Способ определения момента дифферента поплавковой гирокамеры двухстепенного поплавкового гироскопа

Изобретение относится к области прецизионного приборостроения и может быть использовано при изготовлении и эксплуатации двухстепенных поплавковых гироскопов с бесконтактными опорами подвеса гирокамеры. Способ заключается в том, что работающий гироскоп с бесконтактными опорами подвеса гирокамеры, нагретый до рабочей температуры, ориентируется в положение, при котором его продольная ось горизонтальна, а пара радиальных осей опор, параллельных измерительной оси гироскопа, направлена по вертикали, осуществляется изменение температуры гироскопа последовательно в одну и другую сторону от ее рабочего значения и одновременное измерение контрольных сигналов в каналах бесконтактных опор, определяются температуры, при которых значения измеряемых контрольных сигналов равны нулю, рассчитывается момент дифферента. Технический результат - повышение точности определения момента дифферента гирокамеры, возможность контроля момента в составе собранного гироскопа с бесконтактными опорами подвеса гирокамеры, отсутствие необходимости использования специального технологического оборудования. 1 ил.

 

Изобретение относится к области прецизионного приборостроения и может быть использовано при изготовлении и эксплуатации двухстепенных поплавковых гироскопов с бесконтактными опорами гирокамеры, например электростатическими, магнитными [У. Ригли, У. Холлистер, У. Денхард. Теория, проектирование и испытания гироскопов // М.: «Мир», 1972, с. 289].

Известен способ определения момента дифферента поплавковой гирокамеры двухстепенного поплавкового гироскопа с камневыми опорами [патент СССР №1840722]. При реализации способа работающий гироскоп ориентируется измерительной осью перпендикулярно плоскости меридиана. Затем гироскоп поворачивается вокруг этой оси на 180°, после чего измеряется его выходной сигнал. Затем гироскоп поворачивается в противоположную сторону на 180° и снова измеряется его выходной сигнал. Момент дифферента гирокамеры вычисляется по величинам отрезков времени между окончанием разворота и скачкообразным изменением выходного сигнала гироскопа, происходящим при механическом контакте в опорах.

Недостатком способа является малая точность. Указанный недостаток обусловлен тем, что способ не позволяет измерить дифферент поплавковой гирокамеры в двухстепенном поплавковом гироскопе с бесконтактными опорами. В связи с отсутствием механического контакта в бесконтактных опорах скачкообразных изменений в выходном сигнале при разворотах гироскопа не происходит.

Наиболее близким по технической сущности и достигаемому положительному эффекту к заявленному изобретению является способ определения момента дифферента поплавковой гирокамеры, реализуемый в технологической ванне, заполненной поддерживающей жидкостью [Ковалев М.П., Моржаков С.П., Терехов К.С. Динамическое и статическое уравновешивание гироскопических устройств // М.: «Машиностроение», 1974, с. 233], который принимаем за прототип. Способ реализуется при выполнении следующих технологических операций:

1. Заполняется поддерживающей жидкостью технологическая ванна.

2. Опускается в ванну гирокамера и измерительное устройство в виде двух граммометров, выполненных, например, в виде поплавков.

3. Устанавливаются цапфы центрирующих опор гирокамеры в отверстия тяг граммометров.

4. Нагревается жидкость до температуры, равной рабочей температуры гироскопа. После нагрева, при установившемся тепловом режиме, на один из граммометров действует сила F1, равная сумме остаточного веса (остаточный вес - разность между весом и выталкивающей силой) гирокамеры и силы, обусловленной наличием момента дифферента; на другой граммометр - сила F2, равная разности этих сил. Силы F1 и F2, действующие в опорах гирокамеры, уравновешиваются выталкивающими силами граммометров, которые заранее проградуированы.

5. Считываются показания со шкал граммометров. По полуразности их показаний судят о величине момента дифферента гирокамеры.

Недостатками способа являются:

- Малая точность. Указанный недостаток обусловлен тем, что создание в технологической ванне температурных полей, аналогичных полям работающего гироскопа, невозможно. Вследствие этого измеренный момент дифферента отличается от реального момента, действующего в собранном приборе.

- Невозможность контролировать величину момента дифферента в составе собранного гироскопа. Контроль осуществляется только при балансировки гирокамеры в ванне.

- Необходимость использования специального технологического оборудования (например, специальных ванн).

Задачей настоящего изобретения является совершенствование технологического процесса изготовления двухстепенных поплавковых гироскопов.

Достигаемый технический результат:

- повышение точности определения момента дифферента;

- создание возможности контролировать момент дифферента гирокамеры с бесконтактными опорами в составе собранного гироскопа;

- отсутствие необходимости использования специального технологического оборудования.

Поставленная задача решается тем, что в известном способе определения момента дифферента гирокамеры двухстепенного поплавкового гироскопа по уравновешиванию сил, действующих в ее опорах:

- работающий гироскоп с бесконтактными опорами гирокамеры, нагретый до рабочей температуры, ориентируется в положение, при котором его продольная ось горизонтальна, а пара радиальных осей опор, параллельных измерительной оси гироскопа, направлена по вертикали,

- осуществляется изменение температуры Тг гироскопа последовательно в одну и другую сторону от ее рабочего значения и одновременное измерение контрольных сигналов в каналах бесконтактных опор,

- определяются температуры, при которых значения измеряемых контрольных сигналов равны нулю, рассчитывается момент дифферента Мд по формуле:

Мд = Fд*L = 0,5*ΔP*L = 0,5*γжо*(T2 - T1)* α*V*L, г·см, (1)

где Fд - составляющая силы реакции опор, обусловленная моментом дифферента поплавковой гирокамеры, r;

L - расстояние между центрами приложения сил в опорах, см;

T2, T1 - температуры, при которых составляющие силы реакции опор, обусловленные моментом дифферента, уравновешиваются составляющими сил реакции опор, обусловленными остаточным весом поплавковой гирокамеры, °C (факт уравновешивания определяется по равенству нулю контрольных сигналов в каналах опор бесконтактного подвеса);

α - температурный коэффициент изменения удельного веса жидкости, 1/°C;

V - объем поплавковой гирокамеры, см3;

γж0 - удельный вес жидкости при температуре T0, г/см3;

Δ P = γ ж о ( T 2 T 1 ) α V - изменение выталкивающей силы жидкости при изменении температуры прибора с T1 на T2, г.

Для реализации предлагаемого способа:

1. Гироскоп устанавливается на неподвижном основании в положение, при котором его продольная ось горизонтальна, и оси бесконтактных опор гирокамеры, параллельные измерительной оси прибора, направлены по вертикали. Такая ориентация исключает появление в результатах измерений погрешности, обусловленной воздействием на опоры гироскопического момента.

2. Гироскоп приводится в рабочее состояние. Для этого осуществляется запуск гиромотора, взвешивание поплавковой гирокамеры в бесконтактных опорах, нагрев гироскопа (поддерживающей жидкости) до рабочей температуры, близкой к температуре, при которой остаточный вес поплавковой гирокамеры равен (близок) нулю. Остаточный вес это разница между весом P гирокамеры и выталкивающей (архимедовой) силой F=γж(T)V, где γж (T) - удельный вес поддерживающей жидкости, который является функцией температуры T [Е.А. Никитин, С.А. Шестов, В.А. Матвеев. «Гироскопические системы», часть III, Москва, Высшая школа, 1988 г, стр. 210, 211], V - объем вытесненной гирокамерой жидкости. При этом в реальном гироскопе, в одной из опор поплавковой гирокамеры будет действовать сила, равная сумме составляющих сил реакции опоры, обусловленных остаточным весом гирокамеры и ее моментом дифферента, в другой опоре - сила, равная разности этих сил. Действующие в опорах силы уравновешиваются силами, формируемыми со стороны бесконтактного подвеса. О величине сил судят по результатам измерения контрольных сигналов Uk1 и Uk2 в каналах бесконтактных опор, пропорциональных действующим в опорах силам.

3. Уменьшается температура Тг гироскопа относительно ее рабочего значения, например, дискретным образом. При каждой фиксированной температуре измеряются контрольные сигналы Uk1 и Uk2 в каналах опор. При уменьшении температуры происходит увеличение удельного веса поддерживающей жидкости, следствием чего является увеличение выталкивающей силы, действующей на поплавковую гирокамеру. Определяется температура T1, при которой значение контрольного сигнала в канале одной из опор равно нулю. В этой опоре составляющая силы реакции опор, определяемая остаточным весом гирокамеры, уравновесит составляющую силы реакции опор, определяемую ее моментом дифферента. В поплавковых гироскопах применяются тяжелые органические жидкости, удельный вес которых с изменением температуры меняется по линейному закону [Е.А. Никитин, С.А. Шестов, В.А. Матвеев. «Гироскопические системы», часть III, Москва, Высшая школа, 1988 г, стр. 210, 211]. При температуре T1 удельный вес жидкости будет определяться соотношением

γж1ж0[1-α(T1-T0)], г/см3,

где γж0 - удельный вес жидкости при температуре T0, г/см3;

α - температурный коэффициент изменения удельного веса жидкости, 1/°C;

γж0, α и T0 - справочные данные, их значения, определяются производителем примененной в гироскопе жидкости.

4. Увеличивается дискретным образом температура Тг гироскопа (поддерживающей жидкости) и одновременно измеряются контрольные сигналы в каналах опор. При увеличении температуры происходит уменьшение удельного веса поддерживающей жидкости, следствием чего является уменьшение выталкивающей силы, действующей на поплавковую гирокамеру. Определяется температура T2, при которой значение контрольного сигнала в канале другой опоры (относительно опоры анализируемой в пункте 3) равно нулю. При этом составляющая силы реакции опор, обусловленная моментом дифферента, будет уравновешена составляющей силы реакции опор, обусловленной остаточным весом гирокамеры. При температуре T2 удельный вес жидкости будет определяться соотношением

γж2ж0[1-α(Т20)].

5. При изменении температуры с T1 до T2 значение удельного веса жидкости изменится на величину

Δ γ ж = γ ж 1 γ ж 2 = γ ж 0 ( T 2 T 1 ) α , г / с м 3 .

Значение остаточного веса гирокамеры изменится на величину

Δ P = Δ γ ж V = γ ж 0 ( T 2 T 1 ) α V , г

Используя приведенные выше соотношения, рассчитывается момент дифферента Мд поплавковой гирокамеры по формуле (1).

По сравнению со способом-прототипом, использование предлагаемого способа дает следующие преимущества:

- обеспечивает более точное определение момента дифферента (за счет определения момента непосредственно в условиях работающего гироскопа);

- позволяет контролировать величину момента дифферента в составе собранного гироскопа;

- не требует дополнительного технологического оборудования (например, в виде специальных ванн).

Дополнительно при реализации способа имеется возможность определения (уточнения) рабочей температуры гироскопа непосредственно в условиях работающего гироскопа. Рабочая температура определяет значения сил, действующих в опорах подвеса поплавковой гирокамеры, влияющих на точность гироскопа. Значение рабочей температуры определяется полусуммой температур T1 и T2.

Вышеизложенное подтверждает возможность получения заявленного технического результата.

На предприятии предлагаемый способ проверен на двухстепенном поплавковом гироскопе с бесконтактными электростатическими опорами гирокамеры. Принятые параметры: γж0=1,83 гсм3, α=0,001 1/°C, V=100 см3, L=2 см; Тг=55°C.

В результате выполнения предлагаемого способа

- Определены графики изменения контрольных сигналов в каналах опор гирокамеры от температуры Тг гироскопа (фиг. 1).

На фиг. 1 приняты следующие обозначения:

Uk1, Uk2 - контрольные сигналы в каналах опор, оси которых направлены по вертикали, мВ;

Тг - температура гироскопа, °C;

T1, T2 - значения температур, при которых значения измеряемых контрольных сигналов в каналах равны нулю, °C.

- Определены значения температур Т2=55,3°C, T1=54,8°C.

- Рассчитан момент дифферента Мд=0,09 гсм.

В настоящее время способ используется при изготовлении двухстепенных поплавковых гироскопов с бесконтактными электростатическими опорами поплавковой камеры.

Способ определения момента дифферента гирокамеры двухстепенного поплавкового гироскопа по уравновешиванию сил, действующих в ее опорах, отличающийся тем, что работающий гироскоп с бесконтактными опорами гирокамеры, нагретый до рабочей температуры, ориентируют в положение, при котором его продольная ось горизонтальна, а пара радиальных осей опор, параллельных измерительной оси гироскопа, направлена по вертикали, осуществляют изменение температуры гироскопа последовательно в одну и другую сторону от ее рабочего значения и одновременное измерение контрольных сигналов в каналах опор бесконтактного подвеса, определяют температуры, при которых значения измеряемых контрольных сигналов равны нулю, рассчитывают момент дифферента Мд по формуле
Мд = Fд*L = 0,5*ΔP*L = 0,5*γж0*(T2 - T1)* α*V*L, г·см,
где Fд - составляющая силы реакции опор, обусловленная моментом дифферента поплавковой гирокамеры, г;
L - расстояние между центрами приложения сил в опорах бесконтактного подвеса, см;
ΔΡ - изменение остаточного веса камеры при изменении температуры с T1 до T2, г;
γж0 - удельный вес жидкости при температуре Т0, определяемый производителем жидкости, г/см3;
T2, T1 - температуры, при которых составляющие силы реакции опор, обусловленные моментом дифферента, уравновешиваются составляющими сил реакции опор, обусловленными остаточным весом поплавковой гирокамеры, °C;
α - температурный коэффициент изменения удельного веса жидкости, 1/°C;
V - объем поплавковой гирокамеры, см3.



 

Похожие патенты:

Группа изобретений относится к области управления угловым движением преимущественно нелинейных нестационарных систем с переменными параметрами, в частности летательных аппаратов (ЛА) с вертикальными взлётом и посадкой.

Использование: для повышения запаса устойчивости гироскопа. Сущность изобретения заключается в том, что вихревой жидкостной тороидальный гироскоп содержит внешнюю твердотельную оболочку в виде тора, внутри которой находится жидкий ротор, а также устройство закрутки ротора вокруг двух осей, при этом внутри оболочки установлена прикрепленная к внутренней поверхности тора спираль, а устройство закрутки выполнено в виде магнитного двигателя, ротор которого совмещен с циркуляционной турбиной и выполнен в виде радиально намагниченного кольца и расположен внутри тора, а статор расположен снаружи и соединен гибким кабелем с устройством разгона и регулирования угловой скорости вращения турбины.

Изобретение относится к области прецизионного приборостроения и может быть использовано при разработке и производстве двухстепенных поплавковых гироскопов. Заявлен способ определения погрешности двухстепенного поплавкового гироскопа, включающий установку гироскопа на неподвижном основании, включение в режим обратной связи датчик угла - усилитель - преобразователь - датчик момента, запуск гиромотора, нагрев гироскопа, измерение тока в цепи датчика момента обратной связи, определение погрешности гироскопа.

Изобретение относится к области военной техники, а именно к измерительным элементам систем управления и стабилизации реактивных снарядов, например реактивных снарядов систем залпового огня.

Изобретение относится к энергетике и может быть использовано для развития перерабатывающих заводов сельского хозяйства, а также для собственных нужд железных дорог.

Изобретение относится к измерительным элементам систем управления и стабилизации реактивных снарядов, например реактивных снарядов систем залпового огня. .

Изобретение относится к области гироскопической техники и может быть использовано при создании миниатюрного гидродинамического гироскопа повышенной точности. .

Изобретение относится к приборостроению и может быть использовано при создании прецизионных поплавковых гироскопов и акселерометров. .

Изобретение относится к классу гироскопов с жидкими роторами и касается гироскопической системы для стабилизации и демпфирования объектов с шестью степенями свободы, подвергающихся сложным, более чем с одной степенью свободы, механическим воздействиям и возмущениям. Жидкостное гироскопическое устройство для стабилизации и демпфирования объектов с шестью степенями свободы состоит из массы жидкой среды, одного или более трубопроводных контуров для циркуляции жидкой среды, круглой или другой формы, расположенных в трех взаимно перпендикулярных плоскостях, одного или более насосов, при этом в каждый контур, заполненный вращающейся жидкой средой, установлены циркуляционные насосы, которые выполнены в виде, например, магнитных двигателей, статор которых расположен на внешней поверхности контура, а ротор, совмещенный с гидротурбиной, внутри герметичного контура на том месте, где расположен статор, или в виде магнитогидродинамической машины, расположенной на внешней поверхности каждого контура. Технический результат - одновременная стабилизация по трем осям и демпфирование шестистепенных объектов, подвергающихся механическим воздействиям сложного характера. 3 ил.
Наверх