Способ определения и восстановления положения горизонтальной оси линейного инженерного объекта

Изобретение относится к области геодезического контроля и может быть использовано для определения и восстановления положения горизонтальной оси любого сложного инженерного линейного объекта. В заявленном способе определения и восстановления положения горизонтальной оси линейного инженерного объекта по реперам планово-высотного обоснования производят геодезические измерения, в результате чего определяют вышеупомянутую горизонтальную ось и каждый раз, а после ее утраты, восстанавливают от этих же реперов. В данном способе на одном из реперов планово-высотного обоснования устанавливают наземный лазерный сканер (далее - НЛС), создают дополнительную местную сеть планово-высотного обоснования, в которой в качестве реперов используют твердые элементы конструкций линейного инженерного объекта, выполняют сканирование всех конструкций линейного инженерного объекта при помощи НЛС с линейной дискретностью шага сканирования в пределах от 2 до 10 мм и средней квадратической погрешностью 2 мм, в результате чего определяют координаты X, Y, Z точек отражения лазерного луча от поверхности всех конструкций линейного инженерного объекта, передают результаты сканирования (скан) в ПЭВМ, с помощью компьютерной программы регистрируют в ней скан и получают цифровую точечную метрическую трехмерную (3D) модель поверхности всех конструкций линейного инженерного объекта. Далее производят обработку данных результатов лазерного сканирования, определяют параметры фильтрации для удаления из облака точек лазерных отражений не подлежащих измерению посторонних объектов, производят их фильтрацию, выполняют привязку скана к заданной системе координат. В этой же программе виртуально моделируют вышеупомянутую горизонтальную ось, автоматически аппроксимируя векторный объект «горизонтальная ось» в данные НЛС и находя точки его соприкосновения с полученными данными НЛС, определяют трехмерные координаты X, Y, Z полученной виртуальной горизонтальной оси, принадлежащей линейному инженерному объекту. Технический результат - повышение точности определения и восстановления положения горизонтальной оси линейного инженерного объекта с применением наземного лазерного сканера. 3 ил.

 

Данный способ относится к области геодезического контроля в строительной отрасли.

Известен способ определения координат горизонтальной оси линейного инженерного объекта с помощью геодезических приборов СНиП 3.01.03-84 «Геодезические работы в строительстве», утвержден постановлением Минстроя РФ от 5 августа 1996 г. №18-60], взятый в качестве прототипа.

Сущность данного способа состоит в том, что на контролируемом участке линейного инженерного объекта проводят геодезические измерения, последовательно вынося проектную ось в натуру от исходных реперов с применением геодезических средств измерений.

Недостатком этого способа является невозможность повторения измерений, так как точки измерений не закрепляются, поэтому невозможно точно произвести повторные геодезические измерения на контролируемом участке. Кроме того, данный способ предполагает наличие человеческого фактора в процессе производства работ, что ведет к увеличению трудозатрат и снижению достоверности, а значит - точности измерений.

Решаемая техническая задача заключается в повышении эффективности и достоверности работ за счет повышения точности определения и восстановления координат горизонтальной оси линейного инженерного объекта с применением наземного лазерного сканера.

Поставленная задача достигается тем, что в способе определения и восстановления положения горизонтальной оси линейного инженерного объекта, при котором по реперам планово-высотного обоснования производят геодезические измерения, в результате чего определяют вышеупомянутую горизонтальную ось и каждый раз, после ее утраты, восстанавливают от этих же реперов, согласно изобретению на одном из реперов планово-высотного обоснования устанавливают наземный лазерный сканер (НЛС), создают дополнительную местную сеть планово-высотного обоснования, в которой в качестве реперов используют твердые (без изменения геометрической формы) элементы конструкций линейного инженерного объекта, выполняют сканирование всех конструкций линейного инженерного объекта при помощи наземного лазерного сканера (НЛС) с линейной дискретностью шага сканирования в пределах от 2 до 10 мм и средней квадратической погрешностью 2 мм, в результате чего определяют координаты X, Y, Z точек отражения лазерного луча от поверхности всех конструкций линейного инженерного объекта, передают результаты сканирования (скан) в ПЭВМ, с помощью компьютерной программы регистрируют в ней скан и получают цифровую точечную метрическую трехмерную (3D) модель поверхности всех конструкций линейного инженерного объекта. Далее производят обработку данных результатов лазерного сканирования, определяют параметры фильтрации для удаления из облака точек лазерных отражений не подлежащих измерению посторонних объектов, производят их фильтрацию в автоматическом режиме, выполняют привязку скана к заданной системе координат. В этой же программе виртуально моделируют вышеупомянутую горизонтальную ось, автоматически аппроксимируя векторный объект «горизонтальная ось» в данные НЛС и находя точки его соприкосновения с полученными данными НЛС, определяют трехмерные координаты X, Y, Z полученной виртуальной горизонтальной оси, принадлежащей линейному инженерному объекту. Каждый раз, в случае утраты горизонтальной оси, восстанавливают ее из предыдущей модели путем вторичного сканирования всех конструкций линейного инженерного объекта и наложения на предыдущую цифровую точечную метрическую трехмерную (3D) модель поверхности всех конструкций линейного инженерного объекта, используя в качестве реперов те же твердые элементы конструкций линейного инженерного объекта.

Работа предлагаемого способа представлена на примере производства геодезических работ при возведении арочного Байтового моста через р. Обь (г. Новосибирск). Способ поясняется чертежами. На Фиг. 1 представлена схема контролируемого участка линейного инженерного объекта и закрепления в качестве реперов твердых (без изменения геометрической формы) элементов конструкций линейного инженерного объекта. На Фиг. 2 представлена общая схема создания фактической цифровой точечной метрической трехмерной (3D) модели контролируемого участка линейного инженерного объекта. На Фиг. 3 представлена схема определения и восстановления горизонтальной оси линейного инженерного объекта.

Предлагаемый способ осуществляется следующим образом. На контролируемом участке линейного инженерного объекта устанавливают наземный лазерный сканер (НЛС) на одном из реперов планово-высотного обоснования, создают дополнительную местную сеть планово-высотного обоснования, в которой в качестве реперов используют твердые (без изменения геометрической формы) элементы конструкций линейного инженерного объекта (Фиг. 1), автоматически определяют координаты X, Y, Z точек отражения лазерного луча от поверхности всех конструкций линейного инженерного объекта собственной программой обработки данных, принадлежащей данному оборудованию, и в соответствии с эксплуатационной документацией на прибор (ЭД). Выполняют измерение расстояний при помощи встроенного лазерного дальномера, при этом для каждого измерения фиксируют вертикальные и горизонтальные углы, шаг сканирования (расстояние между смежными точками) должен быть в пределах от 2 до 10 мм, средняя квадратическая погрешность должна составлять 2 мм. Результатом работ является «облако точек» лазерных отражений или сканы поверхности всех конструкций линейного инженерного объекта. Далее передают результаты сканирования (сканы) в ПЭВМ, с помощью компьютерной программы регистрируют в ней сканы и получают фактическую цифровую точечную метрическую трехмерную (3D) модель поверхности всех конструкций линейного инженерного объекта. Производят обработку данных результатов наземного лазерного сканирования с помощью программного обеспечения, позволяющего выполнить привязку сканов к заданной системе координат. Проводят фильтрацию сканов для удаления измерений, полученных при отражении от посторонних объектов (Фиг. 2). В этой же программе виртуально моделируют вышеупомянутую горизонтальную ось, автоматически аппроксимируя векторный объект «горизонтальная ось» в данные НЛС и находя точки его соприкосновения с полученными данными НЛС, определяют трехмерные координаты X, Y, Z полученной виртуальной горизонтальной оси, принадлежащей линейному инженерному объекту. Каждый раз, в случае утраты горизонтальной оси, восстанавливают ее из предыдущей модели путем вторичного сканирования всех конструкций линейного инженерного объекта и наложения на предыдущую цифровую точечную метрическую трехмерную (3D) модель поверхности всех конструкций линейного инженерного объекта, используя в качестве реперов те же твердые элементы конструкций линейного инженерного объекта (Фиг. 3).

Геодезические измерения, выполненные методом наземного лазерного сканирования, позволяют определять положение горизонтальной строительной оси любых сложных конструкций, используя в качестве реперов любые твердые элементы конструкций линейного инженерного объекта.

Технический результат - предлагаемый инновационный способ, основанный на бесконтактном методе наземного лазерного сканирования, позволяет повысить в целом эффективность геодезических работ за счет повышения точности определения и восстановления положения горизонтальной оси любой сложности линейного инженерного объекта, а также повысить безопасность проводимых дистанционным методом измерительных работ.

Способ определения и восстановления положения горизонтальной оси линейного инженерного объекта, при котором по реперам планово-высотного обоснования производят геодезические измерения, в результате чего определяют вышеупомянутую горизонтальную ось и каждый раз, после ее утраты, восстанавливают от этих же реперов, отличающийся тем, что на одном из реперов планово-высотного обоснования устанавливают наземный лазерный сканер (НЛС), создают дополнительную местную сеть планово-высотного обоснования, в которой в качестве реперов используют твердые (без изменения геометрической формы) элементы конструкций линейного инженерного объекта, выполняют сканирование всех конструкций линейного инженерного объекта при помощи наземного лазерного сканера с линейной дискретностью шага сканирования в пределах от 2 до 10 мм и средней квадратической погрешностью 2 мм, в результате чего определяют координаты X, Y, Z точек отражения лазерного луча от поверхности всех конструкций линейного инженерного объекта, передают результаты сканирования (сканы) в ПЭВМ, с помощью компьютерной программы регистрируют в ней сканы и получают цифровую точечную метрическую трехмерную (3D) модель поверхности всех конструкций линейного инженерного объекта, производят обработку данных результатов лазерного сканирования, определяют параметры фильтрации для удаления из облака точек лазерных отражений не подлежащих измерению посторонних объектов, производят их фильтрацию в автоматическом режиме, выполняют привязку скана к заданной системе координат, в этой же программе виртуально моделируют вышеупомянутую горизонтальную ось, автоматически аппроксимируя векторный объект «горизонтальная ось» в данные НЛС и находя точки его соприкосновения с полученными данными НЛС, определяют трехмерные координаты X, Y, Z полученной виртуальной горизонтальной оси, принадлежащей линейному инженерному объекту, и каждый раз при утрате восстанавливают ее из предыдущей модели путем вторичного сканирования всех конструкций линейного объекта и наложения на предыдущую цифровую точечную метрическую трехмерную (3D) модель поверхности всех конструкций линейного инженерного объекта, используя в качестве реперов те же твердые элементы конструкций линейного инженерного объекта.



 

Похожие патенты:

Изобретение относится к области судостроения и касается, в частности, монтажа блоков остова корабля в судовом плавучем доке. Предложена система управления степенью проведения монтажа в судовом плавучем доке, которая включает в себя: узел наблюдения, включающий в себя датчик осадки, расположенный в доке и измеряющий степень изгибания днища дока, и узел фотографирования, расположенный снаружи дока и измеряющий состояние боковых стенок дока; узел измерения, который размещается в доке и измеряет состояние блоков остова корабля, смонтированных в доке, в реальном времени; узел управления степенью монтажа, который размещается в доке и управляет степенью проведения монтажа в доке, которая изменяется согласно воздействию блоков остова корабля, смонтированных в доке; и контроллер, который анализирует текущую ситуацию дока и текущую ситуацию степени монтажа на основе информации, измеренной посредством узла наблюдения и узла измерения, и управляет узлом управления степенью монтажа, чтобы управлять степенью проведения монтажа в доке согласно результату анализа.

Изобретение относиться к устройствам контроля дальности действия и чувствительности лазерных дальномеров без полевых испытаний и оценки предельных отклонений этих характеристик.

Изобретение относится к области геодезического контроля и может быть использовано для определения координат контрольной точки любых сложных конструкций, используя в качестве геодезической марки любой участок, принадлежащий этим конструкциям.

Изобретение относится к методике измерения расстояния до предмета с использованием стереоскопических изображений. Стереоскопическая камера включает в себя две камеры и блок вычисления, который вычисляет расстояние до предмета на основе изображений, полученных двумя камерами.

Изобретение относится к аппаратуре лазерного целеуказания и дальнометрии. Лазерный целеуказатель-дальномер содержит источник первичного питания, лазерный излучатель с лампой накачки, блок управления, блок питания лазерного излучателя, включающий источник заряда емкостного накопителя энергии и источник дежурной дуги для лампы накачки, которые содержат схемы управления, и обратноходовые импульсные преобразователи напряжения, включающие силовые ключи с датчиками тока индуктора, контроллеры преобразователей напряжения с узлами управления амплитудой тока силовых ключей, силовые трансформаторы и высоковольтные выпрямители.

Изобретение относится к военной технике, а именно к аппаратуре лазерного целеуказания и дальнометрии. Лазерный целеуказатель-дальномер содержит приемопередатчик с выходным зрачком излучающего канала, разъемом питания внешних абонентов, блоком накачки излучающего канала и элементом регулировки энергии накачки, датчиком стартового сигнала, устройством фотоприемным с фотодиодом и формирователем стопового сигнала в виде светодиода, блоком управления с измерителем временных интервалов, формирователем контрольного времени задержки, импульсным генератором питания формирователя стопового сигнала, строб-генератором, узлом опорной частоты, тестер энергии лазерного излучения, включающий фотоприемный блок с входным объективом, оптически сопрягаемым с выходным зрачком излучающего канала, и пульт управления и индикации, тестер частоты, включающий тактовый генератор, блок частотомера с индикаторами соответствия или несоответствия частоты повторения или кодовой последовательности импульсов лазерного излучения нормированным значениям с фотоприемником, оптически сопрягаемым с выходным зрачком излучающего канала.

Изобретение относится к области определения взаимного положения объектов, один из которых служит источником электромагнитного излучения в оптическом диапазоне, а второй - ее измерителем, и может использоваться для создания оптических дальномеров, пеленгаторов и другой оптической аппаратуры аналогичного назначения.

Изобретение относится к области геодезического контроля в дорожно-строительной отрасли. Техническим результатом изобретения является определение достоверных и точных значений геометрических параметров поверхности покрытия автомобильной дороги с помощью наземного лазерного сканера.

Изобретение относится к рельсовым транспортным средствам. Способ функционирования рельсового транспортного средства, при котором на участке пути установлена точка движения по инерции, при достижении которой отключают тягу транспортного средства и оно движется по инерции до конца участка пути.

Изобретение относится к области лазерного целеуказания и дальнометрии и касается лазерного целеуказателя-дальномера. Лазерный целеуказатель-дальномер включает в себя приемопередатчик, систему наведения с измерителями горизонтального угла и угла места, треногу, источник питания, блок синхронизации со встроенной спутниковой навигационной системой и электронным измерителем барометрического давления, устройство для ориентирования на местности в виде лазерного гирокомпаса с опорным элементом для установки и фиксации на поворотной платформе системы наведения, оптический визир, а также радиостанцию для взаимодействия с внешними абонентами.

Изобретение относится к информационно измерительным комплексам и системам управления боевыми летательными аппаратами (ЛА). Технический результат - расширение функциональных возможностей прицельных систем путем синтеза автоматической процедуры прицеливания по подвижной наземной цели для обеспечения эффективного применения неуправляемых авиационных средств поражения (АСП). Для этого в режиме оптимальной привязки к цели по измерениям обзорно-прицельной и инерциально-доплеровской систем определяют относительные координаты и параметры ее движения в осях географического сопровождающего трехгранника (ГСТ) ONHE. По ее окончании оптимальный фильтр переводят в режим прогноза параметров цели. Параллельно с процедурой привязки и прогноза рассчитывают компоненты скорости ветра и воздушной скорости объекта и цели в проекциях на оси связанной системы координат. По ним определяют угловые поправки на стрельбу и потребные для прицельной сопроводительной стрельбы углы ориентации объекта, используя которые формируют входные сигналы оптимального фильтра-идентификатора, оценивающего необходимые для управления текущие значения углов ориентации объекта относительно постоянно изменяющегося направления прицельной стрельбы и ошибки расчета угловой скорости вращения объекта. Оценки последних используют для коррекции составляющих угловой скорости объекта, а оценки углов отклонения объекта относительно направления прицельной стрельбы - для формирования сигналов управления объектом. За летчиком остается выполнение функции контроля качества управления объектом и нажатие боевой кнопки (БК). 4 ил.
Наверх