кодера К, входящего в конструкцию компьютера 1 передатчика (фиг. 1), не подавать сигнал на измерительное устройство 2 (любое измерительное устройство, например ячейка Поккельса или ячейка Фарадея), то измерения поляризации фотона 7 не происходит, что отвечает модуляции информации в соответствии с передаваемым двоичным символом «0». В этом случае схлопывания волновой функции фотона 7 также не произойдет и, следовательно, запутанная пара фотонов 6-7 остается в перепутанном квантово-механическом состоянии как друг с другом, так и с запутанной парой фотонов 8-9, при этом квантовая корреляция нелокальных волновых функций между этими парами запутанных фотонов сохраняется по меньшей мере до того момента, когда фотоны 6 и 8 из соответствующих запутанных пар не покинут область пространства, занимаемого кристаллом 3 и кристаллом 3′, т.е. пока не прекратят свое взаимодействие в рамках макроскопического подхода с запутанными электронными центрами окраски. В этом случае квантовое состояние фотона 9 не коллапсирует в одно из двух собственных ортогональных состояний поляризации, соответствующих двум возможным результатам измерения, и его «полуволны» (волновые функции) образуют на детекторе 13 интерференционную картину в зависимости от соответствующего выбранного ее параметра, например в виде полос в определенной области экрана детектирующего устройства 13. При этом сигнал, поступающий с детектора 13, декодируют декодером Д, входящим в конструкцию компьютера 1′ приемника (фиг. 2), в соответствии с двоичным символом «0». Если с кодера К, входящего в конструкцию компьютера 1 передатчика (фиг. 1), подать сигнал на измерительное устройство 2, то произойдет измерение поляризации фотона 7, что отвечает модуляции информации в соответствии с передаваемым двоичным символом «1». В этом случае волновая функция фотона 7 коллапсирует в одно из своих состояний. Тогда в соответствии с [13] произойдет коллапс волновых функций всех остальных фотонов 6-8-9, при этом, квантовая корреляция нелокальных волновых функций между запутанными парами, которые состояли из запутанных пар фотонов 6-7 и 8-9, также прекратит свое существование. При этом фотон 9 раздвоиться на «полуволны» не может и, находясь в одном из своих ортогональных состояний с определенной поляризацией достигнет детектора 13, распространяясь только по одному из двух возможных путей 10-11, например 10. Вследствие того, что ему будет не с кем интерферировать, на детекторе 13 будет наблюдаться отсутствие интерференционной картины. При этом сигнал, поступающий с детектора 13, декодируют декодером Д в соответствии с двоичным символом «1». Таким образом, через наблюдение наличия или отсутствия интерференционной картины на детекторе приемника будет возможна передача информации.

ИСТОЧНИКИ ИНФОРМАЦИИ

[1] Патент РФ №2235434, кл. Н04В 10/30, 2004.

[2] Патент РФ №2465730, кл. Н04В 10/24, 2006.

[3] Патент US №8391721, кл. Н04В 10/00, 2013.

[4] Einstein A., Podolsky В., Rosen N., «Can Quantum-Mechanical Description of Physical Reality Be Considered Complete?)), Phys. Rev. 47, 777, 1935.

[5] Bell J.S., «Speakable and Unspeakable in Quantum Mechanics)), New York, Cambridge University Press, 1993.

[6] Aspect A., «Trois tests expérimentaux des inégalités de Bell parmesure de correlation de polarisation de photons», Doctoral Dissertation, UniversitéParis-Orsay, ler Février 1983.

[7] Townsend P.D., Rarity J.G., Tapster P.R., «Single Photon Interference in 10 km Long Optical-Fiber», Electronics Letters, V. 29, p.634,1993. [8] R. Ursin et al., "Space-Quest, Experiments with Quantum Entanglement in Space," Euro Physics News, DOI: 10.1051/ epn/2009503.

[9] Bennett C.H. et al., "Teleporting an Unknown Quantum State via Dual Classical and EPR Channels", Phys. Rev. Lett. vol. 70, pp 1895-1899,1993. [10] Bouda J. and Buzek V. "Entanglement swapping between multi-qubit systems" J.Phys. A: Math. Gen. 34, 4301-4311, 2001.

[11] De Riedmatten H. et al. "Long-distance entanglement swapping with photons from separated sources", Phys. Rev., A71, 050302, 2005.

[12]. P. van Loock, T.D. Ladd, K. Sanaka, F. Yamaguchi, Kae Nemoto, W.J. Munro, and Y. Yamamoto, Hybrid Quantum Repeater Using Bright Coherent Light, Phys. Rev. Lett. 96, p.240501, (2006).

[13] J. Baldzuhn, E. Mohler and W. Martienssen. A wave-particle delayed-choice experiment with a single-photon state. Zeitschrift fuer PhysikBCondensed Matter, 77(2):347-352,June 1989.

[14] (quant-ph/0611109). Intercontinental quantum liaisons between entangled electrons in ion traps of thermoluminescent crystals. Robert Desbrandes (Louisiana State University) and Daniel L. Van Gent (Oklahoma State University). Endorser: Professor Robert O'Connell (Louisiana State University).

[15] McKeever S.W.S., «Thermoluminescence of solids», Cambridge University Press, 1985.

[16] Академия наук СССР. Сибирское отделение. Институт геохимии им. академика А.П. Виноградова. А.И. Непомнящих, Е.А. Раджабов, А.В. Егранов. «Центры окраски и люминесценция кристаллов LiF». Ответственный редактор д-р физ.-мат. Наук, проф. И.А. Парфианович. Издательство «НАУКА», Сибирское отделение. Новосибирск. 1984.

[17] Физическая энциклопедия. Гл. ред. A.M. Прохоров. - М.: Большая Российская энциклопедия, 1998. - Т. 5.

[18]. Министерство образования и науки Российской Федерации, Федеральное агентство по образованию, Санкт-Петербургский государственный университет информационных технологий механики и оптики. М.Н. Либенсон, Е.Б. Яковлев, Г.Д. Шандыбина. "Взаимодействие лазерного излучения с веществом". Санкт-Петербург, 2005.

1. Способ нелокальной передачи информации, характеризующийся тем, что двумя источниками фотонов излучают фотоны попарно в запутанном по поляризации квантово-механическом состоянии, при этом фотон из каждой пары одного источника направляют на измерительное устройство, где его модулируют в соответствии с передаваемыми двоичными символами "1" или "0", а фотон из каждой пары второго источника направляют на детектирующее устройство с возможностью выделения информации по наличию или отсутствию интерференционной картины, отличающийся тем, что парный фотон из каждой пары одного источника направляют на один из двух оптически прозрачных термолюминесцентных кристаллов, содержащих квантово-механически запутанные между ними электронные центры окраски, а парный фотон из каждой пары второго источника направляют на второй оптически прозрачный термолюминесцентный кристалл.

2. Способ по п. 1, характеризующийся тем, что образование квантово-механически запутанных электронных центров окраски между двумя оптически прозрачными термолюминесцентными кристаллами осуществляют путем одновременного и совместного облучения последних запутанными рентгеновскими или гамма-квантами.

3. Способ по любому из пп. 1 или 2, характеризующийся тем, что оптически прозрачные термолюминесцентные кристаллы изготавливают из легированного фторида лития.



 

Похожие патенты:

Изобретение относится к технике связи и может использоваться для обнаружения отношения оптического сигнала к шуму, узловое устройство и сетевую систему. Технический результат состоит в повышении качества приема информации.

Изобретение относится к области оптических измерений и касается фотоприемного устройства. Фотоприемное устройство содержит последовательно соединенные лавинный фотодиод, усилитель и фильтр, а также компаратор, дискриминатор длительности импульсов, регулируемый источник питания, блок оценки сигналов, источник опорного напряжения, высокочастотный генератор и блок синхронизации.

Изобретение относится к области информационно-коммуникационных технологий и касается способа увеличения длины распространения инфракрасных монохроматических поверхностных электромагнитных волн (ПЭВ) по плоской металлической поверхности.

Изобретение относится к технике связи и может быть использовано для передачи сигналов на участках систем связи, которые могут быть подвержены воздействиям высоких механических нагрузок, ионизирующих излучений или иных поражающих факторов.

Изобретение относится к защищенным волоконно-оптическим системам передачи и может быть использовано в качестве дуплексной многоканальной волоконно-оптической системы передачи (ВОСП) информации ограниченного доступа по неконтролируемой территории.

Изобретение относится к волоконно-оптическим системам передачи (ВОСП) с селекцией и локализацией аварийных ситуаций и может быть использовано в качестве защищенной системы передачи информации ограниченного доступа за пределами контролируемой зоны.

Лазерное приемное устройство, которое может быть использовано в качестве приемного устройства для лазерной локационной системы и системы лазерной космической связи, основано на сверхрегенеративном приеме лазерных сигналов локации и связи в оптическом диапазоне, что позволяет реализовать приемное устройство, обладающее предельной квантовой (однофотонной) чувствительностью и одновременно высокой помехозащищенностью приема лазерных сигналов.

Изобретение относится к контроллерам защиты волоконно-оптических линий передачи (ВОЛП) от попыток отвода оптического сигнала и может быть использовано в качестве универсального технического средства защиты информации (ТСЗИ) ограниченного доступа, передаваемой по неконтролируемой территории.

Изобретение относится к транспортным средствам, а именно к размещению оптических осветительных устройств локомотивов железнодорожного транспорта, их установке и размещению и регулируемых из транспортного средства.

Изобретение относится к области волоконно-оптических систем передачи информации, а именно к системам связи со спектральным мультиплексированием. Технический результат состоит в повышении качества работы и увеличении дальности работы линии связи.

Изобретение относится к области связи, в частности к мультисервисным сетям абонентского доступа (МСАД) на базе интерактивной волоконно-эфирной архитектуры. Технический результат состоит в обеспечении защиты от преднамеренного повреждения кабеля; в повышении точности определения места проникновения одноучастковой когерентной волоконно-оптической охранной системы (ВООС). Для этого разбивают охраняемую территорию крупного хозяйственного объекта как протяженной, так и локальной конфигурации на большое число связанных периметральных участков с длиной периметра каждого участка не более 10-15 км, что позволяет значительно расширить зону обслуживания, разбивают оборудования волоконно-оптической охранной системы на взаимоувязанные подсистему охраны кольцевой топологии, реализующую на каждом участке функцию зондирования периметра с помощью когерентной рефлектометрии, и подсистему связи двойной шинной топологии, реализующую функцию предварительной обработки и последовательной передачи между участками результатов зондирования подсистемы охраны в единый центр управления с использованием временного и спектрального разделения каналов и регенерации сигналов на каждом участке. Вводят в сенсорный волоконно-оптический кабель двух дополнительных одномодовых волокон для раздельной передачи сигналов исходящего и входящего направлений подсистемы связи, что позволяет исключить взаимное влияние обеих подсистем волоконно-оптической охранной системы при сохранении высокой чувствительности к акустическому воздействию. 2 н. и 3 з.п. ф-лы, 8 ил.

Изобретение относится к контроллерам защиты волоконно-оптических линий передачи (ВОЛП) от попыток отвода оптического сигнала и может быть использовано в качестве универсального технического средства защиты информации (ТСЗИ) ограниченного доступа, передаваемой по неконтролируемой территории. Техническим результатом является сужение динамического диапазона входного сигнала за счет его логарифмирования и увеличение изоляции информационного и контрольного сигналов. Для этого контроллер защиты волоконно-оптических линий содержит оптические передатчик и коммутатор, последовательно соединенные устройство сигнализации и контроллер, выход которого соединен со входом оптического коммутатора, оптический выход которого является выходом устройства в волоконно-оптическую линию, последовательно соединенные фотодиод и логарифмический усилитель, а также оптический изолятор, демультиплексор вывода и мультиплексор ввода, вход ввода которого соединен с выходом оптического изолятора, вход которого соединен с выходом оптического передатчика, а общий вход мультиплексора является оптическим входом устройства, выход мультиплексора ввода соединен с оптическим входом оптического коммутатора, оптический вход демультиплексора вывода является входом устройства с волоконно-оптической линии, а выход вывода соединен со входом фотодиода, выход логарифмического усилителя соединен со входом микроконтроллера, а второй оптический выход демультиплексора вывода является выходом устройства. 1 ил.

Изобретение относится к области оптических измерений и касается способа и устройства для получения информации о входном оптическом сигнале. Способ основан на преобразовании модулированных оптических сигналов с помощью гетеродинного фотоприемного устройства и заключается в том, что модулируют излучение по частоте и подают на вход фотодетектора фотоприемного устройства, который запитывают модулированными электрическими импульсами той же частоты с синхронизацией по фазовой задержке. Одновременно модулированное оптическое излучение подают на вход фотодетектора дополнительного фотоприемного устройства, который запитывают электрическими импульсами от гетеродина с частотой модулированного оптического излучения квадратурно относительно запитывающих импульсов основного фотоприемного устройства. На основе сигнала от дополнительного фотоприемного устройства получают информацию о фазовой задержке входного оптического сигнала, которую используют для синхронизации гетеродина. Технический результат заключается в повышении информативности, чувствительности, селективности и отношения сигнал/шум. 2 н. и 1 з.п. ф-лы, 1 ил.

Изобретение относится к технике связи и может использоваться в оптической транспортной сети. Технический результат состоит в повышении пропускной способности передачи. Для этого в способе передачи принятый клиентский сигнал отображается в контейнер с переменной скоростью OTU-N, при этом скорость OTU-N в N раз больше предварительно заданной опорной скорости, и затем контейнер с переменной скоростью OTU-N разбивается на N транспортных блоков оптического подканала OTUsub по столбцам, при этом скорость каждого OTUsub равняется опорной скорости; далее N транспортных блоков оптического подканала OTUsub модулируются на одной или более оптических несущих; и наконец, одна или более оптических несущих передаются по оптоволокну. 6 н. и 18 з.п. ф-лы, 16 ил.

Изобретение относится к технике связи и может использоваться в системах оптической связи. Технический результат состоит в повышении надежности связи. Для этого при обнаружении информации предупреждения, которая инициирует переключение группы резервирования секции мультиплексирования, узел, не принимающий решение, в группе резервирования секции мультиплексирования через сетевые элементы определяет, является ли состояние линии связи с узлом, принимающим решение, в группе резервирования секции мультиплексирования через сетевые элементы исправным или нет, и отображает информацию предупреждения на передающий конец оптического волокна, который функционирует в качестве группы резервирования противоположного конца, если данная линия связи является неисправной. 2 н. и 8 з.п. ф-лы, 7 ил.

Изобретение относится к техническим средствам охраны периметров объектов и может быть использовано для сигнализационного блокирования периметров объектов и протяженных рубежей на равниной и пересеченной местности. Способ комбинированной охраны периметра протяженного объекта, такого как полотно железной дороги, включает в себя выполнение нескольких рубежей охраны: первого - предупредительного, который выполняют посредством образования траншеи в грунте, в который укладывают протяженный чувствительный элемент, выполненный в виде волоконно-оптического кабеля; далее второго рубежа - границы периметра объекта, который выполняют в виде решетчатого заграждения и спирального барьера безопасности, на которых устанавливают чувствительный элемент оптоволоконного вибрационно-сейсмического средства обнаружения рефлектометрического принципа действия в виде одномодового волоконно-оптического кабеля; третьего рубежа охраны - выполненного аналогично первому; и четвертого рубежа охраны, который выполняют непосредственно вдоль внешних сторон полотна дороги, а также в междупутье посредством укладки в траншеи волоконно-оптического кабеля. Вдоль заграждения внутри периметра установлены средства телевизионного контроля, освещения, тревожного оповещения и тревожно-вызывной сигнализации. Техническим результатом изобретения является повышение надежности охраны объекта за счет скрытого расположения основного элемента при одновременном снижении трудоемкости и материалоемкости за счет минимизации технологических операций по прокладке этого элемента. 14 з.п. ф-лы, 2 ил.
Изобретение относится к техническим средствам охраны периметров объектов и может быть использовано для сигнализационного блокирования периметров объектов и протяженных рубежей на равнинной и пересеченной местности. Способ включает выполнение семи рубежей охраны: первого предупредительного рубежа за счет прокладки протяженного чувствительного элемента в виде волоконно-оптического кабеля; второго предупредительного рубежа, который выполняют аналогично первому; третьего рубежа в виде электрошокового заградительного препятствия; четвертого рубежа охраны, который выполняют аналогично первому и второму; пятого рубежа охраны - границу периметра объекта, который выполняют в виде решетчатого заграждения, при этом на заграждении устанавливают спиральный барьер безопасности и, по меньшей мере, один чувствительный элемент; устройство шестого рубежа охраны - контрольно-следовой полосы, и седьмого рубежа, который выполняют аналогично первому, второму и четвертому рубежам. Пятый рубеж оборудуют средствами тепло- и видеонаблюдения, звукового оповещения и освещением, к чувствительному элементу подключают оптические датчики тревожно-вызывной сигнализации. Все рубежи охраны контролируют при помощи оптоволоконного вибрационно-сейсмического средства обнаружения рефлектометрического принципа действия. Способ позволяет повысить надежность охраны объекта, в частности при работе в условиях повышенного электромагнитного излучения и в любых погодных условиях. 20 з.п. ф-лы.

Автоматизированный корабельный комплекс светосигнальной связи содержит прибор оптической связи направленного действия, прибор оптической связи всенаправленного действия, блок электропитания, автоматизированное рабочее место оператора, общекорабельную систему стабилизации качки корабля, автоматизированную систему управления кораблем. Автоматизированное рабочее место оператора содержит вычислительное устройство, средство отображения информации, органы ввода и вывода информации, интерфейсные средства внешней связи. Прибор оптической связи направленного действия содержит блок формирования и выдачи оптических сигналов, блок приема и преобразования оптических сигналов, блок наведения, слежения и стабилизации, блок управления, обработки и сопряжения, блок электропитания. Блок приема и преобразования оптических сигналов содержит систему линз, фотодетектор, устройство последетекторной обработки, вычислительное устройство. Прибор оптической связи всенаправленного действия содержит светодиодную матрицу с круговой диаграммой направленности видимого и инфракрасного диапазона. Обеспечивается высокоскоростная оптическая линия связи между кораблями и береговыми объектами. 4 ил.

Изобретение относится к способам обнаружения активных волокон, направления и длины волны передаваемого сигнала и ввода-вывода оптического излучения через боковую поверхность оптического волокна (ОВ) с помощью изгиба и может быть использовано для ввода (вывода) оптического сигнала в ОВ в системах мониторинга волоконно-оптических линий передачи (ВОЛП) и мультиплексорах ввода-вывода сигналов (OADM). Способ ввода-вывода излучения через боковую поверхность изогнутого оптического волокна, заключающийся в том, что в пазу первого ролика, имеющего заданный радиус, размещают оптическое волокно, используют второй ролик, идентичный первому, в пазу которого размещают это же оптическое волокно, которое фиксируют на входе и выходе устройства, затем изгибают волокно вокруг роликов на заданный начальный угол для выхода излучения через боковую поверхность и поджимают его к первому и второму оптическим элементам с заданным показателем преломления, после чего выводимое излучения с изогнутых боковых поверхностей волокна фокусируют на входные торцы приемных оптических волокон с помощью градиентных линз, производят регистрацию излучения с помощью оптических приемников, а ввод излучения осуществляют от оптического передатчика, который подключают вместо приемника, на котором отсутствует сигнал, при этом уровень выводимой и вводимой мощности излучения регулируют изменением углов изгиба волокна. Техническим результатом изобретения является возможность совмещения функций обнаружения активных волокон, направления передачи сигналов, длины волны излучения и плавной регулировки вводимой и выводимой мощности излучения. 2 ил.

Изобретение относится к приемникам оптических сигналов и может быть использовано для восстановления кодовой комбинации из зашумленных оптических сигналов. Способ восстановления кодовой комбинации из зашумленных цифровых оптических сигналов, заключающийся в их приеме, преобразовании в электрические сигналы, усилении и фильтрации, отличается тем, что при аналого-цифровом преобразовании формируют и запоминают выборку цифровых отсчетов Yi объемом Н, с помощью арифметического логического устройства вычисляют среднее выборочное значение по формуле: и среднее энергетическое значение по формуле: , которое принимают за нулевую линию, далее определяют и запоминают все точки пересечения цифровых отсчетов выборки с нулевой линией, далее вычисляют средние значения амплитуды выборки положительной +Аср и отрицательной -Аср полярности по формуле: где j - номер интервала от точки пересечения цифровых отсчетов с нулевой линией до следующего пересечения, a Aj - средние значения амплитуды в пределах j-того интервала, которое определяют по формуле: , где h - количество отсчетов в пределах j-того интервала, полученное значение амплитуды Aj в j-том интервале сравнивают со средним значением амплитуды выборки Аср и при условии |Aj|<|Аср| принимают, что переход перед этим интервалом ложный, далее на каждом j-том интервале вычисляют энергию Фj по формуле: , значения полученных энергий соседних интервалов сравнивают, если |Фj-Фj-1|≥4Y2 срh, переход считают истинным, если |Фj-Фj-1|<4Y2 срh, переход считают ложным, в соответствии с правилами кодирования информации арифметическое логическое устройство формирует цифровую последовательность логических нулей и единиц.. Достигаемым техническим результатом является обеспечение приема оптических сигналов при малых отношениях сигнал/шум (менее 6) и повышение коэффициента ошибок. 3 ил.
Наверх