Способ приведения в действие инициатора газодинамического импульсного устройства



Владельцы патента RU 2591293:

Федеральное государственное унитарное предприятие "Российский Федеральный ядерный центр - Всероссийский научно-исследовательский институт экспериментальной физики" (ФГУП "РФЯЦ-ВНИИЭФ") (RU)
Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" (Госкорпорация "Росатом") (RU)

Изобретение относится к области вооружений и может быть использовано в неконтактных взрывателях боеприпасов. Способ приведения в действие инициатора газодинамического импульсного устройства включает обнаружение объекта. Обнаружение осуществляется с помощью датчика, реагирующего на сближение с внешними телами, путем зондирования пространства серией световых импульсов с последующей регистрацией отраженных импульсов. Способ включает также формирование сигнала задействования инициатора при регистрации всех отраженных импульсов текущей серии. Конечный из импульсов регистрируют в предварительно заданном временном интервале, определяющем дистанцию до объекта. Зондирующие световые импульсы излучают, по крайней мере, одной парой разнонаправленных излучателей. Отраженные сигналы регистрируют соответствующим каждому излучателю фотоприемником. Каждый последующий зондирующий импульс серии формируют после регистрации отраженного предыдущего. Формирование сигнала задействования инициатора производят только при регистрации отраженных сигналов текущей серии одного из пары излучателей. Длительность временного интервала, характеризующую погрешность определения дистанции до объекта, задают с учетом длительности переднего фронта светового импульса. Повышается помехоустойчивость, снижается энергопотребление устройства. 2 з.п. ф-лы, 2 ил.

 

Изобретение относится к способам формирования сигналов, приводящих в действие инициаторы газодинамических импульсных устройств, основанным на применении оптических неконтактных датчиков, реагирующих на сближение с внешними телами и вырабатывающих без соприкосновения с ними сигнал, обеспечивающий задействование в оптимальный момент.

Одной из основных задач, стоящей в данной области техники, является обеспечение точности определения дистанции до объекта. При использовании оптических неконтактных датчиков уделяют особое внимание помехоустойчивости, повышение которой обеспечивают применением оптического излучения с длинами волн, позволяющими снизить влияние мелкодисперсных сред: пыль, туман, дождь, искусственные среды.

Известен способ приведения в действие инициатора газодинамического импульсного устройства, который основан на лазерном зондирование пространства двумя световыми пучками и регистрации отраженного излучения двумя приемниками, при этом одним приемником идентифицируют объект на дальней дистанции, другим - на ближней, измеряют временной промежуток между моментами идентификации, оценивают скорость сближения с объектом, а затем формируют сигнал на задействование (патент RU 2300729, публик. 10.06.2007, Бюл. №17).

Недостаток данного способа связан с тем, что возможна ошибка в определении дистанции, так как не учитывается ускорение и проекция длины объекта на продольную ось инициатора, кроме того недостатком является повышенное энергопотребление, а также значительные габариты и вес устройства, реализующего данный способ.

Известен другой способ приведения в действие инициатора газодинамического импульсного устройства, частично устраняющий недостатки предыдущего аналога (патент RU 2387949, опубл. 27.04.2010, бюл. №12), включающий обнаружение объекта посредством лазерного зондирования пространства тремя световыми пучками и регистрацию отраженного излучения тремя приемниками, при этом обеспечивают формирование задержки задействования с учетом скорости и ускорения сближения с объектом, а также и проекции длины объекта на продольную ось инициатора.

Недостатком данного способа является также значительное энергопотребление устройства, обеспечивающего формирование сигнала на задействование инициатора на оптимальном расстоянии, а также значительные габариты и вес указанного устройства.

Известен еще один способ приведения в действие инициатора газодинамического импульсного устройства (патент RU 2442956, опубл. 20.02.2012, бюл. №5), являющийся наиболее близким аналогом. Способ основан на обнаружении объекта посредством зондирования пространства световыми импульсами и регистрации отраженного излучения приемником с последующим анализом регистрируемых сигналов, при этом излучение зондирующих световых импульсов осуществляют одним излучателем, а регистрацию отраженного излучения - одним приемником, причем регистрацию осуществляют в тестовом временном окне, которое открывают через временной интервал, определяющий дистанцию, на которой необходимо задействование инициатора, отсчитываемый с момента излучения светового импульса, причем продолжительностью тестового временного окна задают погрешность определения дистанции, при этом задействующий импульс формируют после регистрации излучения. Для исключения задействования от случайных помех излучают установленную серию световых импульсов, в случае регистрации отраженных сигналов всех излученных световых импульсов текущей серии и при условии регистрации конечного отраженного сигнала серии в тестовом временном окне формируют задействующий импульс. Обнаружение объекта на двух дистанциях: дальней и ближней, осуществляют одним излучателем и одним приемником, при этом по величине временного промежутка между ними оценивают скорость сближения с объектом и формируют временную задержку задействования инициатора в зависимости от его скорости.

Данный способ позволяет снизить энергопотребление устройства, по сравнению с предыдущим аналогом, однако энергопотребление остается значительным, кроме того защита от случайных малоразмерных помех недостаточно обеспечена.

Техническим результатом заявляемого изобретения является повышение помехоустойчивости. Дополнительным техническим результатом является снижение энергопотребления.

Указанный технический результат достигается за счет того, что в способе приведения в действие инициатора газодинамического импульсного устройства, включающем обнаружение объекта с помощью датчика, реагирующего на сближение с внешними телами, путем зондирования пространства серией световых импульсов с последующей регистрацией отраженных импульсов и формирование сигнала задействования инициатора при регистрации всех отраженных импульсов текущей серии, конечный из которых регистрируют в предварительно заданном временном интервале, определяющем дистанцию до объекта, новым является то, что зондирующие световые импульсы излучают, по крайней мере, одной парой разнонаправленных излучателей, а отраженные сигналы регистрируют соответствующим каждому излучателю фотоприемником, при этом каждый последующий зондирующий импульс серии формируют после регистрации отраженного предыдущего, формирование сигнала задействования инициатора производят только при регистрации отраженных сигналов текущей серии одного из пары излучателей, причем длительность временного интервала, характеризующая погрешность определения дистанции до объекта, задают с учетом длительности переднего фронта светового импульса.

Кроме того:

После регистрации отраженного сигнала первого из зондирующих импульсов текущей серии, частоту следования импульсов увеличивают на порядок.

В случае отсутствия одного отраженного импульса из текущей серии, зондирующие импульсы прекращают и начинают серию вновь.

Применение, по крайней мере, одной пары разнонаправленных излучателей и регистрация отраженных сигналов соответствующим каждому излучателю фотоприемником, повышает вероятность обнаружения объекта и позволяет обеспечить алгоритм работы, исключающий задействование от случайных помех, т.к. при регистрации всех отраженных сигналов двумя приемниками, сигнал на задействование не формируется.

Алгоритм формирования каждого последующего импульса серии после регистрации отраженного предыдущего повышает вероятность обнаружения объекта и исключает задействование от случайных помех, т.к. в случае отсутствия регистрации отраженного импульса, зондирующие импульсы прекращают и серия начинается вновь. Прекращение формирования зондирующих импульсов при отсутствии одного отраженного импульса из текущей серии и начало серии вновь обеспечивает помехоустойчивость.

Формирование импульса подрыва только при регистрации всех отраженных сигналов текущей серии одного из пары излучателей, также повышает помехоустойчивость.

Задание длительности временного интервала, характеризующего погрешность определения дистанции подрыва, осуществляют с учетом длительности переднего фронта светового импульса, что повышает помехоустойчивость при обнаружении цели и формировании задействующего импульса.

Сканирование пространства световыми импульсами на траектории до обнаружения объекта с частотой на порядок меньшей, чем после его обнаружения, позволяет снизить энергопотребление.

Сущность изобретения поясняется фиг. 1 и 2.

На фиг. 1 показаны графики импульсов, при которых формируют задействующий сигнал, а на фиг. 2 - отказ на задействование, где

ЛЗИ1 и ЛЗИ2 - лазерные зондирующие импульсы пары излучателей;

СФП1 и СФП2 - зарегистрированные отраженные световые импульсы с фотоприемников;

ИВИ - импульс временного интервала;

ЗИ - задействующий импульс.

Предложенный способ приведения в действие инициатора газодинамического импульсного устройства на оптимальном расстоянии от объекта реализуется следующим образом. Пространство зондируется световыми импульсами с частотой f, которые формируют пара излучателей (полупроводниковые лазеры инфракрасного диапазона), работающих синхронно. Зондирующие световые импульсы ЛЗИ1 и ЛЗИ2 имеют заданную длительность и в режиме обнаружения объекта излучают серию импульсов с увеличенной частотой (в серии 8 импульсов, частота f*10). Каждый последующий зондирующий импульс серии формируют после регистрации отраженного предыдущего. Отраженные сигналы СФП1 и СФП2 регистрируют соответствующим каждому излучателю фотоприемником. После регистрации отраженного сигнала, первого из зондирующих импульсов текущей серии, например, серии ЛЗИ1 соответствующим фотоприемником, частоту следования импульсов увеличивают на порядок (показано на фиг. 1). В случае отсутствия одного отраженного импульса из текущей серии, например, ЛЗИ2 (фиг. 1), зондирующие импульсы прекращают и, если серия ЛЗИ1 не формирует команду ЗИ, начинают серию вновь.

Задействующий импульс ЗИ формируют только при регистрации всех отраженных сигналов текущей серии одного из пары излучателей, причем длительность временного интервала t1, характеризующая погрешность определения дистанции ±0,5 м, задают с учетом длительности переднего фронта светового импульса. На фиг. 1 показан вариант, когда все импульсы серии ЛЗИ1 зарегистрированы соответствующим фотоприемником СФП1, а импульсы серии ЛЗИ2 зарегистрированы не все.

На фиг. 2 показан вариант, когда в случае помехи все импульсы серии ЛЗИ1 и ЛЗИ2 зарегистрированы соответствующими фотоприемниками СФП1 и СФП2, что исключило формирование импульса ЗИ.

Таким образом, заявляемый способ обеспечивает помехоустойчивость, точность определения дистанции ±0,5 м и снижение энергопотребления при зондировании пространства до обнаружения объекта.

1. Способ приведения в действие инициатора газодинамического импульсного устройства, включающий обнаружение объекта с помощью датчика, реагирующего на сближение с внешними телами, путем зондирования пространства серией световых импульсов с последующей регистрацией отраженных импульсов и формирование сигнала задействования инициатора при регистрации всех отраженных импульсов текущей серии, конечный из которых регистрируют в предварительно заданном временном интервале, определяющем дистанцию до объекта, отличающийся тем, что зондирующие световые импульсы излучают, по крайней мере, одной парой разнонаправленных излучателей, а отраженные сигналы регистрируют соответствующим каждому излучателю фотоприемником, при этом каждый последующий зондирующий импульс серии формируют после регистрации отраженного предыдущего, формирование сигнала задействования инициатора производят только при регистрации отраженных сигналов текущей серии одного из пары излучателей, причем длительность временного интервала, характеризующую погрешность определения дистанции до объекта, задают с учетом длительности переднего фронта светового импульса.

2. Способ по п. 1, отличающийся тем, что после регистрации отраженного сигнала первого из зондирующих импульсов текущей серии частоту следования импульсов увеличивают на порядок.

3. Способ по п. 1, отличающийся тем, что в случае отсутствия одного отраженного импульса из текущей серии зондирующие импульсы прекращают и начинают серию вновь.



 

Похожие патенты:

Лазерный дальномер содержит импульсный полупроводниковый лазер, оптическую систему, генератор тактовых импульсов, счетчик импульсов, устройство с индикатором, ключевую схему, фотоприемник, линию задержки, схему совпадения.

Изобретение относится к оптическим устройствам для определения расстояний до объекта. Устройство включает источник излучения модулированного бинарного оптического сигнала, генератор создания модуляции в виде бинарной последовательности максимальной длины, генератор тактового сигнала, светочувствительный элемент детектирования отраженного от объекта сигнала, аналогово-цифровой преобразователь, модуль вычисления корреляции излученного и отраженного сигналов, модуль порогового обнаружения сигнала, модуль вычисления расстояния до определяемого объекта по временной задержке отраженного сигнала.

Изобретение относится к области измерительной техники и может быть использовано для определения малых высот полета летательного аппарата. Достигаемый технический результат - расширение диапазона измеряемых высот летательного аппарата.

Изобретение относится к измерительной технике и может быть использовано в легкой атлетике преимущественно для измерения прыжков в длину и тройных прыжков. Устройство для измерения дальности горизонтальных прыжков в легкой атлетике состоит из двух лазерных приборов, один из которых установлен на каретке с отражателем, передвигающейся по станине вдоль прыжковой ямы, а другой является дальномером, находящимся в районе планки для отталкивания и направляющим лазерный луч в отражающую пластинку, расположенную на каретке.

Изобретение относится к способу и устройству определения наклонной дальности до цели. Сущность изобретения состоит в том, что при посылке лазерного излучения в направлении цели верхний край поля излучения передающего канала, включающего передающую оптическую систему и излучатель, совмещают с направлением на цель, в приемном канале осуществляют регистрацию, усиление и оптимальную фильтрацию сигнала с измерением момента максимума отфильтрованного сигнала.

Изобретение относится к лазерной дальнометрии. Лазерный дальномер содержит приемное устройство и передающее устройство, включающее объектив излучателя и лазерный излучатель, эквивалентное тело свечения которого габаритами А×В расположено в фокальной плоскости объектива излучателя.

Изобретение относится к лазерной технике к аппаратуре лазерной дальнометрии. Лазерный дальномер содержит приемное устройство и передающее устройство, включающее объектив излучателя и лазерный излучатель, эквивалентное тело свечения которого габаритами А×В расположено в фокальной плоскости объектива излучателя.

Дальномер имеет частично совмещенные визирный, излучающий, приемный и проекционный каналы. Объективы всех каналов выполнены двухкомпонентными, первый компонент объектива визирного канала входит в состав объектива приемного и излучающего каналов.

Изобретение относится к области вооружений и может быть использовано во взрывателях различных боеприпасов, для определения расстояния между телами. .

Изобретение относится к области вооружений и может быть использовано во взрывателях различных боеприпасов, для определения расстояния до цели. .

Изобретение относится к области формирования потока видеоданных вращающимся секторным фотоприемником. Способ основан на формировании сигналов от фоточувствительных элементов, установленных по площади вращающегося сенсора, их последующей организации в ядра пространственного дифференцирования, выходные сигналы которых подвергаются аналого-цифровому преобразованию и их дальнейшей цифровой обработке.

Лазерный локатор содержит систему автоматического слежения и управления согласованием волновых фронтов принимаемого и гетеродинного лазерных излучений в плоскости фоточувствительной площадки фотоприемного блока лазерного локатора.

Изобретение относится к лазерно-акустической системе обнаружения подводных объектов. Указанная система содержит расположенный над поверхностью водоема источник акустических сигналов в виде лазера, гидрофон и установленный над водной поверхностью вычислительный блок, соединенный с выходом приемного гидрофона.

Лазерный когерентный локатор использует излучение одночастотного CO2-лазера в режиме гетеродинного приема отраженных излучений от лоцируемого объекта. В локаторе используется фотоприемное устройство с четырехквадрантным фоточувствительным слоем.

Изобретение относится к способу и устройству для определения присутствия в туалетной комнате объекта, подлежащего уборке. Вдоль пола туалетной комнаты подается сканирующий пучок.

Лазерный когерентный локатор целеуказания содержит одночастотный СО2-лазер, передающий телескоп, приемный объектив, фотоприемное устройство, работающее в гомодинном режиме фотосмешения.

Изобретение относится к измерительной технике определения высоты и вертикальной скорости летательного аппарата. Устройство обеспечивает возможность работы в двух режимах.

Изобретение относится к способу определения высоты летательного аппарата. При реализации способа осуществляется N-кратное зондирование подстилающей поверхности импульсами лазерного излучения и его некогерентное накопление принятого отражённого от объекта сигнала.

Изобретение относится к лазерной локации и может быть использовано в локационных наземных стационарных и мобильных комплексах лазерной локации для обнаружения и распознавания оптических и оптоэлектронных приборов.

Изобретение относится к области лазерной локации и может быть использовано в стационарных наземных лазерных локационных системах наблюдения и контроля окружающего пространства для обнаружения оптических и оптико-электронных приборов.

Способ инициирования светочувствительного взрывчатого вещества световым импульсом лазерного излучения может использоваться в области физики взрыва, методов и средств неконтактного подрыва промышленных взрывчатых веществ (ВВ).
Наверх