Смесь для изготовления пенобетона

Изобретение относится к промышленности строительных материалов, а именно для изготовления пенобетона, также может использоваться для производства теплоизоляционных материалов непосредственно на строительной площадке. Сырьевая смесь для изготовления пенобетона включает, мас.%: портландцемент 63,65-65,93, пенообразователь 0,44-0,51, углеродистую добавку - пиролизную сажу с размерами частиц в пределах 10-3-10-6 мм 0,66-0,72, воду для получения пены 18,79-19,21, воду для затворения 14,18-15,91. Технический результат - повышение прочности при сжатии и снижение коэффициента теплопроводности пенобетона, полученного из смеси. 2 табл.

 

Изобретение относится к промышленности строительных материалов, а именно для изготовления пенобетона, также может использоваться для производства теплоизоляционных материалов непосредственно на строительной площадке.

Известна композиция для изготовления теплоизоляционного пенобетона, включающая портландцемент, измельченный древесный заполнитель, жидкое стекло, хлористый кальций, продукт алкилирования отхода производства фенола кислородсодержащими органическими веществами, пенообразователь ПБ-2000 и воду, отличающаяся тем, что содержит в качестве указанного древесного заполнителя древесные волокна и дополнительно - комплексную добавку в виде продукта обработки второго жирового гудрона пенообразователем ПБ-2000 при их соотношении 0,75:1-1:0,75, при следующем соотношении компонентов, мас. %:

портландцемент 40,0-50,0
древесные волокна 5-9
указанный продукт алкилирования 0,1-0,5
жидкое стекло 1,0-1,5
хлористый кальций 0,2-0,5
пенообразователь ПБ-2000 1,0-4,0
указанная комплексная добавка 1,0-1,5
вода остальное

При этом материал на основе указанной композиции через 28 суток твердения в естественных условиях имеет предел прочности при сжатии от 0,42 до 1,3 МПа, среднюю плотность от 245 до 475 кг/м3 и коэффициент теплопроводности от 0,05 до 0,17 (патент РФ №2415111, кл. С04В 38/10, опубл. 27.03.2011 г.).

К недостаткам известной композиции относятся высокая плотность пенобетонных изделий (от 245 до 475 кг/м3), сложность состава и технологии приготовления пенобетонной смеси, что приводит к дополнительным энергетическим и трудовым затратам и соответственно приводит к удорожанию изделий и конструкций на основе данной композиции. Повышенная плотность приводит к увеличению коэффициента теплопроводности и соответственно к снижению теплоизоляционных свойств изделий на основе данной композиции.

Известна также Формовочная смесь для пенобетона, включающая портландцемент, добавку, пенообразователь Унипор и воду, отличающаяся тем, что в качестве добавки содержит расширяющийся компонент - СаОмод, полученный путем обжига известнякового компонента со щелочесодержащей добавкой в соотношении, мас. %: известняковый компонент 93,0-99,0, щелочесодержащая добавка 1,0-7,0, при температуре 850-1200°C с последующим помолом до удельной поверхности 300-1000 м /кг, при следующем соотношении компонентов, мас. %:

портландцемент 40-60
пенообразователь Унипор 0,1-0,2
указанная добавка 4-7
вода остальное

При этом материал на основе указанной композиции через 28 суток твердения в естественных условиях имеет предел прочности при сжатии от 1,74 до 1,92 МПа, среднюю плотность от 310 до 345 кг/м3 (патент РФ №2400454, кл. С04В 38/10, опубл. 27.09.2010 г.).

К недостаткам известной композиции относятся высокая плотность пенобетонных изделий (от 310 до 345 кг/м3), сложность и высокая энергоемкость технологии приготовления добавки расширяющийся компонент - СаОмод, что приводит к дополнительным энергетическим и трудовым затратам и соответственно приводит к удорожанию изделий и конструкций на основе данной композиции. Повышенная плотность приводит к увеличению коэффициента теплопроводности и соответственно к снижению теплоизоляционных свойств изделий на основе данной композиции.

Наиболее близкой к изобретению по своей технической сущности является смесь для изготовления пенобетона, включающая портландцемент, пенообразователь, добавку и воду, отличающаяся тем, что в качестве пенообразователя используется GreenFroth Р, а в качестве добавки - мочевина CH4N2O, при следующем соотношении компонентов, мас. %:

портландцемент 64,56-65,41
пенообразователь 0,57-0,6
указанная добавка 2,58-3,25
вода для получения пены 18,97-19,38
вода для затворения 11,77-12,91

При этом материал на основе указанной композиции имеет предел прочности при сжатии от 0,069 до 0,11 МПа, среднюю плотность от 129 до 177 кг/м3 (патент РФ №2439033, кл. С04В 38/10, опубл. 10.01.2012 г.).

Однако пенобетон на основе известной смеси обладает низким пределом прочности при сжатии и высоким коэффициентом теплопроводности.

Задачей, на решение которой направлено заявленное изобретение, является создание состава сырьевой смеси для приготовления пенобетона, обладающего повышенной прочностью при сжатии и пониженным коэффициентом теплопроводности.

Техническим результатом является повышение предела прочности при сжатии и снижение коэффициента теплопроводности теплоизоляционного пенобетона на основе разработанного состава сырьевой смеси.

Поставленная задача решается тем, что сырьевая смесь для изготовления пенобетона, включающая портландцемент, пенообразователь, воду для получения пены и для затворения портландцемента, согласно предлагаемому техническому решению дополнительно содержит углеродистую добавку - пиролизную сажу с размерами частиц в диапазоне 10-3-10-6 мм, при следующем соотношении компонентов, мас. %:

портландцемент 63,65-65,93
пенообразователь 0,44-0,51
пиролизная сажа 0,66-0,72
вода для получения пены 18,79-19,21
вода для затворения 14,18-15,91

Пиролизная сажа, полученная путем сжигания резинотехнических изделий без доступа кислорода, является твердым углеродистым порошком с размерами частиц в диапазоне 10-3-10-6 мм. Положительный эффект от применения пиролизной сажи объясняется размерами дисперсности его частиц, пиролизная сажа содержит в себе более 50% частиц с размером 10-50 мкм. Ультрадисперсные частицы пиролизной сажи механически взаимодействуют с пеной, равномерно распределяясь по всему объему межпоровых перегородок пены в пенобетонной смеси, частицы пиролизной сажи с цементным гелем образуют жесткий каркас. Данный эффект достигается за счет механического упрочнения пленок пены, т.е. «эффекта бронирования» частицами твердой фазы. За счет данного эффекта происходит стабилизация ячеистой структуры пенобетона, не происходит разрушения пены и усадки пенобетонного массива в результате твердения пенобетона. Благодаря этому решается поставленная задача в увеличении прочности при сжатии без увеличения средней плотности.

Высокая дисперсность частиц пиролизной сажи также положительно влияет на формирование замкнутых сферических пор, что позволяет решить вторую поставленную задачу по уменьшению коэффициента теплопроводности без увеличения средней плотности пенобетона.

Использование пиролизной сажи помимо повышения прочности при сжатии и уменьшении коэффициента теплопроводности позволяет повысить водостойкость пенобетона за счет гидрофобных свойств частиц пиролизной сажи, а также позволяет расширить сырьевую базу и решить экологическую проблему утилизации данного вида отходов.

Также положительным эффектом является то, что данный компонент не требует энергоемких процессов по измельчению, что дополнительно снижает стоимость готового материала.

Оптимальное содержание пиролизной сажи в составе композиции составляет 0,66-0,72 (мас. %), поскольку уменьшение доли пиролизной сажи в композиции не дает достаточного эффекта повышения прочности при сжатии готового пенобетона, а введение более 0,72% приводит к увеличению плотности и теплопроводности пенобетона.

В качестве пенообразователя используется либо белковый пенообразователь, либо синтетический пенообразователь. Оптимальное содержание пенообразователя в составе композиции составляет 0,44-0,51 (мас. %), поскольку уменьшение доли пенообразователя в композиции приводит к увеличению средней плотности и коэффициента теплопроводности готового пенобетона, а введение более 0,51% приводит к увеличению сроков схватывания портландцемента и снижению прочности при сжатии готового пенобетона.

Для приготовления пены и затворения портландцемента используется водопроводная вода по ГОСТ 23732-93 при оптимальных соотношениях: для приготовления пены - 18,79-19,21 (мас. %), поскольку уменьшение доли воды в растворе для приготовления пены не позволяет добиться заданной кратности пены, а увеличение более 19,21% воды в пене приводит к ее быстрому разрушению за счет отделения жидкой фазы; для затворения портландцемента - 14,18-15,91 (мас. %), поскольку уменьшение доли воды в цементно-водном растворе приводит к снижению подвижности раствора и, как следствие, к увеличению плотности и теплопроводности готового пенобетона, а увеличение более 15,91% воды приводит к образованию сообщающейся пористости, что существенно снижает прочность при сжатии и увеличивает теплопроводность.

Для составления композиции использованы следующие исходные материалы: в качестве основного вяжущего портландцемент марки ЦЕМ I 32,5Н ГОСТ 31108-2003, в соответствии с требованиями ГОСТ 31108-2003 «Цементы общестроительные. Технические условия» производства ОАО «Холсим (Рус)» (Россия); белковый пенообразователь «GreenFroth Р» производства фирмы «Laston» SPA, в соответствии с требованиями ASTM 869-80 (Италия); либо белковый пенообразователь «Biofoam» производства научно-производственной фирмы «Биофомм», в соответствии с требованиями ТУ 2481-001-0177019999-2012 (Россия); либо белковый пенообразователь «Биотех» производства фирмы ООО «Биотехнологии», в соответствии с требованиями ТУ 2481-004-0187624382-2011 (Россия); либо синтетический пенообразователь «ПБ-формула 2012» производства фирмы ООО «Логосиб», в соответствии с требованиями ТУ 2481-008-80824910-2012 (Россия); либо синтетический пенообразователь «ПБ-Люкс» производства фирмы ЗАО «РХЗ «Нордикс», в соответствии с требованиями ТУ 2481-004-59586231-2005 (Россия); либо синтетический пенообразователь «Ареком-4» производства фирмы ЗАО «СТРОЙ-БЕТОН», в соответствии с требованиями ТУ 2481-005-47584252-2004 (Россия); вода водопроводная по ГОСТ 23732-79 «Вода для бетонов и растворов. Технические условия», пиролизная сажа - твердый углеродистый порошок с размерами частиц в пределах 10-3-10-6 мм, полученный в результате пиролиза резинотехнических изделий производства фирмы ООО «Элитар» Саратовской области (химический состав приведен в табл. 1).

Пенобетон на основе предлагаемой сырьевой смеси готовят следующим образом.

Для получения пенобетона плотностью 125-129 кг/м вначале готовят пену в течение 3 минут при давлении в системе 3-6 атм в пеногенераторе (например, «ПГ-АВ» производства предприятия ООО «Метем») из пенообразователя и воды, взятых в соотношении, мас. %: 0,44-0,51 и 18,79-19,21 (например, пенообразователь GreenFroth Р в количестве 0,51% (мас.) и вода для получения пены в количестве 19,21% (мас.) для состава №1 таблицы 2). В результате приготовления пены ее объем в 25-30 раз больше объема водного раствора. Цементный раствор готовят отдельно, при этом в портландцемент в количестве 63,65-65,93 мас. % (например, 63.65% (мас.) для состава №1 таблицы 2) вводят воду для затворения в количестве 14,18-15,91 мас. % (например, 15,91% (мас.) для состава №1 таблицы 2) с добавкой - пиролизной сажей в количестве 0,66-0,72 мас. % (например, 0,72% (мас.) для состава №1 таблицы 2), после чего смесь перемешивают в лопастном смесителе (например, «ДЕЛЬТА СЛБ-ГШ-500» производства предприятия ООО «СтройМеханика») при частоте вращения перемешивающего органа смесителя 80-100 об/мин в течение 3-х минут (для состава №1 таблицы 2-90 об/мин) до получения однородной пластичной массы. Затем в полученный раствор подают приготовленную пену с последующим перемешиванием компонентов до получения однородной смеси при частоте вращения перемешивающего органа смесителя 60 об/мин (например, «ДЕЛЬТА СЛБ-ПН-500» производства предприятия ООО «СтройМеханика»). Полученную смесь с помощью шланга, подсоединенного к выпускному клапану смесителя, укладывают в заранее подготовленные и смазанные формы и выдерживают не менее 8 часов при температуре не ниже 18°С, что обеспечивает затвердевание пенобетона плотностью 125-129 кг/м3.

Испытания пенобетонных образцов производились в соответствии с требованиями нормативных документов: средняя плотность по ГОСТ 12730.1-78 «Бетоны. Методы определения плотности», прочность при сжатии по ГОСТ 10180-90 «Бетоны. Методы определения прочности по контрольным образцам» на приборе - гидравлическом прессе марки «ПМ-20МГ4» производства фирмы ЗАО «СКБ Стройприбор», теплопроводность по ГОСТ 7076-87 «Материалы и изделия строительные. Метод определения теплопроводности и термического сопротивления при стационарном тепловом режиме» на приборе - измерителе теплопроводности марки «ИТП-МГ4 «250» производства фирмы ЗАО «СКБ Стройприбор».

В таблице 2 приведены конкретные составы и результаты испытаний физико-механических характеристик пенобетона на основе заявленной композиции.

Таким образом, пенобетон и изделия на его основе, изготовленные из предлагаемой композиции, обладают меньшим коэффициентом теплопроводности и большим показателем прочности при сжатии по сравнению с показателями известных композиций.

Дополнительным положительным эффектом использования данного состава является проведение работы по устройству монолитных теплоизоляционных конструкций из пенобетона непосредственно на строительной площадке.

Сырьевая смесь для изготовления пенобетона, включающая портландцемент, пенообразователь, воду для получения пены и для затворения портландцемента, отличающаяся тем, что дополнительно содержит углеродистую добавку - пиролизную сажу с размерами частиц в пределах 10-3-10-6 мм, при следующем соотношении компонентов, мас.%:

портландцемент 63,65-65,93
пенообразователь 0,44-0,51
пиролизная сажа 0,66-0,72
вода для получения пены 18,79-19,21
вода для затворения 14,18-15,91



 

Похожие патенты:

Технологическая линия для производства пенобетонных изделий включает установленные в технологической последовательности и связанные транспортными средствами бункеры и питатели-дозаторы для сухих компонентов - цемента, песка и фиброволокна, емкость с водой и управляемым устройством для подачи воды, активатор, емкость с дозатором для раствора пенообразователя, насос, пеногенератор и устройство для подачи сжатого воздуха в пеногенератор, пенобетоносмеситель.

Группа изобретений относится к области получения пенобетона. В способе получения пенобетона, включающем приготовление технологической смеси путем перемешивания концентрата пенообразователя, воды, вяжущих, заполнителя, добавок и аэрацию смеси сжатым воздухом в смесителе, получение пенобетона осуществляют непрерывно в три этапа: на первом этапе ведут перемешивание-активирование вяжущих компонентов с водой, заполнителем и добавками в смесителе-активаторе со скоростью 1500-3000 1/мин вращения рабочего органа с кавитационным эффектом до получения жидко-твердой дисперсии вяжущих в тиксотропном метастабильном состоянии с уменьшением вязкости до 50-500 Па·с, в другом смесителе-активаторе ведут перемешивание-активирование концентрата пенообразователя с добавлением воды до получения жидко-жидкой дисперсии пенообразователя в тиксотропном метастабильном состоянии с уменьшением вязкости до 10-200 Па·с, на втором этапе в смесителе-аэраторе со скоростью вращения рабочих органов 1000-1500 1/мин ведут перемешивание непрерывных потоков обеих ранее активированных дисперсий с одновременной их аэрацией сжатым воздухом при избыточном давлении 0,25-2,5 МПа, а на третьем этапе полученная в смесителе-аэраторе пеномасса непрерывно поступает в канал пеномассопровода-структурообразователя в виде диффузора, совмещающего непрерывное транспортирование пеномассы в опалубку и ее бездефектное структурирование в режиме свободного движения под действием разности давлений 0,25-2,5 МПа на входе в канал и 0,01-0,1 МПа на его выходе при ограничении максимальной линейной скорости потока и минимального времени пребывания пеномассы в канале.

Изобретение относится к промышленности строительных материалов, в частности к производству изделий из ячеистых бетонов, которые могут быть использованы в качестве защитных экранов для изоляции строительных конструкций от воздействия высоких температур, возникающих при пожарах, авариях на производстве, сбоях в работе технологического оборудования.

Изобретение относится к составам сырьевых смесей для неавтоклавных конструкционно-теплоизоляционных пенобетонов и может быть использовано для изготовления мелкоразмерных блоков, монолитного строительства.
Изобретение относится к промышленности строительных материалов, в частности к производству бетонных стеновых блоков. Бетонная смесь содержит, мас.%: портландцемент 25,0-27,0, золошлаковый наполнитель 35,89-41,87, крошку пенополиэтилена с размером частиц до 10 мм 0,03-0,05, смолу воздухововлекающую экстракционно-канифольную 0,06-0,1, керамзитовый песок 8,0-10,0, воду 25,0-27,0.

Изобретение относится к промышленности строительных материалов, а именно к составам теплоизоляционных ячеистых материалов. Ячеистая фибробетонная смесь включает, мас.%: портландцемент марки 500 43, кварцевый песок с модулем крупности 1,7 8-28, пенообразователь "ПБ-Люкс" 1,0, стеклянное волокно диаметром 15-35 мкм и длиной 12-15 мм 2,0, суперпластификатор "Полипласт - СП-3" 0,4-0,6, аппретированные полые стеклянные микросферы марки МС-ВП-А9* диаметром 20-160 мкм 8-28, воду - остальное.

Предлагаемый способ предназначен для получения теплоизоляционных изделий, используемых для теплоизоляции строительных конструкций и тепловых агрегатов, эксплуатируемых в условиях высоких температур (800…1300°C).
Изобретение относится к производству пористых заполнителей для бетонов. Шихта для производства пористого заполнителя содержит, мас.%: глину монтмориллонитовую 88,5-93,5, размолотый до удельной поверхности 2000-2500 см2/г доломит 6,0-10,0, подмыльный щелок, предварительно разведенный в горячей воде с температурой 85-90°С, 0,5-1,5.

Изобретение относится к производству строительных материалов и может быть использовано для изготовления теплоизоляционных, конструкционно-теплоизоляционных и конструкционных бетонов для жилищного и гражданского строительства.

Изобретение относится к производству пористых заполнителей для бетонов. Шихта для производства пористого заполнителя содержит, мас.%: глину монтмориллонитовую 88,5-90,5, размолотый до удельной поверхности 2000-2500 см2/г уголь 0,5-1,0, кварцевый песок 8,0-10,0, мылонафт, предварительно разведенный в воде, 0,5-1,0.

Изобретение относится к промышленности строительных материалов и может быть использовано при производстве ячеистых бетонов, содержащих волокнистые наполнители. Сырьевая смесь для изготовления пенобетона содержит, мас.%: портландцемент 22,0-22,4, песок 35,6-36,0, базальтовые волокна диаметром 15-20 мкм и длиной 8-22 мм 0,41-0,84, пенообразователь Reniment SB31L в концентрации 4%, обеспечивающей плотность пены 75 г/дм3, 0,10-0,15, молотый известняк 22,1-23,0, полипропиленовые волокна диаметром 15-20 мкм и длиной 8-22 мм 0,13-0,27, вода - остальное. Сырьевая смесь в качестве молотого известняка может содержать минеральный порошок МП-1. Технический результат - повышение прочности пенобетона на изгиб, снижение расхода цемента при сохранении высокой прочности на сжатие, снижение стоимости сырьевой смеси и расширение сырьевой базы для изготовления пенобетонов. 1 з.п. ф-лы, 1 табл.
Группа изобретений относится к неорганическому отвержденному пеноматериалу для остановки протечек с поверхности в районе добычи угля из пласта неглубокого залегания и способу получения неорганического отвержденного пеноматериала. Неорганический отвержденный пеноматериал для остановки протечек с поверхности в районе добычи угля в пласте неглубокого залегания содержит, мас.ч.: воду 40-60, угольную золу 100, гашеную известь 5, цемент 20, порошок из бычьих рогов 0,15-0,3, алюминиевую пудру 4, оксид меди 1-3,5, полифосфорную кислоту 0,4-1,4, гидроксид алюминия 0,04-0,1, гидроксипропилметилцеллюлозу 0,8-1,2, стальные волокна 3, причем оксид меди характеризуется размером, соответствующим размеру ячейки сита, равному 300 меш. Способ получения указанного выше пеноматериала, в котором вязкая жидкость, образованная порошком из бычьего рога, способна понижать поверхностное натяжение водосодержащей жидкости, равномерно распределять твердые частицы в суспензии и улучшать стабильность пены; при этом алюминиевая пудра и гашеная известь вступают в химическую реакцию с образованием газа, причем они составляют систему, самостоятельно генерирующую газ для суспензии; оксид меди, полифосфорная кислота и гидроксид алюминия составляют неорганическую связующую систему, а время затвердевания является регулируемым путем подбора соотношения этих трех компонентов; при этом способ производства включает следующие стадии: стадия 1: 35-55 мас.ч. воды, 100 мас.ч. угольной золы, 20 мас.ч. цемента, 0,8-1,2 мас.ч. гидроксипропилметилцеллюлозы, 3 мас.ч. стальных волокон и 5 мас.ч. гашеной извести добавляют в специальную емкость для перемешивания и перемешивают мешалкой со скоростью 5000±200 об/мин в течение 2 минут с образованием суспензии на основе угольной золы; стадия 2: 5 мас.ч. воды и 0,15-0,3 мас.ч. порошка из бычьего рога добавляют в специальную емкость для перемешивания В и перемешивают мешалкой со скоростью 10000±500 об/мин в течение 3 минут с образованием вязкой жидкости; стадия 3: вязкую жидкость с порошком из бычьего рога, находящуюся в специальной емкости для перемешивания В, добавляют в суспензию на основе угольной золы в специальной емкости для перемешивания А и перемешивают мешалкой в специальной емкости для перемешивания А со скоростью 12000±500 об/мин в течение 3 минут с образованием перемешанного раствора; стадия 4: добавляют смесь, полученную из 1-3,5 мас.ч. оксида меди, 0,4-1,4 мас.ч. полифосфорной кислоты и 0,04-0,1 мас.ч. гидроксида алюминия в перемешанный раствор и перемешивают мешалкой со скоростью 5000±200 об/мин в течение 5 минут с образованием перемешанного связующего раствора; стадия 5: добавляют 4 мас.ч. алюминиевой пудры в перемешанный склеивающий раствор и перемешивают мешалкой со скоростью 12000±500 об/мин в течение 3 минут с получением неорганического отвержденного пеноматериала для герметизации поверхностных трещин в угольной шахте. Технический результат - получение пеноматериала, обладающего высокой способностью проникать в трещины, хорошей термоизоляцией, высокой прочностью на сжатие и термостойкостью. 2 н.п. ф-лы, 2 пр.

Изобретение относится к производству заполнителей для бетонов. Шихта для производства заполнителя содержит, мас.%: глину монтмориллонитовую 92,6-93,7, волластонит 4,8-5,3, пенообразователь ПБ-2000 0,2-0,3, каолин 1,3-1,8. Технический результат - повышение прочности заполнителя, полученного из шихты. 1 табл.

Группа изобретений относится к строительству, а именно к способу получения легкой цементирующей смеси, которая предназначена для изготовления цементно-стружечных плит и композиции для получения легкого цементирующего вяжущего вещества. Способ получения легкой цементирующей смеси, предназначенной для изготовления цементно-стружечных плит с улучшенной прочностью на сжатие и водостойкостью, включает смешивание воды, реакционноспособного порошка, 1-200 мас.ч. заполнителя, 1,5-6 мас.ч. соли щелочного металла и лимонной кислоты, 0,5-1,5 мас.ч. силиката щелочного металла, 2,0-6,0 мас.ч. вспенивающего агента и возможно необязательно стабилизатора пены, мас.ч. приведены в расчете на сухое вещество на 100 мас.ч. реакционноспособного порошка, 80 до 100 мас.% золы-уноса, причем зола-унос включает золу-унос класса C, золу-унос класса F с портландцементом типа III; и смеси золы-уноса класса C и золы-уноса класса F, необязательно, с портландцементом типа III, и необязательно реакционноспособный порошок не содержит гидравлический цемент. Композиция для получения легкого цементирующего вяжущего вещества для изготовления цементно-стружечных плит по указанному выше способу содержит смесь из: цементирующего реакционноспособного порошка, содержащего от 80 до 100 мас.% золы-уноса, 1-200 мас.ч. заполнителя, 1,5-6 мас.ч. соли щелочного металла и лимонной кислоты, 0,5-1,5 мас.ч. силиката щелочного металла, 2,0-6,0 мас.ч. вспенивающего агента, необязательно агента, стабилизирующего пену, на основе поливинилового спирта и воды, мас.ч. приведены в расчете на сухое вещество на 100 мас.ч. реакционноспособного порошка, причем отношение воды к твердой фазе цементирующего реакционноспособного порошка в смеси составляет примерно от 0,22 до 0,287:1, концентрация поливинилового спирта, в случае его наличия, в водном растворе составляет примерно от 2 до 5%, при этом зола-унос включает золу-унос класса C, золу-унос класса F с портландцементом типа III; и смеси золы-уноса класса C и золы-уноса класса F, необязательно с портландцементом типа III; плотность вяжущего вещества составляет примерно от 0,48 до 1,04 г/см3 (от 30 до 65 фунтов на кубический фут) со стабильными пузырьками микронного размера, а прочность на сжатие вяжущего вещества, измеренная через 14 дней, составляет примерно от 6,90 до 9,65 МПа (от 1000 фунт/кв.дюйм до 1400 фунт/кв.дюйм). Технический результат - повышение прочности на сжатие при пониженной массе. 2 н. и 8 з.п. ф-лы, 2 ил., 13 табл., 4 пр.

Изобретение относится к строительным материалам, а именно к структурообразующим модификаторам бетона - пенообразователям, и может быть использовано для производства ячеистых бетонов, в том числе пенобетонов. Белковый пенообразователь включает, мас.%: нейтрализованный 20%-ным раствором серной кислоты до рН 7-8 белковый компонент гидролизата продукта микробиологической конверсии спиртовой барды культурой гриба Geotrichum candidum штамм 3С-106, обогащенный белком микробного синтеза 0,57-1,5, стабилизирующую добавку - 20%-ный раствор сульфата железа (III) 0,3-0,6, воду - остальное. Технический результат - повышение кратности и устойчивости пены, полученной из белкового пенообразователя. 1 пр., 2 табл.

Изобретение относится к области строительных материалов и может быть использовано в качестве раствора для кладочных работ. Строительный раствор включает известково-песчаную смесь, портландцемент, комплексную воздухововлекающую добавку и воду, где известково-песчаная смесь состоит из 25% известково-кремнеземистого вяжущего и 75% песка, при этом известково-кремнеземистое вяжущее представляет собой получаемую совместным помолом смесь кварцевого песка и извести в соотношении 1:1, в качестве комплексной воздухововлекающей добавки содержит Murapor Kombi 756 и дополнительно - микрокремнезем, при следующем соотношении компонентов, мас. %: портландцемент 9,3-15,2, известково-песчаная смесь 62,6-65,6, комплексная воздухововлекающая добавка Murapor Kombi 756 0,03-0,07, микрокремнезем 3,0-3,9, вода - остальное. Технический результат - снижение расслаиваемости, коэффициента теплопроводности, повышение жизнеспособности. 2 табл.

Изобретение относится к способу производства и связанной с ним установке для производства гипсовых штукатурных продуктов для целей строительства, например для производства гипсовой плиты. Технический результат заключается в увеличении прочности гипсовых изделий. Способ и установка для производства гипсового продукта, включающие смеситель для смешивания гипса с водой и две подачи пены, вводимые в установку, при этом каждая подача пены включает пену с различным распределением пузырьков по размерам. 7 з.п. ф-лы, 9 ил., 7 табл.

Изобретение относится к промышленности строительных материалов и может быть использовано для изготовления изделий из пенополистиролбетона в гражданском и промышленном строительстве, в том числе с использованием нанотехнологий. Состав смеси для изготовления пенополистиролбетона включает, мас.%: портландцемент 53,86-57,88, полистирольные гранулы 1,66-1,81, золу уноса 12,97-14,95, суперпластификатор Полипласт СП-1 0,34-0,35, пенообразователь ПБ 2000 0,01-0,02, золь кремниевой кислоты, полученный гидролизом кремнефторида натрия 0,09-0,13, воду 26,94-28,91. Технический результат - повышение прочности на сжатие пенополистиролбетона. 3 табл., 3 пр.

Изобретение относится к производству строительных материалов и может быть использовано для изготовления теплоизоляционных, конструкционно-теплоизоляционных и конструкционных бетонов, предназначенных для жилищного строительства. Технический результат заключается в повышении прочности, снижении водопоглощения и теплопроводности. Теплоизоляционный материал содержит, мас.%: магнезито-карналлитовое вяжущее 37-43, кварцевый песок 37-43, вода 19,65-19,75, пенообразователь 0,25-0,35. 2 табл.

Изобретение относится к производству строительных материалов и может быть использовано для изготовления теплоизоляционных, конструкционно-теплоизоляционных и конструкционных бетонов, предназначенных для жилищного строительства. Технический результат заключается в повышении прочности, снижении водопоглощения и теплопроводности. Теплоизоляционный материал содержит, мас.%: магнезито-карналлитовое вяжущее 37-43, серпентиновый песок 37-43, вода 19,65-19,75, пенообразователь 0,25-0,35. 2 табл.
Наверх