Устройство для обработки информации и 3d-изображений проблемного объекта

Изобретение относится к устройствам для обработки и генерации данных. Техническим результатом является повышение точности обработки информации и 3D-изображения проблемного объекта. Устройство содержит блоки демонстрации 3D-изображения проблемного объекта, блок аудиоподдержки, блок управления информацией, блок компьютерной поддержки, блок ранжированной полиплоскостной визуализации ситуаций, блок управления ранжированной полиплоскостной визуализацией, блок системной интеграции. 4 ил., 3 табл.

 

Изобретение относится к устройствам для обработки и генерации данных и изображений и предназначено для разрешения ситуаций с проблемным объектом в медицине, образовании, маркетинге, технической диагностике, прототипировании, моделировании, проектировании, управлении, совместной работе и т.п.

Известны технические решения - аналоги по устройствам для визуализации сложных объектов (Система виртуальной реальности и телереальности. Патент РФ №2131621). В качестве прототипа взято устройство 3D-стереовизуализации (Визуализация информации. Каталог 2010-11 гг., - М.: Полимедиа, 2010 [http://www.polymedia.ru]).

Прототип содержит блоки: демонстрации 3D-изображения объекта, аудиосистем, управления информацией и компьютерной поддержки. Прототип предназначен для обработки информации и 3D-изображений объекта в задачах невысокой и средней сложности, но не обеспечивает системно-интегрированного визуального представления о ситуации с проблемным объектом и об управлении ее разрешением в задачах повышенной сложности, поскольку характеризуется структурно-функциональной неполнотой, связанной с недостаточностью средств интеграции полимедиапредставлений как об объекте, так и о связанной с ним проблемной ситуации. В результате прототип не дает требуемого качества разрешения ситуации с проблемным объектом в задачах повышенной сложности.

Техническая задача предлагаемого решения - улучшение качества разрешения ситуаций с проблемным объектом (РСПО), представленным его 3D-изображениями и информацией, в частности - мнениями экспертов, в задачах повышенной сложности за счет технического эффекта, связанного с системной интеграцией (С.Л. Гольдштейн, С.С. Печеркин. О механизме системной интеграции // Системы управления и информационные технологии, 2011, №3.1(45), с. 127-131) параметров и факторов ранжированной полиплоскостной визуализации как самой ситуации, так и управления ее разрешением.

В качестве характеристики качества взята точность (Т), как мера близости фактического и желаемого результатов.

Ее количественная оценка (ТРСПО) доступна по формулам:

где ТВО - точность визуализации объекта,

ТПЗ - точность постановки задачи по разрешению ситуации с объектом,

ТМРЗ - точность метода решения задачи,

ТВ - точность визуализации ситуации, действий, промежуточных и конечных результатов по решению задачи,

ТСИ - точность системной интеграции,

αi - веса, Σαi=1.

Поскольку ТВО, ТПЗ и ТМРЗ не относятся к предмету предлагаемого изобретения, т.е. одинаковы в прототипе и в предлагаемом решении, значимы лишь точность визуализации в части:

где ТВС - точность визуализации ситуации с объектом,

ТВСИ - точность визуализации системной интеграции,

ТУВ - точность управления визуализациями,

Σα4j=α4,

и точность системной интеграции в части:

где ТИИ - точность интеграции информации об объекте и ситуаций,

ТИИК - точность интеграции информационных каналов,

ТИМОС - точность интеграции моделей объекта и ситуаций,

ТИП - точность интеллектуальной подсказки,

Σα5j=α5,

Составляющие точности:

где ПППФ - полнота перечня параметров и факторов точности, подтвержденная экспертами,

КОПФ - количественная (инструментальная или экспертная) оценка значений параметров и факторов точности,

ТВОЦ - точность визуализации оценок,

k=1 - для ситуации,

k=2 - для системной интеграции,

k=3 - для управления визуализациями.

Для решения поставленной задачи устройство содержит блоки: демонстрации 3D-изображения проблемного объекта, аудиосистем, управления информацией и компьютерной поддержки, а также ранжированной полиплоскостной визуализации ситуаций, управления ранжированными полиплоскостными визуализациями и системной интеграции.

Блоки соединены так, что блок управления информацией связан по первому и второму входам с первым и вторым входами блока системной интеграции и одновременно с внешней средой (блоки коммуникации, например, гаджеты, лиц, заинтересованных в разрешении ситуаций с проблемным объектом) по каналам «запрос» и «внешняя информация», по третьему входу связан с пятым выходом блока компьютерной поддержки, по четвертому входу - с первым выходом блока системной интеграции, по выходу 1 - с первым входом блока демонстрации 3D-изображения, по выходу 2 - с первым входом блока аудиосистем, который вторым входом соединен с первым выходом блока управления ранжированной полиплоскостной визуализацией и третьим входом - со вторым выходом блоком компьютерной поддержки, а первым выходом - с внешней средой по каналу «аудиоинформация»; блок демонстрации 3D-изображения соединен по второму входу с первым выходом блока компьютерной поддержки, а первым выходом - с внешней средой по каналу «видеоинформация», блок компьютерной поддержки по входу 1 соединен с внешней средой (канал «облачные вычисления»), по выходу 3 - со вторым входом блока ранжированной полиплоскостной визуализации, по выходу 4 - со вторым входом блока управления ранжированной полиплоскостной визуализацией, по выходу 6 - с третьим входом блока системной интеграции, третий, четвертый и пятый выходы которого связаны с внешней средой по каналам «уточненный диагноз ситуации», «уточненный прогноз ситуации», «системная подсказка», второй выход подан на первый вход блока управления ранжированной полиплоскостной визуализацией, второй выход которого связан с первым входом блока ранжированной полиплоскостной визуализации, выход которого соединен с внешним каналом «е» (видеоинформация).

При этом вновь введенный блок ранжированной полиплоскостной визуализации включает модули визуализации: тезаурусной онтологии с контентом, когнитивных карт, служебных пространств объекта и ментальных пространств субъектов, критериев и оценок, алгоритмов действий. Вновь введенный блок управления ранжированной полиплоскостной визуализацией ситуации включает модули: фиксации состояний, критериев качества управления, реализации управления, парирования помех управления и оценок результатов управления. А вновь введенный блок системной интеграции включает модули: отражения видео-аудиоситуаций, информационной логистики, системно-научной поддержки, человекомашинной интеллектуальной поддержки/подсказки.

Сущность предложенного решения заключается в том, что субъекту как лицу, ответственному за разрешение ситуаций (ЛРС) с проблемным объектом, обеспечивается системно-интеграционная подсказка в части анализа, диагностирования и управления за счет введения в структуру устройства трех дополнительных блоков: ранжированной полиплоскостной визуализации ситуаций, управления ею и системной интеграции.

На фиг. 1 представлена схема устройства, которое включает блок 1 демонстрации 3D-изображения проблемного объекта, блок 2 аудиоподдержки, блок 3 управления информацией, блок 4 компьютерной поддержки, а также блок 5 ранжированной полиплоскостной визуализации ситуаций, блок 6 управления ранжированной полиплоскостной визуализацией и блок 7 системной интеграции, выделенные штриховкой.

Устройство используют следующим образом. На вход «б» поступает внешняя информация, во-первых, от сканера (например, томографа) в виде совокупности 2D-данных (срезов, сканов) о проблемном объекте (например, человеческом органе с патологией), во-вторых, - от специалистов/экспертов, а на вход «а» - задача как запрос от субъекта-заказчика (например, врача, медицинского менеджера или больного и его семьи) на анализ, диагностику, прогноз и действия по разрешению ситуации (например, анализ истории болезни, медицинский диагноз, прогноз исхода и действия врача по лечению и реабилитации). С помощью блока 3 субъект управляет информацией, необходимой для генерирования 3D-визуализации объекта в виде голограммы, CAVE-изображения и т.п. (блок 1), и модерацией аудиомнений специалистов/экспертов (блок 2) по поводу 3D-визуализации. Работа блоков 1-3 поддержана компьютерной мощностью блока 4, обеспечивающего обработку информации (до текстов, таблиц, диаграмм, рисунков, графиков, видео) и имеющего выход в ресурс «облачных» вычислений (вход «в»). С помощью блоков 5 и 6 ЛРС формирует от 4-х до 6-ти видеоплоскостей, ранжированных, т.е. ситуативно упорядоченных по значимости и отражающих ситуацию с проблемным объектом и ход ее разрешения. В задачах повышенной сложности субъект использует блок 7, интегрируя все ресурсы, необходимые для разделения ситуаций на предметные и системные и последующего генерирования системно-интеллектуальных подсказок (выход «и»). В результате во внешнюю среду, т.е. заказчику или ЛРСу, выводится не только видео-аудиоинформация о проблемном объекте (выходы «е», «д», «г»), но и уточненные диагноз и прогноз вместе с системной подсказкой (выходы «ж», «з», «и» соответственно).

На фиг. 2 представлена схема блока 5 - ранжированной полиплоскостной визуализации ситуации. С его помощью формируют 2D- и 3D-изображения различных аспектов работы ЛРС по анализу и разрешению ситуаций: упорядочение основных понятий по ситуации на 4-6-ранжированных видеоплоскостях (модуль 5.1); вычленение понятий, соответствующих запросу заказчика (модуль 5.2); построение служебного пространства состояний объекта и ментальных пространств субъектов (модуль 5.3); формирование критериев и оценок разрешения ситуаций (модуль 5.4); генерирование алгоритмов (например, на языке блок-схем по ГОСТ 19.701) разрешения ситуаций (модуль 5.5). Работа всех модулей блока 5 обеспечена связями: внешний вход 1 связан с входами 2 модулей 5.1-5.5, а внешний вход 2 - с входами 1 этих модулей; 1-е выходы модулей 5.1-5.4 поданы на 3-й вход модуля 5.5; а его 1-й выход - на внешний выход «е», а выход 2 модуля 5.5 связан с входами 3 модулей 5.1-5.4.

На фиг. 3 представлена схема блока 6 - управления ранжированной полиплоскостной визуализацией. С его помощью ЛРС управляет ранжированной полиплоскостной визуализацией ситуаций, задавая фактическое и желаемое состояние ситуаций (модуль 6.1), выбирая критерии точности управления (модуль 6.2), реализуя управление путем расходования информационных ресурсов (модуль 6.3), парируя помехи (модуль 6.4) и оценивая результаты управления (модуль 6.5). Работа всех модулей блока 6 реализуется за счет связей: внешний вход 1 приходит на первые входы модулей 6.1÷6.5, а внешний вход 2 - на их вторые входы; первые выходы модулей 6.1, 6.2, 6.4 и 6.5 поступают на третий вход модуля 6.3, выходы которого являются внешними выходами блока 6.

На фиг. 4 представлена схема блока 7 - системной интеграции. С его помощью ЛРС интегрирует всю видео- и аудиоинформацию о проблемном объекте и о ситуации (модуль 7.1), обеспечивает информационную логистику по внутренним и внешним каналам (модуль 7.2), дает системную поддержку для задач повышенной сложности (модуль 7.3) и когнитивную поддержку от системы, основанной на знаниях (модуль 7.4). Работа всех модулей блока 7 реализуется за счет связей: внешние входы 1, 2, 3 связаны с соответствующими входами модулей 7.1÷7.4; первый, второй, третий выходы модулей 7.3 и 7.4 соединены с внешними выходами 3, 4 и 5; четвертый и пятый выходы модуля 7.4 связаны с внешними выходами 1 и 2, а первые выходы модулей 7.1 и 7.2 служат четвертым и пятым входами модулей 7.3 и 7.4.

В результате взаимодействия субъектов (заказчика, экспертов и ЛРС) с блоками 1÷4 реализуется разрешение ситуаций в задачах малой и средней сложности, а для задач повышенной сложности используются дополнительные блоки 5-7, обеспечивающие интеграцию объемной визуализации проблемного объекта и аудио-мнения специалистов/экспертов с ранжированной полиплоскостной визуализацией ситуаций и когнитивными подсказками по предметным и системным аспектам.

Пример приложения предлагаемого технического устройства связан с медицинской задачей повышенной сложности, а именно: количественной оценки диссеминированного поражения легких (ДПЛ) больных туберкулезом (таблица 2). Достигнутый результат - точная (количественная) оценка диссеминации вместо качественной, доступной в настоящее время средствами прототипа.

Возможности прототипа и предлагаемого решения с учетом ТРСПО сравнимы и количественно:

где ТФУ - точность функционирования устройства,

ТФБm - точность функционирования m-го блока устройства по прототипу,

- точность функционирования вновь введенного m-го блока,

γm - веса, γΣm=1.

С учетом табл. 2 сравнение оценок точности функционирования устройства по прототипу и предлагаемому решению для приведенной задачи повышенной сложности представлено в табл. 3.

Видно, что для примера из табл. 3 техническая задача решена с помощью предлагаемого устройства в 2 раза лучше, чем с прототипом.

Таким образом, при реализации предлагаемого решения расширяются функциональные возможности устройства обработки информации и 3D-изображения проблемного объекта, повышается качество работы субъекта как лица, отвечающего за разрешение ситуаций, и, в конечном итоге, существенно улучшается точность разрешения ситуаций с проблемным объектом при повышенной сложности задач.

Устройство для обработки информации и 3D-изображений проблемного объекта, содержащее блоки демонстрации 3D-изображений объекта, аудиосистем, управления информацией и компьютерной поддержки, при этом блок компьютерной поддержки связан со всеми блоками и с внешними блоками-коммуникаторами субъектов как лиц, заинтересованных в разрешении ситуаций с проблемным объектом, по входу, блок управления информацией связан по первому и второму входам с внешней средой, а по первому и второму выходам - с блоком создания 3D-изображения и блоком аудиосистем соответственно, первые выходы которых связаны с блоками-коммуникаторами, отличающееся тем, что дополнительно введены блок ранжированной полиплоскостной визуализацией ситуаций и блок управления ею, а также блок системной интеграции, при этом блок ранжированной полиплоскостной визуализации ситуаций включает модули упорядочения основных понятий по проблеме вычленения понятий, соответствующих запросу заказчика, построения служебного пространства состояний объекта и ментальных пространств субъектов на четырех-шести видеоплоскостях, формирования критериев и оценок разрешения ситуаций, генерирования алгоритмов разрешения ситуаций, блок управления ранжированной полиплоскостной визуализацией включает модули фиксации фактического и желаемого состояния ситуаций, критериев качества управления, реализации управления, парирования помех и оценки результатов управления, а блок системной интеграции включает модули интеграции видео- и аудиоинформации о проблемном объекте и о ситуации с ним, информационной логистики, системной и когнитивной поддержек, причем первый и второй входы блока системной интеграции и его третий, четвертый и пятый выходы связаны с блоками-коммуникаторами субъектов, а первый и второй выходы - с четвертым и первым входами блока управления информацией и блока управления ранжированной полиплоскостной визуализацией соответственно, при этом первый и второй выходы последнего поступают на второй вход блока аудиосистем и на первый вход блока ранжированной полиплоскостной визуализации ситуаций, выход которого связан с блоками-коммуникаторами субъектов.



 

Похожие патенты:

Изобретение относится к области отображения геопространственной информации для создания трехмерных цифровых моделей объектов и территорий. Технический результат - обеспечение повышения оперативности доступа к актуальной информации на конкретную территорию.

Изобретения относится к области интеллектуальных терминалов. Технический результат - обеспечение увеличения быстродействия при обработке сигнала.

Изобретение относится к области навигации. Технический результат - обеспечение штурманского сопровождения движения транспортного средства на бездорожной местности.

Изобретение относится к медицине, а именно к терапевтической стоматологии и предназначено для снижения количества ошибок и осложнений эндодонтического лечения постоянных зубов.

Изобретение относится к области отображения веб-страниц. Технический результат - одновременное представление последовательно выбранных и запрошенных веб-страниц.

Изобретение относится к устройствам обработки информации. Технический результат заключается в повышении скорости ввода информации.

Изобретение относится к области моделирования изображения глаза. Технический результат - обеспечение генерирования изображения глаза посредством изменения геометрии ресниц.

Изобретение относится к устройствам захвата изображений и способам управления ими. Техническим результатом является обеспечение оптической коррекции снятого изображения.

Изобретение относится к идентификации преобразований, которые могут применяться по меньшей мере к части изображения документа для повышения качества оптического распознавания символов (OCR).

Изобретение относится к медицине, а именно к терапевтической стоматологии, и предназначено для контроля эндодонтического лечения постоянных зубов. Исследование проводят на конусно-лучевом компьютерном томографе «Picasso Trio» с программой EzImplant.

Изобретение относится к области поиска изображений. Технический результат - обеспечение повышения эффективности процесса поиска изображений, посредством использования композитного параметра визуальных характеристик. Способ обработки изображений включает: идентификацию первой локальной области изображения и второй локальной области изображения; определение первого визуального слова, связанного с первой локальной областью изображения, и второго визуального слова, связанного со второй локальной областью изображения; определение композитного параметра визуальных характеристик, связанного с искомым изображением, причем композитный параметр визуальных характеристик содержит первое визуальное слово и второе визуальное слово и представляет собой набор по меньшей мере двух дескрипторов из двух соответствующих областей изображения и параметр соотношения областей, характеризующий соотношение между двумя соответствующими областями изображения; при этом индексирование изображения осуществляют с помощью указанного композитного параметра визуальных характеристик. 6 н. и 30 з.п. ф-лы, 8 ил.

Изобретение относится к технологиям обработки изображений, используемых для офтальмологической диагностики. Техническим результатом является установление подходящих условий захвата изображений, чтобы получить в заданной области захвата изображений множество изображений с большим увеличением, имеющих угол рассматривания меньше, чем у области захвата изображений. Предложено устройство обработки информации для управления в одной области захвата изображений в глазном дне захватом изображений для множества изображений с большим увеличением, имеющих угол рассматривания меньше угла рассматривания области захвата изображений. Устройство содержит блок представления, сконфигурированный для представления оператору множества базовых шаблонов для выбора, причем каждый упомянутый шаблон представляет распределение положений, в которых нужно соответственно захватывать изображения с большим увеличением посредством сканирующего лазерного офтальмоскопа с адаптивной оптикой (AOSLO). Устройство осуществляет регулировку в соответствии с командой оператора условия захвата изображений для множества изображений с большим увеличением, ассоциированных с базовым шаблоном, выбранным из множества базовых шаблонов. 5 н. и 16 з.п. ф-лы, 47 ил.

Изобретение относится к технологиям оптического определения положения и/или ориентации объекта в пространстве на основе изображений, полученных от камер. Техническим результатом является повышение точности определения положения, ориентации объекта в пространстве. Предложен способ оптического определения положения и/или ориентации объекта в пространстве на основе изображений от по меньшей мере одной камеры. Способ содержит этап, на котором записывают по меньшей мере одно двумерное изображение объекта и извлекают из указанного изображения двумерные координаты точек контура. Далее, согласно способу, рассчитывают линию контура модели, в зависимости от двумерных координат точек контура. А также определяют, на основе линии контура модели, по меньшей мере одну двумерную область объекта. 4 н. и 14 з.п. ф-лы, 6 ил.

Группа изобретений относится к медицинской технике, а именно к средствам обработки изображений и видеоданных изображения глаз собеседников во время проведения видеочатов, видеоконференций. Способ машинного обучения предиктора для коррекции ориентации взгляда на изображении состоит в том, что получают множество пар изображений, содержащих внутри каждой пары изображения одного и того же человека, определяют положения глаз на каждой паре изображений, обучают предиктор, выдающий корректирующий вектор смещения, так чтобы для каждой пары изображений при замене цветовых компонент каждого пикселя первого изображения из пары на цветовые компоненты другого пикселя первого изображения из пары, смещенного согласно предсказанию предиктора, получилось изображение, максимально похожее на второе изображение пары и сохраняют предиктор. Способ коррекции изображения глаз характеризуется тем, что загружают предиктор, получают, по крайней мере, один кадр лица человека, определяют положения глаз человека на изображении и формируют две прямоугольные области, близко описанные вокруг глаз, заменяют цветовые компоненты каждого пикселя в области глаз на цветовые компоненты пикселя, смещенного согласно предсказанию предиктора машинного обучения. Техническим результатом изобретений является повышение точности коррекции изображения глаз при уменьшении ресурсоемкости процесса обработки видеоизображения. 2 н. и 11 з.п. ф-лы, 4 ил.

Настоящее изобретение раскрывает способ и устройство сегментации изображения, относящиеся к области обработки изображений. Технический результат состоит в повышении эффективности сегментации большого количества изображений. Способ сегментации изображения содержит этапы, на которых: устанавливается модель особенностей изображения; пробная точка переднего плана и пробная точка заднего плана изображения получаются согласно модели особенностей; модель классификации переднего плана и заднего плана устанавливаются согласно модели особенностей, а также пробной точке переднего плана и пробной точке заднего плана; изображение сегментируется согласно предварительно определенному алгоритму разреза графа, и конкретным образом изображение сегментируется согласно предварительно определенному алгоритму разреза графа посредством модели классификации переднего плана и заднего плана и краевой информации, относящейся к пикселам. Модель классификации переднего плана и заднего плана устанавливается путем автоматического определения пробной точки переднего плана и пробной точки заднего плана и путем комбинации модели особенностей, и сегментация изображения достигается посредством модели классификации переднего плана и заднего плана. 3 н. и 16 з.п. ф-лы, 9 ил.

Изобретение относится к области создания четырехмерных электромагнитных томографических дифференциальных объединенных изображений. Техническим результатом является обеспечение формирования объединенного томографического изображения, отображающего функциональную/молекулярную информацию. Множество источников электромагнитного поля и детекторы создают и детектируют область электромагнитного поля в заданной области. Биологическая ткань помещается в заданную область, и формируется электромагнитное поле с использованием выбранного множества источников. Поле выборочно оценивается с тем, чтобы каждый из выбранного множества детекторов "распознал" источник поля из множества источников электромагнитного поля. Источники и детекторы управляются так, чтобы поля, созданные выбранными источниками, детектировались выбранными детекторами после взаимодействия с тканью. Исходя из поля, полученного каждым детектором, на основе каждого поля, созданного тканью, получают сложную матрицу интерференции, и анатомическая и функциональная информация реконструируется на основе такой матрицы. 5 н. и 16 з.п. ф-лы, 29 ил.

Изобретение относится к системе радионуклидной визуализации. Техническим результатом является повышение точности реконструкции изображения. Система радионуклидной визуализации содержит систему идентификации кристаллов, которая принимает залитое изображение, которое включает в себя множество пиков, при этом каждый пик является откликом на излучение, обнаруженное соответствующим сцинтилляционным кристаллом. Процессор идентификации кристаллов разбивает залитое изображение на множество областей, при этом каждую область маскируют для соответствия одному из матрицы детекторов ядерных излучений. Формируют изображение моделей, в котором по меньшей мере одна гауссова модель представляет идентифицированные пики. Определяют неправильно идентифицированные пики в изображении моделей, на котором положения пиков на залитом изображении отличаются от соответствующего сцинтилляционного кристалла, и корректируют положения неправильно идентифицированных пиков на залитом изображении. Калибровочный процессор корректирует геометрические искажения в полученных данных проекций по скорректированным пикам. 4 н. и 11 з.п. ф-лы, 8 ил.

Изобретение относится к обработке банкнот для проверки степени загрязнения. Технический результат заключается в повышении надежности проверки. Банкноту облучают световым излучением на множестве длин волн. Получают изображения банкноты для каждой длины волны. Формируют изображение отношения IR, имеющее значение пикселя, которое представляет собой отношение значения пикселя, изображения, полученного при использовании видимого излучения, к значению соответствующего пикселя изображения, полученного с использованием инфракрасного света. Изображение банкноты и изображение отношения IR корректируют, используя коэффициент, соответствующий типу банкноты, ориентации банкноты и длине волны. По изображению банкноты или изображению отношения IR, используя информацию, относящуюся к типу банкноты, ориентации банкноты и длине волны, рассчитывают промежуточные значения оценки для каждой длины волны. Рассчитывают расстояние Махаланобиса на основе промежуточных значений оценки, среднего значения и матрицы вариации-ковариации для промежуточных значений оценки и определяют степень загрязнения на основе расстояния Махаланобиса. 2 н. и 7 з.п. ф-лы, 16 ил.

Изобретение относится к области навигации. Техническим результатом является эффективная навигация в помещении. Способ навигации в помещении содержит размещение меток в виде монохромных или цветных двумерных изображений, которые имеют заданный формат, являются графическими кодами их индивидуальных номеров и представляют собой закодированный двухмерный код своего номера, на любых горизонтальных или вертикальных поверхностях внутри помещений, предпочтительно таким образом, чтобы при любом направлении обзора в объектив камеры мобильного устройства попадала как минимум одна метка, составление схемы размещения меток в каждом конкретном помещении, составление списка указателей с присвоением идентификатора каждому указателю, составление таблицы, содержащей в двух столбцах номера меток, образующих в строках первого и второго столбцов уникальные сочетания номеров меток, включая те сочетания номеров меток, в которых номер метки из первого столбца равен номеру метки из второго столбца, в третьем столбце - идентификатор указателя, обозначающего направление кратчайшего пути от исходного места в помещении, обозначенного меткой с номером из первого столбца, до целевого места, обозначенного меткой с номером из второго столбца, при этом при совпадении номеров в первом и втором столбцах используется идентификатор указателя, обозначающего достижение цели, установка программного обеспечения на мобильное устройство пользователя, оборудованное видеокамерой, выбор места назначения из списка всех мест помещения, в которых расположена по крайней мере одна метка, обзор помещения при помощи мобильного устройства при включенном программном обеспечении, получающего изображение с камеры мобильного устройства, производящего вывод полученного изображения на экран, обработку полученного изображения, обнаружение графических меток заданного формата, осуществляющего компенсацию перспективы, производящего декодирование меток, получение номеров распознанных меток, вывод графического указателя на экран мобильного устройства пользователя путем наложения поверх изображения, полученного с камеры мобильного устройства, изображения графического указателя, указывающего направление кратчайшего пути до места в помещении, где находится целевая метка. 10 ил.

Предложенная группа изобретений относится к области медицины. Предложены персонализированный ген-активированный имплантат для замещения костных дефектов у млекопитающего и способ его получения, предусматривающий проведение компьютерной томографии области костной пластики, моделирование костного дефекта, трехмерную печать формы биосовместимого носителя и совмещение биосовместимого носителя с нуклеиновыми кислотами. Предложен способ лечения костных дефектов или атрофии костной ткани млекопитающего, предусматривающий имплантацию в костную ткань персонализированного ген-активированного имплантата. Предложенная группа изобретений обеспечивает эффективные средства и методы замещения костных дефектов млекопитающего с помощью 3D-реконструкции. 3 н. и 1 з.п. ф-лы, 7 ил., 2 пр.
Наверх