Способ адаптивного автоматического управления газовыми и газоконденсатными скважинами

Изобретение относится к области добычи газа и может быть применено для управления режимами работы газодобывающей скважины. Управление режимами работы газодобывающей скважины формируют на основе адаптивного импульсного регулятора, воздействующего на временной квантователь, в котором происходит фиксация величины управляющего сигнала uимi(t) в течение заданного периода (кванта) времени с последующим воздействием на исполнительный механизм, управляющим регулирующим клапаном, меняющим количество газа, поступающего в коллектор, следя за квантованным сигналом uкв. При этом адаптивный регулятор имеет закон регулирования

,

где kИ, kД - коэффициенты соответственно интегральной и пропорциональной составляющих ПИД закона регулирования, kП(t) - общий коэффициент передачи, который изменяется в соответствии с уравнениями:

kП(t)=kн+γy(t),

Tay′(t)+y(t)=uПИДа,кв(t),

где время фильтрации Та рассчитывается в условных единицах, а kн>0 и γ>0 - настраиваемые параметры адаптивного регулятора. Технический результат заключается в повышении ресурса технических средств элементов автоматики. 11 ил.

 

Изобретение относится к области добычи газа, а именно к способам управления режимами работы газодобывающей скважины.

Известен способ управления режимами работы газовой скважины, в котором добычу газа осуществляют с ограничением отбора газа, поступающего из межтрубного пространства, путем дросселирования с поддержанием постоянного перепада давления с помощью автоматического управляющего комплекса, в котором анализируют полученные данные и подают команду на автоматический регулирующий клапан расхода газа, оптимизируя суммарный дебет скважины в соответствии с определенной зависимостью с учетом фильтрационных сопротивлений скважины (см., например, патент RU №345266, A1 01.01.1972).

Недостатком известного способа эксплуатации газовых скважин является то, что он не обеспечивает оптимальный уровень управления режимами работы и имеет невысокий ресурс технических средств элементов автоматики.

В качестве прототипа выбран способ для управления потоками в скважине, описанный в патенте RU №2513942 С2, 27.01.2014.

В известном способе для управления режимами работы газовой скважины с ограничением отбора газа, поступающего из межтрубного пространства, путем дросселирования с поддержанием постоянного перепада давления с помощью автоматического управляющего комплекса, анализируют полученные данные и подают команды на автоматический регулирующий клапан расхода газа, оптимизируя суммарный дебет скважины в соответствии с определенной зависимостью и с учетом фильтрационных сопротивлений скважины.

Достоинством прототипа является более высокая точность поддержания постоянства выходных потоков.

Недостатком прототипа, так же, как и аналога, является невысокий ресурс технических средств элементов автоматики. Кроме того, в процессе эксплуатации газовой скважины меняются физические характеристики добываемого из скважины газа, меняется давление газа и расход (дебет) скважины. Это требует перенастройки системы управления добычей газа. В аналоге и прототипе это не предусмотрено.

Задачей изобретения является повышение ресурса технических средств элементов автоматики.

Техническим результатом изобретения является оптимизация адаптивной системы автоматического управления газодобывающей скважины с поддержанием требуемой высокой точности давления выходного газа в условиях изменяющегося расхода газа и изменяющихся параметров самой газодобывающей скважины и обеспечение высокого ресурса технических средств элементов автоматики.

Технический результат достигается за счет того, что в способе управления режимами работы газовой скважины с ограничением отбора газа, поступающего из межтрубного пространства, путем дросселирования с поддержанием постоянства перепада давления с помощью автоматического управляющего комплекса, в котором анализируют полученные данные и подают команды на автоматический регулирующий клапан расхода газа, оптимизируя суммарный дебет скважины в соответствии с определенной зависимостью с учетом фильтрационных сопротивлений скважины, согласно изобретению управление режимами работы газодобывающей скважины формируют на основе адаптивного импульсного регулятора, воздействующего на временной квантователь, в котором происходит фиксация величины управляющего сигнала uимi(t) в течение заданного периода (кванта) времени с последующим воздействием на исполнительный механизм, управляющий регулирующим клапаном, меняющим количество газа, поступающего в коллектор, следя за квантованным сигналом uкв, при этом адаптивный регулятор имеет закон регулирования

,

где kИ, kД - коэффициенты соответственно интегральной и пропорциональной составляющих ПИД закона регулирования, kП(t) - общий коэффициент передачи, который изменяется в соответствии с уравнениями:

kП(t)=kн+γy(t),

Tay′(t)+y(t)=uПИДа,кв(t),

где время фильтрации Та рассчитывается в условных единицах, а kн>0 и γ>0 - настраиваемые параметры адаптивного регулятора.

Управление режимами работы газодобывающей скважины на основе адаптивного импульсного регулятора, воздействующего на временной квантователь, в котором происходит фиксация величины управляющего сигнала uимi(t) в течение заданного периода (кванта) времени с последующим воздействием на исполнительный механизм, управляющим регулирующим клапаном, меняющим количество газа, поступающего в коллектор, следя за квантованным сигналом икв, при котором адаптивный регулятор имеет закон регулирования ,

где kИ, kД - коэффициенты соответственно интегральной и пропорциональной составляющих ПИД закона регулирования, kП(t) - общий коэффициент передачи, который изменяется в соответствии с уравнениями:

kП(t)=kн+γy(t),

Tay′(t)+y(t)= uПИДа,кв(t),

где время фильтрации Та рассчитывается в условных единицах, а kн>0 и γ>0 - настраиваемые параметры адаптивного регулятора, позволяет поддерживать требуемую высокую точность давления выходного газа в условиях изменяющегося расхода газа и изменяющихся параметров самой газодобывающей скважины и обеспечивает высокий ресурс технических средств элементов автоматики.

Изобретение иллюстрируется 11 фигурами.

На фиг. 1 изображена структурная схема газодобывающей скважины.

Фиг. 2 демонстрирует принципиальную структурную схему управляющих звеньев.

На фиг. 3 представлено: (график а) изменение uим - сигнала управления исполнительным механизмом регулирующего клапана при воздействии обычного адаптивного ПИД-регулятора; переходной процесс изменения давления Рк (график b) с дискретизацией 0,01 с в реальном времени t, с.

На фиг. 4 имеется график, аналогичный фиг. 3, переходного процесса при использовании обычного адаптивного ПИД-регулятора с дискретизацией 5 с в реальном времени t, с.

На фиг. 5 виден переходной процесс при измененных параметрах: uим - сигнала управления исполнительным механизмом (график а); обычного адаптивного ПИД-регулятора и переходной процесс изменения давления Рк (график b) с дискретизацией 0,01 с в реальном времени t, с.

На фиг. 6 имеется переходной процесс изменения давления рЗПА до заданного значения давления ркз=10 (график b) при начальном uим=0 график (а). Настройки ПИД-регулятора те же, что и на фиг. 5. Временной квантователь работал с дискретизацией 5 с.

На фиг. 7 - переходные процессы в реальном времени: (а) для uим при отработке давления (b) рЗПА с измененными параметрами обычного ПИД-регулятора.

На фиг. 8 имеется структурная схема устройства адаптивного управления с ПИД-регулятором, с предлагаемым в данной заявке законом управления.

На фиг. 9 дается представление о переходном процессе изменения давления в коллекторе скважины до заданного значения в системе, в которой обычный адаптивный ПИД-регулятор заменен предлагаемым адаптивным регулятором: а) uим - сигнал управления исполнительным механизмом регулирующего клапана; b) Рпд - призабойное давление uим - сигнал управления исполнительным механизмом регулирующего клапана; с) общий коэффициент передачи kп. Процесс показан в реальном времени t, с.

На фиг. 10 показан переходной процесс в реальном времени t, с, аналогичный фиг. 9, при отработке давления рк(b) в коллекторе с другими значениями uим(а), kп(с).

На фиг. 11 представлен переходные процессы изменения давления рк(b) в коллекторе аналогичный фиг. 9 и 10 при измененных начальных значениях uим(а), kп(с).

Оптимальная система адаптивного автоматического управления газовых и газоконденсатных скважин устроена следующим образом. Поток газа 1 (фиг. 1) из скважины проходит через регулирующий клапан 2, который связан с исполнительным механизмом 3. Последний находится под воздействием реле времени с задержкой включения (РВЗВ) 4 адаптивного регулятора 5 и сглаживающего фильтра 6. В свою очередь, сглаживающий фильтр 6 сочленен с блоком сравнения 7, реагирующего на сигнал с датчика давления 8, находящегося в потоке газа в (коллекторе) 9 после регулирующего клапана и задатчика давления 10. После регулирующего клапана 2 газ поступает в блок переключающей аппаратуры 11. Регулирующий клапан 2 может изменять проходное сечение и, тем самым, изменять количество газа, проходящего по коллектору.

Адаптивный регулятор 5, в свою очередь, содержит блок адаптации 12 (фиг. 2), блок вычисления ПИД закона управления 13 и фильтр 14. Первым входом блока адаптации 12 является сигнал адаптивного регулятора 5. Выход блока адаптации 12 соединен с входом блока вычисления ПИД - закона управления 13. Выход блока вычисления ПИД - закона управления 13 является выходом адаптивного регулятора 5 и соединен с входом фильтра 14. Выход фильтра 14 подключен ко второму входу блока адаптации 12. Переходные процессы моделировались при различных параметрах обычной системы регулирования с различными параметрами системы управления и при изменении времени дискретизацией дискредитации (фиг. 4, 5, 6, 7).

Управление системой с адаптивным регулятором с законом регулирования

осуществляется на основе структурной схемы, согласно фиг. 8. Общий коэффициент передачи kП(t) изменяется в соответствии с уравнениями:

kП(t)=kн+γy(t),

Tay′(t)+y(t)=uПИДа,кв(t),

где Ta>50 условных единиц,

kн>0 и γ>0 - настраиваемые параметры адаптивного регулятора, a y(t) - оценка положения исполнительного механизма.

Фигуры 9, 10, 11 дают наглядное представление о том, что переходные процессы проходят более гладко, отсутствуют колебания, а число включений становится на несколько порядков меньше при использовании предлагаемого оптимального адаптивного ПИД-регулятора.

В описании изобретения приняты следующие обозначения:

Рпд - призабойное давление;

Ρс - давление газа перед регулирующим клапаном;

Рк - давление газа после регулирующего клапана;

Ρкз - задание на давление газа;

Pзпа - давление газа во входном коллекторе ЗПА;

qc - расход газа из скважины

qк - расход газа после регулирующего клапана;

uим - сигнал управления исполнительным механизмом регулирующего клапана.

Способ адаптивного автоматического управления газовых и газоконденсатных скважин действует следующим образом. Задатчик давления 10 (фиг. 1, 2) вырабатывает требуемое значение давления газа в коллекторе. В блоке сравнения 7 происходит сравнение заданного значения давления с текущим значением, генерируемым в датчике 8, давления в коллекторе, которое поступает с датчика давления 8, измеряющего давление в коллекторе 9. Сигнал рассогласования (ошибки), полученный в блоке сравнения 7, поступает на сглаживающий фильтр 6, в котором сглаживаются шумы измерения датчика давления 8. Отфильтрованный сигнал рассогласования поступает на вход адаптивного регулятора 5, который вырабатывает сигнал управления. Сигнал управления с выхода адаптивного регулятора 5 поступает на временной квантователь 4, в котором происходит фиксация величины управляющего сигнала в течение заданного периода (кванта) времени. Квантованный управляющий сигнал с выхода временного квантователя 4 поступает на исполнительный механизм 3, который, воздействуя на регулирующий клапан 2, меняет количество газа поступающего в коллектор 9.

Оценка эффективности оптимальной системы адаптивного автоматического управления газовых и газоконденсатных скважин проводилась на основе сопоставления с известным автоматическим управляющим комплексом прототипа. Так, на фиг. 3 представлен переходной процесс при отработке давления рк в коллекторе скважины от значения рЗПА, соответствующего uим=0, до заданного значения давления ркз=20. В качестве регулятора использовался ПИД-регулятор с передаточной функцией вида

w р е г ( р ) = k П ( 1 + k И p + k Д р ) ,

где kП=0,019, а kИ=0,1, kД=2.

Временной квантователь работал с дискретизацией 0.01 с. При этом число изменений uим, равнялось 110, интегральная ошибка - 3615, время установления давления - 78 с, коэффициент перерегулирование составил - 1,47.

Фиг. 4 показывает как изменится переходной процесс при отработке давления рк в коллекторе скважины от значения рЗПА при uим=0 до заданного значения давления ркз=20. В качестве регулятора использовался также ПИД-регулятор с настройками kП=0,016, а kИ=0,09, kД=2. Временной квантователь работал с дискретизацией 5 с. При этом число изменений uим равнялось 13, интегральная ошибка - 4463, время установления давления - 88 с, коэффициент перерегулирование - 1,27.

Из сравнения переходных процессов фиг. 3 и фиг. 4 видно, что введение в контур управления временного квантователя позволяет, существенно уменьшив число включений исполнительного органа, практически не ухудшить качественные показатели работы ПИД систем управления.

Моделируется работа системы управления с ПИД-регулятором с постоянными настройками при различных значениях технологических параметров.

На фиг. 5 - переходной процесс при отработке давления рк в коллекторе скважины от значения рЗПА при uим=0 до заданного значения давления ркз=30. Регулятором был ПИД-регулятор с настройками kП=0,018, а kИ=0,08, kД=2,4. Временной квантователь работал с дискретизацией 5 с.

На фиг. 6 - переходной процесс при отработке давления рк в коллекторе скважины от значения рЗПА при uим=0 до заданного значения давления ркз=10. Настройки ПИД-регулятора те же, что и на процессах фиг. 5, т.е. kП=0,018, а kИ=0,08, kД=2,4. Временной квантователь работал с дискретизацией 5 с. Из фиг. 6 следует, что при сохранении настроек регулятора в переходном процессе возникают колебания и качество системы управления становится хуже.

На фиг. 7 переходной процесс отработки давления рк в коллекторе скважины при ркз=10. В этом случае с целью обеспечения устойчивости в контуре управления настроечные параметры регулятора были взяты равными kП=0,005, а kИ=0,09, kД=2,2. Таким образом, для сохранения качества регулирования нужно менять общий коэффициент усиления в регуляторе.

Из графиков фиг. 3-7 можно сделать два вывода:

1) введение квантования по времени практически не ухудшило качественных показателей работы рассмотренной системы управления в сравнении с качественными показателями работы обычного ПИД-регулятора с высокой частотой изменения сигнала управления;

2) при уменьшении давления газа в коллекторе существенным образом меняются параметры технологического объекта управления, которые при постоянстве настроек регулятора приводят к потере устойчивости системы управления.

Из первого вывода следует целесообразность введения в состав системы управления временного квантователя, наличие которого из-за существенного уменьшения числа включений исполнительного механизма, позволит многократно увеличить его ресурс. Из второго вывода следует необходимость использования в контуре управления адаптивного регулятора, который мог бы в процессе эксплуатации технологического процесса оценивать изменяющиеся параметры и по результатам оценок оптимальным образом корректировать настройки регулятора с тем, чтобы во всех возможных режимах работы скважины гарантированно обеспечить устойчивое и качественное регулирование.

Адаптивное управление осуществлялось на основе модели фиг. 8, в которой обычный ПИД-регулятор заменен адаптивным регулятором с законом регулирования

общий коэффициент передачи kП(t), в котором изменяется в соответствии с уравнениями:

Tay′(t)+y(t)=uПИДа,кв(t),

где Та>50 условных единиц,

где kн>0 и γ>0 - настраиваемые параметры адаптивного регулятора, a y(t) - оценка положения исполнительного механизма.

На фиг. 8 изображена блок-схема адаптивного ПИД-регулятора, который входит в качестве регулятора в блок-схему фиг. 1.

Проверка использования блока адаптации проводилась на основе моделирование его работы при различных значениях технологических параметров.

На фиг. 9 изображен переходной процесс при отработке давления рк в коллекторе скважины от значения рЗПА при uим=0 до заданного значения давления ркз=10. Начальное значение kн=0,0024, конечное значение, найденное в режиме адаптации, kП(t)=kн+γuПИДа(t)=0,005125. На верхнем графике фиг. 9 изображен сигнал управления uим, на среднем - давления рк, на нижнем - изменение в переходном процессе общего коэффициента регулятора kП(t). Из графиков фиг. 9 следует, что процесс, который при настройках, соответствующих фиг. 6, был неустойчив, за счет адаптации стал не только устойчивым, но и достаточно качественным.

Время переходного процесса фиг. 9 составляет примерно 170 условных единиц, в то время как оптимально настроенный процесс фиг. 7 длился примерно 200 условных единиц.

На фиг. 10 - переходной процесс при отработке давления рк в коллекторе куста скважин от значения рЗПА при uим=0 до заданного значения давления ркз=20. Начальное значение kн=0,0024, конечное значение, найденное в режиме адаптации, kП(t)=kн+γua(t)=0,01115. На верхнем графике фиг. 10 - сигнал управления uим, на среднем - давление рк, на нижнем - изменение в переходном процессе общего коэффициента регулятора kП(t). Процессы адаптивного управления, имеющиеся на фиг. 10, в этом случае несколько уступают по быстродействию процессам фиг. 4, т.к. в случае фиг. 4 общий коэффициент усиления kП в начальный момент переходного процесса выбирался из расчета высокого быстродействия системы управления и равнялся 0,016, в то время как в случае адаптивного управления начальное значение kП(0)=0,0024, которое затем в процессе работы увеличилось примерно в 5 раз.

На фиг. 11 - переходной процесс при отработке давления рк в коллекторе куста скважин от значения рЗПА при uим=0 до заданного значения давления ркз=30. Начальное значение kн=0,0024, конечное значение, найденное в режиме адаптации, kП(t)=kн+γua(t)=0,0185. На верхнем графике фиг. 11 - сигнал управления uим, на среднем - давление рк, на нижнем - изменение в переходном процессе общего коэффициента регулятора kП(t). Процессы адаптивного управления, как и в предыдущем случае, по быстродействию несколько уступают аналогичным процессам фиг. 5 по тем же причинам, о которых говорилось для случая фиг. 10.

Таким образом, введение в состав системы управления газодобывающей скважиной адаптивного регулятора позволило обеспечить высокую эффективность работы этой системы на всех режимах стабилизации давления в коллекторе скважины. Имеет место оптимизация адаптивной системы автоматического управления газодобывающей скважины с поддержанием требуемой высокой точности давления выходного газа в условиях изменяющегося расхода газа и изменяющихся параметров самой газодобывающей скважины и обеспечение высокого ресурса технических средств элементов автоматики.

Способ управления режимами работы газовой скважины с ограничением отбора газа, поступающего из межтрубного пространства, путем дросселирования с поддержанием постоянства перепада давления с помощью автоматического управляющего комплекса, в котором анализируют полученные данные и подают команды на автоматический регулирующий клапан расхода газа, оптимизируя суммарный дебит скважины в соответствии с определенной зависимостью с учетом фильтрационных сопротивлений скважины, отличающийся тем, что управление режимами работы газодобывающей скважины формируют на основе адаптивного импульсного регулятора, воздействующего на временной квантователь, в котором происходит фиксация величины управляющего сигнала uимi(t) в течение заданного периода (кванта) времени с последующим воздействием на исполнительный механизм, управляющим регулирующим клапаном, меняющим количество газа, поступающего в коллектор, следя за квантованным сигналом uкв, при этом адаптивный регулятор имеет закон регулирования

где kИ, kД - коэффициенты соответственно интегральной и пропорциональной составляющих ПИД закона регулирования, kП(t) - общий коэффициент передачи, который изменяется в соответствии с уравнениями:
kП(t)=kн+γy(t),

где время фильтрации Та рассчитывается в условных единицах, а kн>0 и γ>0 - настраиваемые параметры адаптивного регулятора.



 

Похожие патенты:
Изобретение относится к нефтегазодобывающей промышленности, а именно к аварийному глушению фонтанирующих газовых скважин в условиях наличия многолетнемерзлых пород (ММП).

Изобретение относится к подземному скважинному оборудованию и может быть применено для перепуска газа из межтрубного пространства скважины в колонну насосно-компрессорных труб.

Группа изобретений относится к нефтедобыче и может быть применена для одновременно-раздельной добычи скважинного флюида из двух пластов одной скважиной. Установка по первому варианту содержит спускаемые в обсадную трубу на колонне лифтовых труб пакер с двумя якорными устройствами противоположно направленного действия, центробежный насос с приемным модулем и погружным электроприводом, соединенным силовым кабелем со станцией управления (СУ), герметически пропущенным через устьевую арматуру, регулировочный электроклапан (РЭК), включающий хвостовик, в котором размещены отсекатель потока флюида с запорным седлом, и датчики телемеханической системы (ТМС), и стыковочный узел, сообщающийся с заборщиком флюида из нижнего пласта и состоящий из телескопически сопрягаемых штуцера, установленного на пакере, и ниппеля, пристыкованного к хвостовику, присоединенному к торцу электропривода.

Изобретение относится к нефтедобывающей промышленности и может найти применение при разработке неоднородных терригенных или карбонатных продуктивных пластов скважинами с горизонтальным окончанием.

Группа изобретений относится к горному делу и может быть применена для регулирования притока в добычной трубопровод. Клапан или устройство управления потоком для управления на основе эффекта Бернулли потоком флюида от одного пространства или области к другой, в частности для управления потоком флюида, такого как нефть и/или газ, содержащего воду, из нефтяного или газового коллектора в добычной трубопровод скважины в нефтяном и/или газовом коллекторе, от впускного отверстия на стороне впуска к выпускному отверстию на стороне выпуска устройства.

Группа изобретений относится к горному делу и может быть применена для управления потоком флюида. Способ включает этапы, на которых: локально уменьшают приток в добычной трубопровод из областей местного перегрева с использованием устройств управления притоком, снабженных внутри своего корпуса подвижным затвором, выполненным с возможностью автономного регулирования потока флюида через устройства управления притоком на основе эффекта Бернулли; увеличивают приток флюида в указанный добычный трубопровод на отдалении от указанных областей местного перегрева с использованием устройств управления притоком с целью локального увеличения притока; и усиливают депрессию в указанной добычной трубе, содержащей инжектор, при помощи указанного инжектора для впрыскивания газообразной среды в месте расположения указанных устройств управления притоком или ниже их по потоку.

Группа изобретений относится в нефтегазодобывающей отрасли, в частности к регулированию потока флюидов в трубных колоннах в скважинах. Устройство содержит кожух с одним или несколькими сформированными в нем отверстиями; клапанный компонент, который может совмещаться и выводиться из совмещения с указанным одним или несколькими отверстиями в кожухе; и одну или несколько пробок, установленных в одном или нескольких отверстиях, причем в каждом отверстии установлена одна пробка, так что обеспечивается возможность спуска клапанного компонента в открытом положении по отношению к отверстиям.

Изобретение относится к нефтегазодобывающей промышленности, а именно к конструкциям многозабойных скважин с двумя горизонтальными стволами. Технический результат - повышение надежности конструкции для многостадийного разрыва пластов в горизонтальных стволах.

Группа изобретений относится к внутрискважинным системам регулирования расхода текучей среды двустороннего действия и может быть применена для регулирования притока пластовых текучих сред и выходного потока текучих сред нагнетания.

Изобретение относится к горному делу и может быть применено в скважинном эксплуатационном оборудовании. Оборудование включает эксплуатационную колонну и узел со скользящей муфтой.

Изобретение относится к области механизированной добычи нефти из малопродуктивных пластов. Способ осуществляется путем периодического открытия канала между полостью насосно-компрессорных труб и затрубным пространством. Насосно-компрессорные трубы оборудуют клапаном, расположенным над глубинным насосом выше динамического уровня жидкости, параллельно оси насосно-компрессорных труб, выполненным в форме цилиндрической клапанной коробки и запорного органа, изготовленного из материала, имеющего плотность меньше плотности откачиваемой нефти. Верхнюю часть упомянутой коробки гидравлически сообщают с насосно-компрессорными трубами, а нижнюю - с затрубным пространством. Технический результат заключается в обеспечении непрерывной эксплуатации малодебитной скважины. 2 ил.

Изобретение относится к разработке нефтяных месторождений, а именно к способам выравнивания профиля приемистости скважин, вскрывающих разнопроницаемые интервалы пласта. Технический результат заключаются в повышении эффективности способа выравнивания профиля приемистости скважин за счет увеличения изоляции высокопроницаемых интервалов и перераспределения закачки воды в низкопроницаемые интервалы. Поставленная задача решается тем, что предлагаемый способ выравнивания профиля приемистости скважин, включающий последовательную закачку оторочки СПС - сшитого полимерного состава на основе сополимеров акриламида и акриловой кислоты со сшивателем - солью трехвалентного хрома с добавлением КПАВ - катионоактивного поверхностно-активного вещества, отличается тем, что дополнительно закачивают оторочку раствора КПАВ после оторочки СПС, в который добавлен КПАВ. Дополнительно между оторочкой СПС, в который добавлен КПАВ, и оторочкой раствора КПАВ закачивают оторочку кислоты или оторочку растворителя и оторочку кислоты. 1 з.п. ф-лы, 3 ил., 2 табл.

Изобретение относится к скважинному гидравлическому насосу для обеспечения давления текучей среды во время скважинных работ. Технический результат - повышение гидравлической мощности скважинного гидравлического насоса. Насос содержит корпус, кулачковый вал. Кулачковый вал расположен с возможностью вращения в корпусе насоса и имеет продольную ось вращения. Кулачковый вал содержит собственно вал с кулачковым выступом. Радиально кулачковому валу расположен поршень. Он имеет корпус, расположенный в корпусе насоса. Корпус насоса имеет впускной клапан, расположенный во впускном отверстии, и выпускной клапан, расположенный в выпускном отверстии. Имеется пружина, расположенная в корпусе насоса для перемещения поршня относительно корпуса. Корпус поршня имеет возможность вращения вокруг оси вращения корпуса, параллельной продольной оси вращения кулачкового вала. 19 з.п. ф-лы, 8 ил.

Группа изобретений относится к системе регулирования сопротивления потоку, предназначенной для использования в подземной скважине. Причем указанная система может содержать средство, установленное с возможностью перемещения под действием потока многокомпонентного флюида. Причем при изменении соотношения целевого флюида к нежелательному флюиду в указанном многокомпонентном флюиде происходит изменение сопротивления потоку многокомпонентного флюида. Другая система может содержать средство, установленное с возможностью вращения под действием потока многокомпонентного флюида. Причем предусмотрен переключатель потока флюида, выполненный с возможностью отклонения указанного многокомпонентного флюида относительно по меньшей мере двух проточных линий. Также настоящее изобретение относится к способу регулирования сопротивления потоку в подземной скважине, который может предусматривать перемещение указанного средства под действием потока многокомпонентного флюида и изменение сопротивления потоку многокомпонентного флюида в ответ на изменение соотношения целевого флюида к нежелательному флюиду в указанном многокомпонентном флюиде. В системах регулирования сопротивления потоку могут быть использованы разбухающие материалы и элементы с аэродинамическим профилем. Технический результат заключается в повышении эффективности регулирования сопротивления потоку. 11 н. и 50 з.п. ф-лы, 27 ил.

Изобретение относится к нефтегазодобывающей промышленности и может быть использовано при глушении нефтедобывающих скважин перед проведением капитального ремонта, освоением, перфорацией. Технологическая жидкость для глушения скважин на основе спиртов, содержащая флотореагент оксаль Т-92, согласно изобретению дополнительно содержит полифторированный тригидрооктафторамиловый спирт-теломер при следующем соотношении ингредиентов, мас. %: полифторированный тригидрооктафторамиловый спирт-теломер 2-75 , флотореагент оксаль Т-92 25-98. Технический результат - расширение диапазона изменения плотности жидкости, сохранение фильтрационно-емкостных параметров продуктивных коллекторов за счет ингибирования гидратации глинистых минералов. 2 табл., 1 пр.

Изобретение относится к нефтегазодобывающей промышленности, а именно к разработке пластовых залежей нефти, осложненных вертикальными разломами, вытеснением рабочим агентом. Технический результат - повышение эффективности разработки за счет экономии рабочего агента и энергии для его закачки в нефтеносный участок пласта от использования жидкости и энергии близлежащих участков. По способу определяют гипсометрические отметки пласта. Размещают вертикальные и горизонтальные добывающие, нагнетательные скважины за исключением зон максимального падения гипсометрических отметок пласта в непосредственной близости от разломов. Вдоль них размещают вертикальные добывающие скважины. Осуществляют закачку вытесняющего агента в нагнетательные скважины и отбор продукции из добывающих скважин. Переводят вертикальные добывающие скважины в нагнетательные при снижении в них дебита ниже уровня рентабельности. Осуществляют бурение дополнительных горизонтальных стволов, направленных в сторону линии разлома. При этом определяют непроницаемые границы разломов в залежи, разбивающие пласт на участки с различным пластовым давлением. Перед переводом обводнившихся добывающих скважин под нагнетание рабочего агента для поддержания пластового давления дополнительные горизонтальные стволы бурят со вскрытием непроницаемой границы разломов из обводнившегося участка пласта с более высоким пластовым давлением в нефтеносный участок пласта выше уровня водонефтяного контакта. Осуществляют переток жидкости из одного участка пласта в другой участок с пониженным пластовым давлением по дополнительным горизонтальным стволам. Объем закачиваемого с поверхности вытесняющего агента через нагнетательные скважины в участок с пониженным давлением снижают. 1 з.п. ф-лы, 1 табл., 1 пр., 1 ил.

Изобретение относится к газодобывающей промышленности и может быть использовано в технике автоматического управления технологическими процессами и предназначено повысить надежность эксплуатации газодобывающих скважин. Предложен способ управления фонтанной арматурой скважины углеводородного сырья, расположенной на морской ледостойкой платформе и предназначенной для добычи пластового флюида и обнаружения пожара в устье скважин. Одновременно управляют работой нескольких скважин. Для привода внутрискважинного клапана-отсекателя, стволовой и боковой задвижек применяют гидравлическую жидкость, рабочее давление которой создают при помощи гидравлического насоса. Управление подачей гидравлической жидкости в приводы внутрискважинного клапана-отсекателя, боковой и стволовой задвижек осуществляют при помощи электромагнитных распределителей высокого давления, управляемых при помощи сигналов контроллера, которые получают после предварительного анализа сигналов датчиков контроля параметров работы станции, при этом обеспечивают возможность последующего открытия приводов клапанов только после снятия/квитирования команд аварийного закрытия на панели оператора модуля возгорания и аварийных ситуаций или на пульте оператора АСУ ТП. При помощи системы управления, подземного клапана-отсекателя, боковой и/или стволовой задвижек каждой скважины обеспечивают глушение всех скважин при отсутствии/исчезновении питающего напряжения станции управления. 2 н. и 9 з.п. ф-лы, 12 ил.

Изобретение относится к средствам для оптимизации газлифтных операций. Техническим результатом является повышение качества оптимизации газлифтных операций. Предложен способ для мониторинга, диагностики и оптимизации работы газлифтной системы, который включает в себя сбор данных измерений, представляющих состояние газлифтной системы, сохранение данных измерений, сравнение измеренных данных с рассчитанными данными скважинной модели для скважины и идентификацию условий газлифтной системы на основании несоответствий между данными измерений и рассчитанными данными. Кроме того способ дополнительно включает в себя обновление модели для отражения вероятных условий и выбранных корректировок вероятных условий, генерацию кривых производительности газлифтной системы с использованием обновленной модели и представление пользователю действий, рекомендованных для достижения стабильной производительности газлифтной системы с рабочей точкой газлифтной системы, по меньшей мере, на одной из множества кривых производительности газлифтной системы. 3 н. и 17 з.п. ф-лы, 9 ил.

Изобретение относится к оборудованию для добычи и увеличения производства неочищенной нефти и газа. Оборудование содержит: соединительный блок, соединенный с главным поршневым штоком, при этом главный поршневой шток выполняет возвратно-поступательные движения внутри главного цилиндра; поршневой блок, соединенный с соединительным блоком, при этом поршневой блок движется в соединении с главным поршневым штоком, чтобы добывать дополнительное количество добываемых объектов; цилиндровый блок создает давление для поднятия добываемых объектов на земную поверхность, когда поршневой блок выполняет возвратно-поступательные движения внутри поршневого блока; и блок снабжения, управляющий процессом транспортировки добываемых объектов, поднимая добываемые объекты на земную поверхность, когда поршневой блок движется вверх, и транспортируя добываемые объекты к хранилищу, когда поршневой блок движется вниз. Технический результат заключается в увеличении производства неочищенной нефти и газа. 6 з.п. ф-лы, 8 ил.

Изобретение относится к оборудованию для заканчивания нефтяных и газовых скважин, в частности для регулирования притока скважинной жидкости на отдельном участке ствола скважины. Устройство содержит корпус, состоящий из верхней и нижней частей, соединенных между собой резьбовым соединением, осевой вход в корпус и радиально расположенные выходы, вход во вторичный канал в верхней части корпуса, выполненный в виде проточки, в которой расположен пористый элемент, систему капиллярных каналов в осевом направлении, выполненных в стенках корпуса, подвижный элемент, цангу и сопло малого диаметра. В нижней части корпуса капиллярные каналы объединены в полость между подвижным элементом и нижней частью корпуса. Повышается надежность работы устройства за счет упрощения конструкции и уменьшения ее высоты. 1 з.п. ф-лы, 2 ил.
Наверх