Способ управления средствами наземного автоматизированного комплекса управления космическими аппаратами научного и социально-экономического назначения и измерений (варианты) и наземный автоматизированный комплекс управления космическими аппаратами научного и социально-экономического назначения и измерений (варианты)

Изобретение относится к области космонавтики и представляет собой наземный автоматизированный комплекс управления космическими аппаратами (НАКУ КА) научного и социально-экономического назначения и измерений и способ его применения. В способе управления НАКУ КА для каждого интервала времени, заданного исходя из технологического цикла управления космическими аппаратами или циклограммой полета ракеты-носителя или разгонного блока, динамически формируют одну работоспособную конфигурацию наземных комплексов управления (измерений) из состава единой и унифицированной совокупности указанных средств контроля и обработки информации, а также средств вычислительных сетей и связи. Техническим результатом изобретения является повышение наблюдаемости и управляемости НАКУ КА. 4 н. и 12 з.п. ф-лы, 1 ил.

 

Предлагаемое изобретение относится к области космонавтики, а именно к области наземных комплексов управления космическими аппаратами, а также к комплексам средств измерений, сбора и обработки информации от ракет-носителей, наземным измерительным комплексам разгонных блоков. Далее, для характеристики перечисленных выше комплексов используем обобщенные названия: наземный комплекс управления и измерений изделий ракетно-космической техники или наземный комплекс управления и измерений.

Известны два основных подхода к созданию наземных комплексов управления и измерений изделий ракетно-космической техники.

Первый подход состоит в том, что для каждого типа изделия ракетно-космической техники, а именно космического аппарата, создается свой отдельный (изолированный) наземный комплекс управления (НКУ КА), имеющий в своем составе центр управления полетом, закрепленные (выделенные) линии и каналы связи, командно-измерительные системы, комплекс телеметрических средств. К такому типу относятся наземные комплексы управления космическими аппаратами типа «Ямал», «Бонум», и др. Недостатком данного подхода является невысокая степень использования наземных командно-измерительных и телеметрических станций, каналов связи, средств автоматизации и передачи данных, длительность создания комплексов управления, большое количество средств и их номенклатуры.

Второй подход заключается в создании наземного автоматизированного комплекса управления космическими аппаратами (НАКУ КА), из совокупности средств которого формируются работоспособные конфигурации НКУ КА для обеспечения выполнения заданнной совокупности операций управления космическими аппаратами различных типов, в первую очередь космическими аппаратами научного и социально-экономического назначения типа «Фотон-М», «Ресурс-ДК1», «КОРОНАС-ФОТОН», «Канопус-В», «Электро-Л», «Бион-М», «Монитор-М», МКС, «Союз», «Прогресс».

НАКУ КА данного типа включает совокупность наземных средств (командно-информационные системы, командно-телеметрические системы, антенные системы, системы связи и передачи данных), из которых для каждого типа космического аппарата формируют НКУ (см. патент на изобретение RU2438941, опубликованный 10.01.12, ЦНИИмаш). В результате, возможно использовать одни и те же наземные средства для обеспечения управления разными типами космических аппаратов, общую сеть линий и каналов связи для передачи различных видов данных (цифровая, аналоговая, речь, телевидения), управлять трафиком и маршрутами передачи данных.

НАКУ КА, известный из RU2438941, созданный согласно охарактеризованному выше второму подходу, выбран в качестве ближайшего аналога изобретения. Основной недостаток известного из RU2438941 НАКУ КА и, соответственно, его применения заключается в недостаточной гибкости управления наземными средствами, определяемой невысоким уровнем наблюдаемости и управляемости средствами комплекса, что обусловливает недостаточную оперативность реконфигурации НАКУ КА, а также тем, что не учтены процессы формирования комплексов средств измерений, сбора и обработки информации от ракет-носителей, наземных измерительных комплексов разгонных блоков при быстро меняющихся условиях работы разнородных изделий ракетно-космической техники в космическом пространстве и наземных средств в местах их дислокации, что особенно важно при ограниченном количестве наземных средств и мест их размещения. Например, при полностью развернутой группировке космических аппаратов научного и социально-экономического назначения на суточном интервале необходимо проводить до 150 - 200 сеансов связи с изделиями ракетно-космической техники, т.е. формирование новых НКУ и измерений должно происходить в среднем каждые 5-10 минут.

В свою очередь, предлагаемое изобретение представляет собой дальнейшее совершенствование НАКУ КА, созданных по описанному выше подходу, предусматривающее повышение уровня наблюдаемости и управляемости путем включения в состав НАКУ КА автоматизированной системы оперативно-технических пунктов управления и пункта управления мультисервисной системой связи и передачи данных, позволяющих проводить направленную реконфигурацию средств НАКУ КА научного и социально-экономического назначения и измерений с требуемыми характеристиками по оперативности.

В результате станет возможным создание НАКУ КА научного и социально-экономического назначения и измерений, сохраняющего качество управления на всех этапах применения (использования) космического аппарата или иного изделия ракетно-космической техники путем динамического формирования унифицированных НКУ и измерений к заданным интервалам времени, определяемых технологическим циклом управления космическим аппаратом или циклограммой полета ракеты-носителя либо разгонного блока, сохранение этой конфигурации на интервале сеанса связи и оперативную реконфигурацию на очередной временной интервал. Это позволит существенно повысить степень использования отдельных наземных средств и комплексов в условиях необходимости значительного расширения объемов и видов национальной космической деятельности при ограниченных материально-технических ресурсах. Предлагаемый наземный автоматизированный комплекс управления и измерений обеспечит запуски и полет разнотипных изделий ракетно-космической техники, в том числе к Луне, Марсу и другим объектам Солнечной системы. Таким образом, предлагаемый комплекс сможет быть использован и для управления в отношении космических аппаратов, находящихся на различных орбитах: ближних, средних и дальних (межпланетных), и характеризующихся разнотипными интерфейсами взаимодействия.

Ожидаемый от использования заявленного изобретения технический результат достигается при использовании предложенных вариантов способа управления средствами НАКУ КА научного и социально-экономического назначения и измерений, а также предложенных вариантов наземного автоматизированного комплекса управления космическими аппаратами научного и социально-экономического назначения и измерений.

Предложенный способ управления средствами НАКУ КА научного и социально-экономического назначения и измерений предусматривает командно-программного управление, баллистическое обеспечение, телеметрическое обеспечение, планирование полета при помощи единой и унифицированной для всех типов изделий ракетно-космической техники совокупности средств контроля и обработки информации, в составе информационно-вычислительных комплексов: баллистического, командно-программного, телеметрического обеспечения полета, а также средств вычислительных сетей и связи. В отличие от аналога, из комплекса средств НАКУ КА НСЭН и измерений для каждого заданного интервала времени, исходя из технологического цикла либо из даты и времени запуска ракет-носителей и/или разгонных блоков, циклограммы и трассы их полета, достаточно сформировать только одну работоспособную конфигурацию НКУ и измерений изделия ракетно-космической техники. В случае возникновения непредвиденных ситуаций (интенсивность наступления которых, в основном, определяется частотой отказов наземных средств и составляющую примерно 1 отказ на 500 часов работы), то есть при невозможности выполнения запланированной последовательности создания комплексов управления для космических аппаратов или же формирования запланированной конфигурации наземного комплекса измерений для ракет-носителей и разгонных блоков будет достаточно произвести оперативную направленную реконфигурацию, обеспечивающую выполнение заданного технологическим циклом либо циклограммой комплекса операций по управлению и измерениям.

Конфигурация НКУ и измерений, сформированная «внутри» НАКУ, на предшествующем интервале времени в подавляющем большинстве ситуаций управления и измерений отличается от конфигурации на последующем интервале времени. Указанные конфигурации формируются согласно плану, созданному с использованием средств центра ситуационного анализа, координации и планирования, с учетом исходных данных о текущем и прогнозном состоянии наземных средств управления и измерений, обработанных с использованием средств центра координации эксплуатации и развития и автоматизированной системы оперативно-технических пунктов управления и средств центра анализа информации от ракет-носителей и разгонных блоков. Средства центра ситуационного анализа, координации и планирования, средства центра координации эксплуатации и развития, средства центра анализа информации от ракет-носителей и разгонных блоков, автоматизированная система оперативно-технических пунктов управления представляют собой системы «человек - машина».

Предложенный НАКУ КА научного и социально-экономического назначения и измерений содержит совокупность средств контроля и обработки информации в составе информационно-вычислительных комплексов: баллистического, командного, телеметрического, моделирования и информационного обеспечения полетов, и совокупность средств вычислительных сетей и связи. Для управления и измерений, динамического формирования унифицированных, для каждого типа изделия ракетно-космической техники, наземных комплексов управления и измерений создана единая и унифицированная совокупность указанных средств контроля и обработки информации, а также средств вычислительных сетей и связи. В отличие от аналога упомянутая единая и унифицированная совокупность указанных средств контроля и обработки информации, а также средств вычислительных сетей и связи является динамически изменяющейся во времени. То есть из комплекса средств НАКУ КА НСЭН и измерений достаточно сформировать только одну работоспособную конфигурацию НКУ и измерений, которая выделена для интервала времени, заданного исходя из технологических циклов управления космическими аппаратами (либо циклограмм полета ракет-носителей, разгонных блоков) различных типов.

Конфигурация НКУ и измерений, сформированная «внутри» НАКУ КА НСЭН и измерений, на предшествующем интервале времени в подавляющем большинстве случаев отличается от конфигурации на последующем интервале времени. Единая и унифицированная совокупность средств контроля и обработки информации, а также средств вычислительных сетей и связи НАКУ КА НСЭН и измерений включает: средства центра ситуационного анализа, координации и планирования; средства центра координации эксплуатации и развития; средства центра анализа информации от ракет-носителей и разгонных блоков; автоматизированную систему оперативно-технических пунктов управления, представляющие собой системы «человек - машина», а также единую мультисервисную систему связи и передачи данных.

Согласно ГОСТ Р 53802-2010 под наземным автоматизированным комплексом управления орбитальными средствами и измерений (НАКУ ОСр и измерений) понимается совокупность необходимой инфраструктуры, технических систем и средств наземного автоматизированного комплекса управления орбитальными средствами и измерительных комплексов космодромов, предназначенных для формирования наземных комплексов, обеспечивающих реализацию автоматизированных процессов контроля параметров полета изделий ракетно-космической техники и управления их функционированием. То есть, под НАКУ КА и измерений понимается совокупность технических средств и сооружений центров и пунктов управления, командно-измерительных и командных пунктов, центров информационного и математического обеспечения, предназначенная для динамического формирования НКУ и измерений, обеспечения автоматизации процессов управления их функционированием.

Основное оборудование НАКУ КА научного и социально-экономического назначения и измерений представляет собой средства контроля и обработки информации, а также совокупность средств вычислительных сетей и связи, при помощи которых средства контроля и обработки информации взаимосвязаны между собой. Средства контроля и обработки информации представляют собой информационно-вычислительные комплексы: баллистический, командный, телеметрический, моделирования и информационного обеспечения полетов, то есть комплексы, обеспечивающие управление и измерения в различных аспектах. Каждый из информационно-вычислительных комплексов представляет собой совокупность компьютерных средств обработки данных: серверов, персональных компьютеров, рабочих станций различного типа и т.п.; совокупность средств пользовательского и межсетевого интерфейса; программного обеспечения, необходимого для выполнения расчетов и моделирования. Перечисленные компьютерные средства управления управляются компетентными специалистами, которые взаимодействуют с вычислительными и информационными ресурсами данных средств, с образованием систем «человек - машина».

Для управления и измерений различного типа и/или назначения, «внутри» НАКУ выделен рабочий НКУ и измерений, то есть единая и унифицированная совокупность (сегмент) указанных средств контроля и обработки информации, а также средств вычислительных сетей и связи, что устраняет излишнее дублирование средств НАКУ КА НСЭН и измерений для изделий ракетно-космической техники различного назначения. Для того чтобы обеспечить необходимую гибкость управления средствами НАКУ КА НСЭН и измерений единая и унифицированная совокупность (сегмент) указанных средств контроля и обработки информации, а также средств вычислительных сетей и связи является динамически изменяющейся во времени исходя из постоянно меняющихся условий работы изделий ракетно-космической техники в космическом пространстве, необходимости ввода в эксплуатацию новых изделий ракетно-космической техники (космических аппаратов, ракет-носителей, разгонных блоков), изменения состава и состояния наземных средств. Таким образом, динамически изменяющаяся во времени совокупность средств контроля и обработки информации и вычислительных сетей представляет собой последовательность работоспособных конфигураций НКУ и измерений.

Каждая из таких конфигураций выбирается для интервала времени, заданного исходя из технологического цикла (циклограммы) управления и измерений для изделий ракетно-космической техники - 5-10 минут на одну конфигурацию, как показывает практика эксплуатации. При невозможности выполнения запланированной последовательности создания комплексов управления для космических аппаратов или же формирования запланированной конфигурации наземного комплекса измерений для ракет-носителей и разгонных блоков выполняют оперативную направленную реконфигурацию комплексов. Таким образом, весь период времени применения НАКУ КА НСЭН и измерений, разделяется на промежутки времени, для каждого из которых динамически формируется своя совокупность средств контроля и обработки информации, а также средств вычислительных сетей, структура связей между средствами сбора, контроля и обработки информации. Очевидно, что для большинства случаев управления и измерений конфигурация наземного комплекса на предшествующем интервале времени отличается от конфигурации на последующем интервале времени, хотя можно предположить следующие друг за другом одинаковые конфигурации. То есть для каждой конфигурации обеспечивается свое подключение аппаратно-программных комплексов: серверов, пользовательских персональных компьютеров и т.п., с необходимой взаимной увязкой программного обеспечения, коммутацией информационных потоков, обеспечения элементов уникальными исходными технологическими данными, где уникальность определяется местом элемента в НКУ и измерений. Таким образом, можно будет избежать, как перегрузки оборудования, так и его «недогрузки» при ограниченном численном составе средств комплекса.

Для обеспечения работы динамически изменяющей во времени совокупности средств контроля и обработки информации и вычислительных сетей НАКУ КА научного и социально-экономического назначения и измерений включает средства центра ситуационного анализа, координации и планирования (ЦСАКП) 1; средства центра координации эксплуатации и развития (ЦКЭР) 2, автоматизированной системы оперативно-технических пунктов управления (АС ОТПУ) 3, пункт управления мультисервисной системой связи и передачи данных (ПУ МПССПД) 4, представляющие собой системы «человек - машина», а также единую мультисервисную систему связи и передачи данных (МССПД) 5; средства центров ситуационного анализа, координации и планирования (ЦСАКП) 1 и координации эксплуатации и развития (ЦКЭР) 2, автоматизированной системы оперативно-технических пунктов управления (АС ОТПУ) 3, пункта управления мультисервисной системой связи и передачи данных (ПУ МССПД) 4 представляют собой совокупность компьютерных средств обработки данных и формирования команд: серверов, персональных компьютеров и т.п.; средств пользовательского и межсетевого интерфейса, управляемых специалистами, обладающими необходимыми знаниями и опытом со своих рабочих мест и взаимодействующими с информационными и вычислительными ресурсами данных средств, то есть представляют собой системы «человек - машина» - системы, сочетающие деятельность человека и функционирование объекта техники, основанные на взаимодействии в соответствии с получаемой информацией с объектом управления и машиной посредством органов управления, технические особенности которых будут определяться через их функциональное назначение (см.чертеж).

Таким образом, центр ситуационного анализа, координации и планирования (ЦСАКП) 1, базовый центр управления полетом космическими аппаратами (Базовый ЦУП КА), включающий сектора управления космическими аппаратами (Сектор управления КА № 1…m), количество которых может быть как увеличено, так и уменьшено, автоматизированная система оперативно-технических пунктов управления (АС ОТПУ) 3, а также центр координации эксплуатации и развития (ЦКЭР) 2 включают совокупность необходимого количества автоматизированных рабочих мест (АРМ), оборудование (серверы и т.п.) для размещения баз данных, компьютерное оборудование центра анализа информации (ЦАИ) 6 от ракет-носителей (РН) и разгонных блоков (РБ), пункт управления мультисервисной системой связи и передачи данных (ПУ МССПД) 4.

Управление предложенным НАКУ КА научного и социально-экономического назначения и измерений осуществляется следующим образом.

Необходимые последовательности операций командно-программного управления, баллистического обеспечения, телеметрического обеспечения, планирования полета космических аппаратов и т.п. выполняются при помощи описанной выше единой и унифицированной совокупности (сегмента) средств контроля и обработки информации. Как было пояснено выше, при описании НАКУ КА научного и социально-экономического назначения и измерений, для каждого интервала времени, заданного исходя из технологического цикла (циклограммы) управления, динамически формируют последовательность работоспособных конфигураций НКУ КА из состава единой и унифицированной совокупности (сегмента) средств контроля и обработки информации, а также средств вычислительных сетей и связи и каждый элемент НКУ КА обеспечивается уникальными для данной конфигурации исходными технологическими данными. При невозможности выполнения запланированной последовательности создания комплексов управления для космических аппаратов или же формирования запланированной конфигурации (возникновении нештатных ситуаций для создания работоспособных конфигураций) наземного комплекса измерений для ракет-носителей и разгонных блоков выполняют оперативную направленную реконфигурацию комплексов. Сформированная конфигурация комплекса на предшествующем интервале времени в большинстве случаев отличается от конфигурации на последующем интервале времени. Таким образом, при помощи описанной выше последовательности действий по формированию конфигураций, обеспечивается необходимая гибкость структуры НАКУ КА и измерений, повышающая наблюдаемость и управляемость наземными средствами при постоянно меняющихся условиях работы изделий ракетно-космической техники, развертывания новых космических аппаратов и наземных средств, повышается коэффициент использования наземных средств и т.п.

Указанные конфигурации формируют согласно плану (являющемуся, по существу, оперативно-производственным планом, учитывающим технологические особенности объекта, результаты наблюдения над техническими параметрами объекта, для которого сформирован план), созданному с использованием средств центра ситуационного анализа, координации и планирования (ЦСАКП) 1, а также с учетом технологических данных, обработанных с использованием средств оперативно-технических пунктов управления центра координации эксплуатации и развития (ЦКЭР) 2 и секторов управления базового центра управления полетами КА, центра анализа информации (ЦАИ) 6 от ракет-носителей и разгонных блоков. Для обеспечения работы перечисленных выше центров и пунктов, передачи информации между ними и на командно-измерительные пункты используют автоматизированную систему оперативно-технических пунктов управления (ОТПУ), связанных с центром ситуационного анализа, координации и планирования (ЦСАКП) 1, обеспечивающих управление процессами функционирования наземных средств, дежурными сменами, эксплуатации, обеспечение автоматизированного контроля за выполнением задач управления космическими аппаратами, выполнением эксплуатационных мероприятий, состоянием метеорологической и помеховой обстановки в районах размещения наземных средств, а также мультисервисную систему связи и передачи данных (МССПД) 5, обеспечивающую информационное взаимодействие между объектами, их внутренними локальными вычислительными сетями и управление информационными потоками при проведении реконфигураций.

С использованием средств центра ситуационного анализа, координации и планирования (ЦСАКП) 1 составляют долгосрочные и суточные планы сеансов связи с космическими аппаратами, использования наземных средств и комплексов, распределения ресурсов мультисервисной системы связи и передачи данных (МССПД) 6.

Оперативно-технические пункты управления (ОТПУ) командно-измерительных пунктов (КИП) проводят доведение исходных технологических данных до средств КИП, формируют программу эксплуатации и применения средств КИП при проведении и подготовке к проведению сеансов связи с космическими аппаратами ближнего, среднего и дальнего космоса, а также ракет-носителей и разгонных блоков, сбор данных о результатах автоматизированной диагностики наземной аппаратуры, контролируют ход подготовки основных (командно-измерительных систем (КИС), комплексов телеметрических средств (КТМС)) и обеспечивающих средств к проведению сеансов связи, обеспечивают оперативную реакцию управляющих органов НАКУ КА научного и социально-экономического назначения и измерений (т.е. ОТПУ ЦКЭР, ЦКЭР, ЦСАКП) при возникновении неисправностей. План, разработанный с использованием средств центра ситуационного анализа, координации и планирования (ЦСАКП) 1 передается на оперативно-технические пункты управления (ОТПУ) НАКУ КА научного и социально-экономического назначения и измерений. Сведения, которые передаются с оперативно-технических пунктов управления (ОТПУ) командно-измерительных пунктов и измерительного комплекса космодрома, поверяются сведениями центра координации эксплуатации и развития (ЦКЭР) 2 и центра анализа информации (ЦАИ) 6 исходя из текущей ситуации, прогноза изменений в орбитальной группировке космических аппаратов, плана запусков ракет-носителей и разгонных блоков. То есть сведения поверяются с учетом оперативной обстановки по техническому состоянию и прогнозу ее развития.

Таким образом, предложен способ управления средствами НАКУ КА научного и социально-экономического назначения и измерений, а также НАКУ КА научного и социально-экономического назначения и измерений, характеризующийся гибкостью структуры, обеспечиваемой повышением наблюдаемости и управляемости наземными средствами, как в быстро меняющихся условиях управления и измерений в космическом пространстве, так и в случае изменений состава, состояния и условий эксплуатации средств НАКУ КА научного и социально-экономического назначения и измерений, что особенно важно при ограниченном количестве наземных средств и мест их размещения.

1. Способ управления средствами наземного автоматизированного комплекса управления космическими аппаратами научного и социально-экономического назначения и измерений, предусматривающий командно-программное, баллистическое, телеметрическое обеспечение, планирование сеансов связи с космическими аппаратами при помощи единой и унифицированной совокупности средств контроля и обработки информации, в составе информационно-вычислительных комплексов: баллистического, командного, телеметрического, моделирования и информационного обеспечения полетов, а также средств вычислительных сетей и связи, отличающийся тем, что из средств упомянутой единой и унифицированной совокупности средств контроля и обработки информации и средств вычислительных сетей и связи динамически формируют по меньшей мере одну работоспособную конфигурацию наземного комплекса управления космическими аппаратами для интервала времени, заданного исходя из технологического цикла управления космического аппарата, и выполняют оперативную направленную реконфигурацию наземного комплекса управления космическими аппаратами при невозможности выполнения запланированной последовательности создания комплексов управления и измерений космических аппаратов.

2. Способ по п. 1, отличающийся тем, что конфигурация наземного комплекса управления на предшествующем интервале времени отличается от конфигурации на последующем интервале времени.

3. Способ по п. 1, отличающийся тем, что указанные конфигурации формируют согласно плану, созданному с использованием средств центра ситуационного анализа, координации и планирования, с учетом технологических данных, обработанных с использованием средств оперативно-технического пункта управления центра координации эксплуатации и развития, причем средства центра ситуационного анализа, координации и планирования и средства оперативно-технического пункта управления центра координации эксплуатации и развития представляют собой системы «человек - машина».

4. Способ по п. 1, отличающийся тем, что из средств упомянутой единой и унифицированной совокупности средств контроля и обработки информации и средств вычислительных сетей и связи динамически формируют по меньшей мере одну работоспособную конфигурацию комплекса средств измерений, сбора и обработки информации от ракет-носителей и/или наземного измерительного комплекса разгонных блоков для интервала времени, заданного исходя из даты и времени запуска ракет-носителей и/или разгонных блоков, циклограммы и трассы их полета, и выполняют оперативную направленную реконфигурацию комплекса средств измерений, сбора и обработки информации от ракет-носителей и/или наземного измерительного комплекса разгонных блоков при невозможности формирования запланированной конфигурации наземного комплекса измерений.

5. Способ управления средствами наземного автоматизированного комплекса управления космическими аппаратами научного и социально-экономического назначения и измерений, предусматривающий командно-программное, баллистическое, телеметрическое обеспечение, планирование сеансов связи с изделиями ракетно-космической техники при помощи единой и унифицированной совокупности средств контроля и обработки информации, в составе информационно-вычислительных комплексов: баллистического, командного, телеметрического, моделирования и информационного обеспечения полетов, а также средств вычислительных сетей и связи, отличающийся тем, что из средств упомянутой единой и унифицированной совокупности средств контроля и обработки информации и средств вычислительных сетей и связи динамически формируют по меньшей мере одну работоспособную конфигурацию комплекса средств измерений, сбора и обработки информации от ракет-носителей и/или наземного измерительного комплекса разгонных блоков для интервала времени, заданного исходя из даты и времени запуска ракет-носителей и/или разгонных блоков, циклограммы и трассы их полета, и выполняют оперативную направленную реконфигурацию комплекса средств измерений, сбора и обработки информации от ракет-носителей и/или наземного измерительного комплекса разгонных блоков при невозможности формирования запланированной конфигурации наземного комплекса измерений.

6. Способ по п. 5, отличающийся тем, что конфигурация упомянутых комплексов на предшествующем запуске ракет-носителей и/или разгонных блоков отличается от конфигурации на последующем запуске.

7. Способ по п. 5, отличающийся тем, что указанные конфигурации формируют согласно плану, созданному с использованием средств центра анализа информации от ракет-носителей и/или разгонных блоков и центра ситуационного анализа, координации и планирования, с учетом технологических данных, обработанных с использованием средств центра анализа информации от ракет-носителей и разгонных блоков, причем средства центра ситуационного анализа, координации и планирования и средства центра анализа информации от ракет-носителей и разгонных блоков представляют собой системы «человек - машина».

8. Способ по п. 5, отличающийся тем, что из средств упомянутой единой и унифицированной совокупности средств контроля и обработки информации и средств вычислительных сетей и связи динамически формируют по меньшей мере одну работоспособную конфигурацию наземного комплекса управления космическими аппаратами для интервала времени, заданного исходя из технологического цикла управления космического аппарата, и выполняют оперативную направленную реконфигурацию наземного комплекса управления космическими аппаратами при невозможности выполнения запланированной последовательности создания комплексов управления космических аппаратов.

9. Наземный автоматизированный комплекс управления космическими аппаратами научного и социально-экономического назначения и измерений, включающий
совокупность средств контроля и обработки информации, в составе информационно-вычислительных комплексов: баллистического, командного, телеметрического, моделирования и информационного обеспечения полетов и совокупность средств вычислительных сетей и связи, причем
для управления космических аппаратов выделена единая и унифицированная совокупность указанных средств контроля и обработки информации, а также средств вычислительных сетей и связи, отличающийся тем, что упомянутая
единая и унифицированная совокупность средств контроля и обработки информации, а также средств вычислительных сетей и связи является динамически изменяющейся во времени и представляет собой по меньшей мере одну работоспособную конфигурацию наземного комплекса управления космическими аппаратами, выделенную для интервала времени, заданного исходя из технологического цикла управления и
изменяемую путем оперативной направленной реконфигурации наземных комплексов управления космическими аппаратами при невозможности выполнения запланированной последовательности создания комплексов управления космических аппаратов.

10. Наземный автоматизированный комплекс управления космическими аппаратами научного и социально-экономического назначения и измерений по п. 9, отличающийся тем, что конфигурация наземных комплексов управления космических аппаратов на предшествующем интервале времени отличается от конфигурации на последующем интервале времени.

11. Наземный автоматизированный комплекс управления космическими аппаратами научного и социально-экономического назначения и измерений по п. 9, отличающийся тем, что упомянутая единая и унифицированная совокупность средств контроля и обработки информации, а также средств вычислительных сетей и связи включает средства центра ситуационного анализа, координации и планирования; средства центра координации эксплуатации и развития, а также единую мультисервисную систему связи и передачи данных, конфигурация которых формируется под управлением автоматизированной системы оперативно-технических пунктов управления центра координации эксплуатации и развития и командно-измерительных пунктов и которые представляют собой системы «человек - машина».

12. Наземный автоматизированный комплекс управления космическими аппаратами научного и социально-экономического назначения и измерений по п. 9, отличающийся тем, что единая и унифицированная совокупность средств контроля и обработки информации, а также средств вычислительных сетей и связи является динамически изменяющейся во времени и представляет собой по меньшей мере одну работоспособную конфигурацию комплекса средств измерений, сбора и обработки информации от ракет-носителей и/или наземного измерительного комплекса разгонных блоков, выделенную для интервала времени, заданного исходя из даты и времени запуска ракет-носителей и/или разгонных блоков, циклограммы и трассы их полета и изменяемую путем оперативной направленной реконфигурации комплекса средств измерений, сбора и обработки информации от ракет-носителей и/или наземного измерительного комплекса разгонных блоков при невозможности формирования запланированной конфигурации наземного комплекса измерений.

13. Наземный автоматизированный комплекс управления космическими аппаратами научного и социально-экономического назначения и измерений, включающий
совокупность средств контроля и обработки информации, в составе информационно-вычислительных комплексов: баллистического, командного, телеметрического, моделирования и информационного обеспечения полетов, и
совокупность средств вычислительных сетей и связи, причем
для управления изделиями ракетно-космической техники выделена единая и унифицированная совокупность указанных средств контроля и обработки информации, а также средств вычислительных сетей и связи, отличающийся тем, что упомянутая
единая и унифицированная совокупность средств контроля и обработки информации, а также средств вычислительных сетей и связи является динамически изменяющейся во времени и представляет собой,
по меньшей мере одну работоспособную конфигурацию комплекса средств измерений, сбора и обработки информации от ракет-носителей и/или наземного измерительного комплекса разгонных блоков, выделенную для интервала времени, заданного исходя из даты и времени запуска ракет-носителей и/или разгонных блоков, циклограммы и трассы их полета и
изменяемую путем оперативной направленной реконфигурации комплекса средств измерений, сбора и обработки информации от ракет-носителей и/или наземного измерительного комплекса разгонных блоков при невозможности формирования запланированной конфигурации наземного комплекса измерений.

14. Наземный автоматизированный комплекс управления космическими аппаратами научного и социально-экономического назначения и измерений по п. 13, отличающийся тем, что конфигурация упомянутых комплексов на предшествующем запуске ракет-носителей и/или разгонных блоков отличается от конфигурации на последующем запуске.

15. Наземный автоматизированный комплекс управления космическими аппаратами научного и социально-экономического назначения и измерений по п. 13, отличающийся тем, что упомянутая
единая и унифицированная совокупность средств контроля и обработки информации, а также средств вычислительных сетей и связи включает
средства центра ситуационного анализа, координации и планирования,
средства центра анализа информации от ракет-носителей и разгонных блоков,
средства центра координации эксплуатации и развития, а также
единую мультисервисную систему связи и передачи данных,
конфигурация которых формируется под управлением автоматизированной системы оперативно-технических пунктов управления центра координации эксплуатации и развития и командно-измерительных пунктов и которые представляют собой системы «человек - машина».

16. Наземный автоматизированный комплекс управления космическими аппаратами научного и социально-экономического назначения и измерений по п. 13, отличающийся тем, что
единая и унифицированная совокупность средств контроля и обработки информации, а также средств вычислительных сетей и связи является динамически изменяющейся во времени и представляет собой,
по меньшей мере одну работоспособную конфигурацию наземных комплексов управления космическими аппаратами, выделенную для интервала времени, заданного исходя из технологического цикла управления и
изменяемую путем оперативной направленной реконфигурации средств наземных комплексов управления космических аппаратов при невозможности выполнения запланированной последовательности создания комплексов управления космических аппаратов.



 

Похожие патенты:

Изобретение относится к способу управления космическими аппаратами и наземному комплексу управления. Для управления космическими аппаратами центром управления полетом принимают сигнал оперативного контроля с бортового комплекса управления космического аппарата, обрабатывают принятый сигнал, формируют признак наличия аварийных параметров, при его наличии формируют транзитную команду на съем телеметрической информации в текущем сеансе связи, передают ее в бортовой комплекс управления космического аппарата, записывают параметры информации оперативного контроля на сервера центральной базы данных аппаратно-программного комплекса центра управления полетом.

Изобретение относится к космической технике и может быть использовано для передачи телеметрической информации со спускаемого космического аппарата (СКА). Устройство передачи телеинформации со СКА содержит камеру телезонда с теплозащитной оболочкой, телезонд, крышку камеры, два вышибных заряда.

Изобретение относится к космонавтике и может быть использовано в навигации космического аппарата (КА). Принимают измерительные сигналы с КА и квазара, обеспечивают минимальный сдвиг по времени между измерениями с КА и квазара, выбирают проекцию углового положения квазара, максимально приближенную к положению КА, и с совпадением трасс прохождения сигналов от КА и квазара к измерительной станции, определяют двухчастотным методом смещение частот сигналов, определяют погрешность в измерениях скорости КА, определяют интегральную ионизацию трассы квазар-измерительная станция, вычисляют временную задержку прохождения сигнала, равную погрешности измерения дальности, передают полученные данные в баллистический центр совместно с результатами траекторных измерений КА для расчета траектории КА.

Изобретение относится к бортовым системам навигации (БСН) искусственных спутников Земли (ИСЗ) на низких (с высотой до 500-600 км) орбитах. БСН содержит устройство управления системой и соединенные с ним устройство преобразования навигационных сигналов в навигационные параметры, блок преобразования навигационных параметров в параметры движения центра масс (ЦМ) ИСЗ и блок прогнозирования параметров движения ЦМ.

Изобретение относится к космической технике и может быть использовано для защиты Земли и космических аппаратов (КА) от астероидно-кометной опасности (АКО). Выводят на орбиту КА со средствами аппаратуры наблюдения (АН) на базе телескопов, первичной обработки изображений и непрерывной прямой двусторонней радиосвязи, устанавливают АН на Луне, синхронизируют КА-телескопы по шкале единого времени, размещают главную оптическую ось АН каждого КА в точках Лагранжа, поочередно сканируют и получают изображения участков небесной сферы, определяют координаты и блеск наблюдаемых небесных объектов (НО), принимают и обрабатывают на наземном пункте управления изображения с зафиксированными новыми НО, с помощью информационно-аналитического центра мониторинга АКО собирают, обрабатывают, анализируют, систематизируют, каталогизируют и хранят информацию об объектах АКО, строят динамику перемещений НО во времени и пространстве, вычисляют орбиты НО, регулярно обновляют и передают потребителям информацию об уточненных параметрах НО, оценивают степень угрозы математическим методом, основанным на критерии минимума среднего риска и зависящим от стоимости ложной тревоги, вероятности отсутствия столкновения, условной вероятности ложной тревоги, весового множителя, стоимости ущерба при столкновении, вероятности столкновения, условной вероятности пропуска столкновения, плотности вероятности положения КА или Земли в пространстве, отношения правдоподобия, плотности вероятности положения опасных космических объектов в пространстве, принимают решения о дальнейших действиях.

Изобретение относится к радиолокационным системам (РЛС) в составе комплексов активной защиты Земли от приближающихся к ней объектов естественного и искусственного происхождения.

Изобретение относится к космической отрасли, а именно к способам обеспечения управления КА научного и социально-экономического назначения (НСЭН), и может использоваться при организации проведения сеансов связи (СС) с КА с целью принятия необходимых мер по разрешению конфликтных (КС) и парированию нештатных ситуаций (НШС) при эксплуатации технических средств наземного комплекса управления (НКУ), а именно командно-измерительных систем (КИС).

Изобретение относится к космической технике и может быть использовано для определения временной привязки телеметрических измерений с космического аппарата (КА). Способ определения временной привязки телеметрических измерений с КА включает генерацию на борту временных меток и передачу их с измеряемыми параметрами бортовых систем в сформированном телеметрическом кадре на наземный приемный пункт.

Группа изобретений относится к области траекторных измерений с использованием станции слежения (СС) за полетом космического аппарата (КА). При обмене информацией с КА по радиоканалу СС производит измерение дальности до КА и скорости ее изменения.

Изобретение относится к области оптических средств измерения параметров относительного сближения космических аппаратов (КА), а именно к оптико-электронным системам контроля скорости.

Изобретение относится к области слежения за полетом космических аппаратов (КА) и может быть использовано в командно-измерительной системе (КИС) спутниковой связи. Способ включает передачу с наземного сегмента управления КИС по линии «Земля - КА» сигналов, содержащих команды управления КА. На входе приемного устройства КА оценивают отношение сигнал/шум принятого сигнала. Это отношение переводят в отношение энергии бита к спектральной плотности мощности шума и далее рассчитывают вероятность ошибки на бит информации. Рассчитанное её значение включают в телеметрический кадр, который передают по линии «Земля - КА» в наземный комплекс управления. Там сравнивают рассчитанное и требуемое значения вероятности. Если первое меньше второго, то увеличивают мощность передающего наземного устройства до обеспечения требуемой вероятности ошибки на бит информации. Технический результат изобретения состоит в предотвращении сбоев при выдаче командно-программной информации и обеспечении непрерывных сеансов связи с космическим аппаратом на всех этапах его жизненного цикла. 1 ил.
Изобретение относится к области средств наблюдения или слежения за полетом космических аппаратов (КА). Способ включает прием и измерение амплитуд сигналов, излучаемых приближающимся активным КА. Для приема сигналов применяют плоские детекторы, которые располагают на сферической поверхности касательно к ней. Внутрь сферической оболочки помещают материал - поглотитель излучения. Направление на активный КА определяют по радиусу-вектору, направленному из центра сферы в точку касания детектора с максимальной амплитудой принятого сигнала. Техническим результатом является относительная простота и универсальность средств определения направления на приближающийся КА.

Изобретение относится к космической технике. Мобильный измерительный пункт включает центральный пост управления, комплекс обработки информации, радиотелеметрический комплекс, периферийную земную станцию спутниковой связи, антенную систему, средства локальной вычислительной сети, средства пользовательского интерфейса. Центральный пост управления включает совокупность переносных персональных компьютеров и терминал спутниковой связи. Комплекс обработки информации включает совокупность переносных персональных компьютеров, подключённых к коммутатору локальной вычислительной сети. Переносные персональные компьютеры центрального поста управления и/или комплекса обработки информации взаимодействуют через периферийную земную станцию спутниковой связи с центром анализа информации наземного автоматизированного комплекса управления космическими аппаратами и измерений и представляют собой оконечный пункт канала связи с центром анализа информации. Техническим результатом изобретения является обеспечение рационального распределения выполняемых комплексом задач. 2 з.п. ф-лы, 3 ил.

Изобретение относится к области космонавтики, в частности к комплексам средств измерений, сбора и обработки информации (КСИСО) от ракет-носителей (РН) и наземным измерительным комплексам (НИК) разгонных блоков (РБ). Во время информационного обеспечения запусков космических аппаратов ракетами космического назначения из средств наземного автоматизированного комплекса управления космическими аппаратами формируют индивидуальную для конкретного запуска пространственно-временную конфигурацию (архитектуру) КСИСО РН и/или НИК РБ с использованием измерительных пунктов в составе конфигурации (архитектуры), размещаемых в соответствии с траекторией полёта РН и/или РБ. Достигается повышение гибкости и надежности информационного обеспечения запуска РКН, а также увеличение эффективности использования наземных средств. 2 н. и 6 з.п. ф-лы, 10 ил.
Изобретение относится к области наблюдения или слежения за полетом космических аппаратов (КА) и может быть использовано для обнаружения инспекции КА. Согласно способу, принимают сигналы, излучаемые активным объектом, сближающимся с КА, и измеряют амплитуду принимаемых сигналов. Выполняют обработку и запоминание принимаемых сигналов, сравнивают амплитуду каждого очередного сигнала с амплитудой предыдущего сигнала. О факте инспекции КА судят по переходу режима последовательного увеличения амплитуды принимаемых сигналов к режиму снижения скорости нарастания амплитуды принимаемых сигналов и последующей их стабилизации на постоянном уровне. Технический результат состоит в обнаружении предполагаемой инспекции КА сравнительно простым методом.

Изобретение относится к радиолокации пассивных космических объектов (КО), например, крупных метеоритов и астероидов. Способ включает радиолокационное зондирование КО, вращающегося в процессе полета, периодической последовательностью высокоразрешающих радиосигналов наносекундной длительности. Число этих импульсов соответствует числу ракурсов КО за период его вращения, максимальный из всех периодов вращения КО вокруг его осей. Зондирующую последовательность пропускают через блок регулируемой задержки, перемножают с отраженной последовательностью высокоразрешающих сигналов, фиксируют временную задержку, определяют расстояние между КО и Землей. Одновременно зондирующую последовательность перемножают с отраженной, выделяют низкочастотное напряжение, пропорциональное доплеровскому смещению частоты, с помощью которого определяют величину направление радиальной скорости КО, оценивают время вероятного столкновения КО с Землей и принимают меры по недопущению столкновения. Техническим результатом изобретения является повышение эффективности защиты Земли от крупных метеоритов и астероидов. 2 ил.

Изобретение относится к космической технике и может быть использовано при создании бортовых систем управления космических аппаратов (КА). Бортовая система управления космическим аппаратом (КА) содержит бортовую аппаратуру командно-измерительной системы (БА КИС) со средством защиты информации от несанкционированного доступа, циркулирующей в системе управления КА. Причем бортовая система управления состоит из бортового центрального вычислительного комплекса, систем телеметрического контроля и блока управления бортового комплекса управления, а в цепь питания БА КИС вводится блок сетевых фильтров, состоящий из фильтрующих элементов и конденсаторов. Параметры фильтрующих элементов, обеспечивающих требуемое затухание сигналов, выбираются исходя из характеристик сигналов. Технический результат изобретения заключается в ослаблении сигналов, наведенных в цепь питания КА от БА КИС, посредством сетевых фильтров до безопасных величин. 1 з.п. ф-лы, 2 ил.

Изобретение относится к комплексам защиты Земли от космических объектов. Система определения параметров движения астероида содержит передатчик, дуплексер, приемопередающую антенну, приемные антенны, опорный генератор, генератор импульсов, электронный коммутатор, гетеродин, смеситель, фильтр разностной частоты, усилители высокой частоты, перемножители, полосовые фильтры, линию задержки, фазовые детекторы, фазовращатель на 90°, блок регистрации, фильтр нижних частот, фазометр и вычислительный блок. Техническим результатом изобретения является повышение точности определения параметров движения астероида, путем использования сложных сигналов с фазовой манипуляцией, приемных антенн, размещенных в азимутальной плоскости по окружности с возможностью их электронного вращения вокруг приемопередающей антенны, размещенной в центре окружности, и двух приемных антенн, размещенных в угломестной плоскости. 2 ил.

Изобретение относится к методам слежения за полётом космического аппарата (КА), на борту которого возникают магнитные помехи. Способ включает генерацию на борту КА временных меток и передачу их вместе с телеметрическими данными на наземный приемный пункт. При этом измеряют параметры орбиты КА и определяют по ним напряженность () магнитного поля Земли (МПЗ). На борту КА измеряют фактическую напряженность () МПЗ, причём к фиксированному моменту времени t0 гасят вращение КА относительно центра масс (для уменьшения вихревых токов). Ошибку временной привязки () телеметрических измерений в момент t0, коэффициент (k) накопления временной ошибки и погрешность () измерения МПЗ из-за влияния собственного магнитного поля КА определяют из условия минимума суммы квадратов разностей между модулями и (зависящей от , k и ) по последовательным моментам измерений. Техническим результатом изобретения является обеспечение точной временной привязки телеметрических измерений с КА в случае наличия изменяющихся во времени погрешностей в формировании бортовых временных меток.
Изобретение относится к способу территориального размещения мобильных командно-измерительных приёмо-передающих станций (мобильных станций). Для реализации способа определяют текущее положение мобильных станций и космических аппаратов, проводящих дистанционное зондирование заданного района Земли с помощью измерительных средств, прогнозируют траектории и рассчитывают трассы полета космических аппаратов с помощью вычислительных средств, определяют геометрический центр зондируемого района и антиподную точку на поверхности Земли с учетом ее угловой скорости вращения, периодов обращения космических аппаратов и ограничений по размещению мобильных станций, определяют место размещения мобильных станций и в соответствии с ними осуществляют их перемещение. Обеспечивается повышение эффективности сбора информации мобильными станциями одновременно от нескольких космических аппаратов и ее обработка.
Наверх