Неорганический отвержденный пеноматериал для остановки течей на поверхности в районе добычи угля в пласте неглубокого залегания и способ его получения

Группа изобретений относится к неорганическому отвержденному пеноматериалу для остановки протечек с поверхности в районе добычи угля из пласта неглубокого залегания и способу получения неорганического отвержденного пеноматериала. Неорганический отвержденный пеноматериал для остановки протечек с поверхности в районе добычи угля в пласте неглубокого залегания содержит, мас.ч.: воду 40-60, угольную золу 100, гашеную известь 5, цемент 20, порошок из бычьих рогов 0,15-0,3, алюминиевую пудру 4, оксид меди 1-3,5, полифосфорную кислоту 0,4-1,4, гидроксид алюминия 0,04-0,1, гидроксипропилметилцеллюлозу 0,8-1,2, стальные волокна 3, причем оксид меди характеризуется размером, соответствующим размеру ячейки сита, равному 300 меш. Способ получения указанного выше пеноматериала, в котором вязкая жидкость, образованная порошком из бычьего рога, способна понижать поверхностное натяжение водосодержащей жидкости, равномерно распределять твердые частицы в суспензии и улучшать стабильность пены; при этом алюминиевая пудра и гашеная известь вступают в химическую реакцию с образованием газа, причем они составляют систему, самостоятельно генерирующую газ для суспензии; оксид меди, полифосфорная кислота и гидроксид алюминия составляют неорганическую связующую систему, а время затвердевания является регулируемым путем подбора соотношения этих трех компонентов; при этом способ производства включает следующие стадии: стадия 1: 35-55 мас.ч. воды, 100 мас.ч. угольной золы, 20 мас.ч. цемента, 0,8-1,2 мас.ч. гидроксипропилметилцеллюлозы, 3 мас.ч. стальных волокон и 5 мас.ч. гашеной извести добавляют в специальную емкость для перемешивания и перемешивают мешалкой со скоростью 5000±200 об/мин в течение 2 минут с образованием суспензии на основе угольной золы; стадия 2: 5 мас.ч. воды и 0,15-0,3 мас.ч. порошка из бычьего рога добавляют в специальную емкость для перемешивания В и перемешивают мешалкой со скоростью 10000±500 об/мин в течение 3 минут с образованием вязкой жидкости; стадия 3: вязкую жидкость с порошком из бычьего рога, находящуюся в специальной емкости для перемешивания В, добавляют в суспензию на основе угольной золы в специальной емкости для перемешивания А и перемешивают мешалкой в специальной емкости для перемешивания А со скоростью 12000±500 об/мин в течение 3 минут с образованием перемешанного раствора; стадия 4: добавляют смесь, полученную из 1-3,5 мас.ч. оксида меди, 0,4-1,4 мас.ч. полифосфорной кислоты и 0,04-0,1 мас.ч. гидроксида алюминия в перемешанный раствор и перемешивают мешалкой со скоростью 5000±200 об/мин в течение 5 минут с образованием перемешанного связующего раствора; стадия 5: добавляют 4 мас.ч. алюминиевой пудры в перемешанный склеивающий раствор и перемешивают мешалкой со скоростью 12000±500 об/мин в течение 3 минут с получением неорганического отвержденного пеноматериала для герметизации поверхностных трещин в угольной шахте. Технический результат - получение пеноматериала, обладающего высокой способностью проникать в трещины, хорошей термоизоляцией, высокой прочностью на сжатие и термостойкостью. 2 н.п. ф-лы, 2 пр.

 

Область техники

Настоящее изобретение относится к неорганическому отвержденному пеноматериалу и способу получения неорганического отвержденного пеноматериала, в частности к неорганическому отвержденному пеноматериалу для остановки протечек с поверхности в районе добычи угля из пласта неглубокого залегания и способу получения неорганического отвержденного пеноматериала.

Уровень техники

Спонтанное возгорание угля является одной из самых главных опасностей, с которыми сталкиваются при обеспечении безопасности на угольных шахтах в Китае, и серьезно угрожает безопасности подземных работников и нормальному проведению горных работ в забое, и может приводить к серьезным экономическим убыткам. В последние годы направление энергетической стратегии Китая смещается на запад. Пласты угля неглубокого залегания в добывающих районах западного Китая имеют тенденцию к спонтанному возгоранию, небольшую глубину залегания (обычно 30-250 метров) и характеризуются серьезной протечкой воздуха через трещины с поверхности, что приводит к все более и более частым случаям спонтанного возгорания угля. Для того чтобы эффективно предотвращать и контролировать протечки воздуха через трещины с поверхности, проведение герметизации трещин для изолирования кислорода от остаточного угля в выработанных районах на основании полученной закономерности возникновения воздушных протечек через щели, является одной из наиболее эффективных мер по предотвращению катастрофических пожаров в угольных шахтах. Для эффективного предотвращения и контроля спонтанного возгорания угля, подвергшегося воздушным протечкам через поверхностные трещины, в Китае обычно используют засыпку больших участков поверхности, закачку жидкого цемента, закачку геля, полиуретановой пены, легкого пастообразного материала или высокоэффективного герметизирующего от воды материала и т.д. Однако все эти способы обладают недостатками: засыпка больших участков поверхности может только предварительно заполнить заметные широкие трещины, требует больших трудозатрат и большого количества материалов; в ходе закачки водосодержащей жидкости водосодержащая жидкость может протекать по трещинам в подземный забой и подземные пути, обеспечивая низкую эффективность; гели солей аммония разлагаются при нормальной температуре и дают газообразный аммиак, который сильно загрязняет окружающую среду в районе добычи; полимерные гели дорого стоят и могут легко растрескиваться; полиуретановые пеноматериалы как правило возгораются при высоких температурах и дорого стоят; легкие пастообразные материалы обладают неудовлетворительной прочностью на сжатие и легко дают маленькие трещины; хотя высокоэффективные герметизирующие от воды материалы обладают высокой проникающей способностью и могут проникать в пустоты в угольном пласте, они обладают неудовлетворительной прочностью на сжатие и их органические компоненты обладают плохой термической стабильностью.

Краткое описание изобретения

Ввиду недостатков в существующих способах герметизации воздушных протечек через трещины с поверхности в районе добычи угля в пласте неглубокого залегания согласно настоящему изобретению предложен неорганический твердый пенообразующий материал для остановки протечек с поверхности в районе добычи угля в пласте неглубокого залегания, который обладает фактором пенообразования, равным 7-10 раз, может быстро проникать в небольшие трещины, хорошо герметизирует воздушные протечки, имеет регулируемое время затвердевания, высокую прочность на сжатие после завердевания, высокую термостойкость и хорошее качество термоизоляции, материал основы является чисто неорганическим и не содержит полимеров; кроме того, согласно настоящему изобретению предложен способ получения данного неорганического отвержденного пеноматериала.

Техническое решение согласно настоящему изобретению включает неорганический отвержденный пеноматериал и способ получения неорганического отвержденного пеноматериала; неорганический отвержденный пеноматериал содержит следующие компоненты и части по массе (мас.ч.): вода: 40-60 мас.ч., угольная зола: 100 мас.ч., гашеная известь: 5 мас.ч., цемент: 20 мас.ч., порошок из бычьих рогов: 0,15-0,3 мас.ч., алюминиевая пудра: 4 мас.ч., оксид меди: 1-3,5 мас.ч., полифосфорная кислота: 0,4-1,4 мас.ч., гидроксид алюминия: 0,04-0,1 мас.ч., гидроксипропилметилцеллюлоза: 0,8-1,2 мас.ч. и стальные волокна: 3 мас.ч.; оксид меди характеризуется размером, соответствующим размеру ячейки сита, равному 300 меш.

Вязкая жидкость, образованная порошком из бычьих рогов, способна понижать поверхностное натяжение суспензии, равномерно распределять твердые частицы в водосодержащей жидкости и улучшать стабильность пены; алюминиевая пудра и гашеная известь вступают в химическую реакцию и выделяют газ, образуя систему, самостоятельно генерирующую газ для суспензии; оксид меди, полифосфорная кислота и гидроксид алюминия являются неорганической связующей системой, а время затвердевания регулируется подбором соотношения этих трех компонентов; процесс производства выглядит следующим образом.

Стадия 1: добавляют 35-55 мас.ч. воды, 100 мас.ч. угольной золы, 20 мас.ч. цемента, 0,8-1,2 мас.ч. гидроксипропилметилцеллюлозы, 3 мас.ч. стальных волокон и 5 мас.ч. гашеной извести в специальную емкость для перемешивания А и перемешивают мешалкой со скоростью 5000±200 об/мин в течение 2 минут с образованием суспензии на основе угольной золы.

Стадия 2: 5 мас.ч. воды и 0,15-0,3 мас.ч. порошка из бычьих рогов добавляют в специальную емкость для перемешивания В и перемешивают мешалкой со скоростью 10000±500 об/мин в течение 3 минут с образованием вязкой жидкости.

Стадия 3: добавляют вязкую жидкость с порошком из бычьих рогов, находящуюся в специальной емкости для перемешивания В, в суспензию на основе угольной золы в специальной емкости для перемешивания А, и перемешивают мешалкой в специальной емкости для перемешивания А со скоростью 12000±500 об/мин в течение 3 минут с образованием перемешанного раствора.

Стадия 4: добавляют смесь, полученную из 1-3,5 мас.ч. оксида меди, 0,4-1,4 мас.ч. полифосфорной кислоты и 0,04-0,1 мас.ч. гидроксида алюминия в перемешанный раствор и перемешивают мешалкой со скоростью 5000±200 об/мин в течение 5 минут с образованием перемешанного связующего раствора.

Стадия 5: 4 мас.ч. алюминиевой пудры добавляют в перемешанный связующий раствор и перемешивают мешалкой со скоростью 12000±500 об/мин в течение 3 минут с получением неорганического отвержденного пеноматериала для герметизации поверхностных трещин в угольных шахтах.

Преимущества: в техническом решении, описанном выше, вязкая жидкость настоящего изобретения, образованная порошком из бычьих рогов и водой, может равномерно распределять твердые частицы в суспензии на основе угольной золы, улучшая стабильность пены и повышая пенообразующую способность водорода; оксид меди, полифосфорная кислота и гидроксид алюминия реагируют, давая неорганическую связующую систему, а время затвердевания раствора может быть отрегулировано в промежутке от 15 минут до 2 часов при комнатной температуре путем подбора соотношения этих трех компонентов; и наконец, алюминиевый порошок и водный раствор гашеной извести (гидроксид кальция) реагируют с образованием водорода и служат в качестве самовзаимодействующей порообразующей добавки суспензии. Гидроксипропилметилцеллюлоза может загустить суспензию на раннем этапе и является полезной для просачивания жидкой пены в небольшие трещины и может повысить прочность твердой пены после затвердевания жидкой пены; стальные волокна равномерно распределены по стенкам пор после образования твердой пены и служат в качестве скелетов стенок пор после затвердевания и объединяют пену вместе и тем самым улучшают прочность на сжатие твердой пены; цемент может ускорить реакцию гидратации угольной золы и он служит в качестве активирующего агента для ускорения затвердевания угольной золы. Неорганический отвержденный жидкий пеноматериал по настоящему изобретению не требует какого-либо стороннего источника газа, а использует только газ, образованный в ходе химической реакции между алюминиевым порошком и гашеной известью, как источник газа; поэтому технологическая схема проста; жидкая пена обладает высокой проникающей способностью, регулируемым временем затвердевания и превосходным герметизирующим протечки воздуха эффектом; очень хороший фактор пенообразования, высокая прочность на сжатие, устойчивость к высоким температурам и хорошие показатели термоизоляции, а также низкая цена; способ широко применим в области герметизации поверхностных трещин в горящих районах угольных месторождений и угольных шахтах.

Подробное описание изобретения

Вариант реализации 1: 1) добавляли 35 мас.ч. воды, 100 мас.ч. угольной золы, 20 мас.ч. цемента, 0,8 мас.ч. гидроксипропилметилцеллюлозы, 3 мас.ч. стальных волокон и 5 мас.ч. гашеной извести в специальную емкость для перемешивания А и перемешивали со скоростью 5000±200 об/мин в течение 2 минут с образованием суспензии на основе угольной золы; 2) добавляли воду и 0,15 мас.ч. порошка из бычьего рога в специальную емкость для перемешивания В и перемешивали мешалкой со скоростью 10000±500 об/мин в течение 3 минут с образованием вязкой жидкости; 3) добавляли вязкую жидкость с порошком из бычьего рога, находящуюся в специальной емкости для перемешивания В, в суспензию на основе угольной золы в специальной емкости для перемешивания А и перемешивали мешалкой в специальной емкости для перемешивания А со скоростью 12000±500 об/мин в течение 3 минут с образованием перемешанного раствора; 4) добавляли смесь, приготовленную из 1 мас.ч. оксида меди (характеризующегося размером, соответствующим размеру ячейки сита, равному 300 меш), 0,4 мас.ч. полифосфорной кислоты и 0,04 мас.ч. гидроксида алюминия в перемешанный раствор и перемешивали мешалкой со скоростью 5000±200 об/мин в течение 5 минут с образованием перемешанного связующего раствора; и 5) 4 мас.ч. алюминиевого порошка добавляли в перемешанный склеивающий раствор и перемешивали со скоростью 12000±500 об/мин в течение 3 минут с получением неорганического отвержденного жидкого пеноматериала для герметизации поверхностных трещин в угольных шахтах. Производили впрыск полученной неорганической отвержденной жидкой пены с помощью 2 МПа наземного переносного впрыскивающего насоса через транспортирующий трубопровод в поверхностные трещины, которые нужно герметизировать для снижения и контроля протечек воздуха, так чтобы предотвратить спонтанное возгорание угля.

Вариант реализации 2: 1) добавляли 50 мас.ч. воды, 100 мас.ч. угольной золы, 20 мас.ч. цемента, 1,0 мас.ч. гидроксипропилметилцеллюлозы, 3 мас.ч. стальных волокон и 5 мас.ч. гашеной извести в специальную емкость для перемешивания А и перемешивали мешалкой со скоростью 5000±200 об/мин в течение 2 минут с образованием суспензии на основе угольной золы; 2) добавляли 5 мас.ч. воды и 0,25 мас.ч. порошка из бычьего рога в специальную емкость для перемешивания В и перемешивали мешалкой со скоростью 10000±500 об/мин в течение 3 минут с образованием вязкой жидкости; 3) добавляли вязкую жидкость с порошком из бычьего рога, находящуюся в специальной емкости для перемешивания В, в жидкий цемент на основе угольной золы в специальной емкости для перемешивания А и перемешивали мешалкой в специальной емкости для перемешивания А со скоростью 12000±500 об/мин в течение 3 минут с образованием перемешанного раствора; 4) смесь, полученную из 2 мас.ч. оксида меди (характеризующегося размером, соответствующим размеру ячейки сита, равному 300 меш), 0,8 мас.ч. полифосфорной кислоты и 0,08 мас.ч. гидроксида алюминия, добавляли в перемешанный раствор и перемешивали с мешалкой со скоростью 5000±200 об/мин в течение 5 минут с образованием перемешанного связующего раствора; 5) 4 мас.ч. алюминиевого порошка добавляли в перемешанный склеивающий раствор и перемешивали мешалкой со скоростью 12000±500 об/мин в течение 3 минут с получением неорганического отвержденного жидкого пеноматериала для герметизации поверхностных трещин в угольных шахтах. Производили впрыск полученной неорганической отвержденной пены с помощью 2 МПа наземного переносного впрыскивающего насоса через транспортирующий трубопровод в поверхностные трещины, которые нужно герметизировать в районе возгорания угольного месторождения для снижения и контроля протечек воздуха, так чтобы предотвратить спонтанное возгорание угля.

1. Неорганический отвержденный пеноматериал для остановки протечек с поверхности в районе добычи угля в пласте неглубокого залегания, в котором неорганический отвержденный пеноматериал содержит следующие компоненты, мас.ч.:
вода 40-60,
угольная зола 100,
гашеная известь 5,
цемент 20,
порошок из бычьих рогов 0,15-0,3,
алюминиевая пудра 4,
оксид меди 1-3,5,
полифосфорная кислота 0,4-1,4,
гидроксид алюминия 0,04-0,1,
гидроксипропилметилцеллюлоза 0,8-1,2 и
стальные волокна 3,
причем оксид меди характеризуется размером, соответствующим размеру ячейки сита равному 300 меш.

2. Способ получения неорганического отвержденного пеноматериала для остановки протечек с поверхности в районах добычи угля в пласте неглубокого залегания по п. 1, в котором вязкая жидкость, образованная порошком из бычьего рога, способна понижать поверхностное натяжение водосодержащей жидкости, равномерно распределять твердые частицы в суспензии и улучшать стабильность пены; при этом
алюминиевая пудра и гашеная известь вступают в химическую реакцию с образованием газа, причем они составляют систему, самостоятельно генерирующую газ для суспензии;
оксид меди, полифосфорная кислота и гидроксид алюминия составляют неорганическую связующую систему, а время затвердевания является регулируемым путем подбора соотношения этих трех компонентов;
при этом способ производства включает следующие стадии:
стадия 1: 35-55 мас.ч. воды, 100 мас.ч. угольной золы, 20 мас.ч. цемента, 0,8-1,2 мас.ч. гидроксипропилметилцеллюлозы, 3 мас.ч. стальных волокон и 5 мас.ч. гашеной извести добавляют в специальную емкость для перемешивания и перемешивают мешалкой со скоростью 5000±200 об/мин в течение 2 минут с образованием суспензии на основе угольной золы;
стадия 2: 5 мас.ч. воды и 0,15-0,3 мас.ч. порошка из бычьего рога добавляют в специальную емкость для перемешивания В и перемешивают мешалкой со скоростью 10000±500 об/мин в течение 3 минут с образованием вязкой жидкости;
стадия 3: вязкую жидкость с порошком из бычьего рога, находящуюся в специальной емкости для перемешивания В, добавляют в суспензию на основе угольной золы в специальной емкости для перемешивания А и перемешивают мешалкой в специальной емкости для перемешивания А со скоростью 12000±500 об/мин в течение 3 минут с образованием перемешанного раствора;
стадия 4: добавляют смесь, полученную из 1-3,5 мас.ч. оксида меди, 0,4-1,4 мас.ч. полифосфорной кислоты и 0,04-0,1 мас.ч. гидроксида алюминия в перемешанный раствор и перемешивают мешалкой со скоростью 5000±200 об/мин в течение 5 минут с образованием перемешанного связующего раствора;
стадия 5: добавляют 4 мас.ч. алюминиевой пудры в перемешанный склеивающий раствор и перемешивают мешалкой со скоростью 12000±500 об/мин в течение 3 минут с получением неорганического отвержденного пеноматериала для герметизации поверхностных трещин в угольной шахте.



 

Похожие патенты:

Изобретение относится к промышленности строительных материалов и может быть использовано при производстве ячеистых бетонов, содержащих волокнистые наполнители.

Изобретение относится к промышленности строительных материалов, а именно для изготовления пенобетона, также может использоваться для производства теплоизоляционных материалов непосредственно на строительной площадке.

Технологическая линия для производства пенобетонных изделий включает установленные в технологической последовательности и связанные транспортными средствами бункеры и питатели-дозаторы для сухих компонентов - цемента, песка и фиброволокна, емкость с водой и управляемым устройством для подачи воды, активатор, емкость с дозатором для раствора пенообразователя, насос, пеногенератор и устройство для подачи сжатого воздуха в пеногенератор, пенобетоносмеситель.

Группа изобретений относится к области получения пенобетона. В способе получения пенобетона, включающем приготовление технологической смеси путем перемешивания концентрата пенообразователя, воды, вяжущих, заполнителя, добавок и аэрацию смеси сжатым воздухом в смесителе, получение пенобетона осуществляют непрерывно в три этапа: на первом этапе ведут перемешивание-активирование вяжущих компонентов с водой, заполнителем и добавками в смесителе-активаторе со скоростью 1500-3000 1/мин вращения рабочего органа с кавитационным эффектом до получения жидко-твердой дисперсии вяжущих в тиксотропном метастабильном состоянии с уменьшением вязкости до 50-500 Па·с, в другом смесителе-активаторе ведут перемешивание-активирование концентрата пенообразователя с добавлением воды до получения жидко-жидкой дисперсии пенообразователя в тиксотропном метастабильном состоянии с уменьшением вязкости до 10-200 Па·с, на втором этапе в смесителе-аэраторе со скоростью вращения рабочих органов 1000-1500 1/мин ведут перемешивание непрерывных потоков обеих ранее активированных дисперсий с одновременной их аэрацией сжатым воздухом при избыточном давлении 0,25-2,5 МПа, а на третьем этапе полученная в смесителе-аэраторе пеномасса непрерывно поступает в канал пеномассопровода-структурообразователя в виде диффузора, совмещающего непрерывное транспортирование пеномассы в опалубку и ее бездефектное структурирование в режиме свободного движения под действием разности давлений 0,25-2,5 МПа на входе в канал и 0,01-0,1 МПа на его выходе при ограничении максимальной линейной скорости потока и минимального времени пребывания пеномассы в канале.

Изобретение относится к промышленности строительных материалов, в частности к производству изделий из ячеистых бетонов, которые могут быть использованы в качестве защитных экранов для изоляции строительных конструкций от воздействия высоких температур, возникающих при пожарах, авариях на производстве, сбоях в работе технологического оборудования.

Изобретение относится к составам сырьевых смесей для неавтоклавных конструкционно-теплоизоляционных пенобетонов и может быть использовано для изготовления мелкоразмерных блоков, монолитного строительства.
Изобретение относится к промышленности строительных материалов, в частности к производству бетонных стеновых блоков. Бетонная смесь содержит, мас.%: портландцемент 25,0-27,0, золошлаковый наполнитель 35,89-41,87, крошку пенополиэтилена с размером частиц до 10 мм 0,03-0,05, смолу воздухововлекающую экстракционно-канифольную 0,06-0,1, керамзитовый песок 8,0-10,0, воду 25,0-27,0.

Изобретение относится к промышленности строительных материалов, а именно к составам теплоизоляционных ячеистых материалов. Ячеистая фибробетонная смесь включает, мас.%: портландцемент марки 500 43, кварцевый песок с модулем крупности 1,7 8-28, пенообразователь "ПБ-Люкс" 1,0, стеклянное волокно диаметром 15-35 мкм и длиной 12-15 мм 2,0, суперпластификатор "Полипласт - СП-3" 0,4-0,6, аппретированные полые стеклянные микросферы марки МС-ВП-А9* диаметром 20-160 мкм 8-28, воду - остальное.

Предлагаемый способ предназначен для получения теплоизоляционных изделий, используемых для теплоизоляции строительных конструкций и тепловых агрегатов, эксплуатируемых в условиях высоких температур (800…1300°C).
Изобретение относится к производству пористых заполнителей для бетонов. Шихта для производства пористого заполнителя содержит, мас.%: глину монтмориллонитовую 88,5-93,5, размолотый до удельной поверхности 2000-2500 см2/г доломит 6,0-10,0, подмыльный щелок, предварительно разведенный в горячей воде с температурой 85-90°С, 0,5-1,5.
Группа изобретений относится к затвердевающему пеноматериалу, содержащему угольную золу, для предотвращений самовозгорания угля и способу его получения. Затвердевающий пеноматериал, содержащий угольную золу, для предотвращения самовозгорания угля содержит, мас.ч.: воду 40-60, угольную золу 100, порошкообразный состав, выделяющий газ в ходе химической реакции, 25-40, ускоритель 3-5, активатор 2-4, пластификатор 1-2, стабилизирующий пену состав 1, причем порошкообразный состав, выделяющий газ в ходе химической реакции, получен при следующем соотношении, мас.ч.: полугидрат сульфата кальция 24-35 и бикарбонат натрия 1-5, которые вступают в химическую реакцию с образованием инертного газа, т.е.
Изобретение относится к промышленности строительных материалов, в частности к производству теплоизоляционных, теплоизоляционно-конструкционных и конструкционных изделий.

Изобретение относится к производству ячеистых бетонов в разных формах. Технический результат заключается в повышении коэффициента конструктивного качества изделий из ячеистого бетона, получаемых с использованием автоклавной обработки, за счет повышения однородности поровой микроструктуры межпоровых перегородок.

Изобретение относится к производству строительных материалов, в частности к производству газобетона, и может быть использовано при изготовлении теплоизоляционных и теплоизоляционно-конструкционных блоков.

Изобретение относится к промышленности строительных материалов, а именно к составам для изготовления теплоизоляционного и конструкционно-теплоизоляционного пеносиликата с улучшенными функциональными свойствами.

Изобретение относится к промышленности строительных материалов, а именно к технологии изделий из ячеистого бетона автоклавного твердения. В способе получения изделий из ячеистого бетона автоклавного твердения путем приготовления сырьевой смеси, включающей минеральное вяжущее из цемента с известью, кремнеземистый компонент в виде шлама кварцевого песка, двуводный гипс, порообразователь - алюминиевую пудру, и воду затворения, кварцевый песок измельчают до удельной поверхности 3500-4100 см2/г, порообразователь используют с зерновой фракцией алюминия размером частиц 22-45 мкм в количестве не менее 70-75%, при этом в шлам кварцевого песка дополнительно вводят красящую добавку из ряда железоокисных пигментов, а поверхность готового изделия обрабатывают гидрофобизатором - водным раствором метилсиликоната натрия, при следующем соотношении компонентов, мас.%: портландцемент марки М500 Д0 31,975-35, известь 6,3-8,2, кварцевый песок 53,13-54, двуводный гипс 4,86-5,0, алюминиевая пудра 0,12-0,123, красящая добавка 0,59-0,701, вода затворения при температуре 42-45°C в количестве, соответствующем отношению В/Т, равному 0,58-0,63.
Изобретение относится к области строительных материалов и может быть использовано для изготовления неавтоклавного композиционного ячеистого бетона естественного твердения.
Группа изобретений относится к производству газобетонов, используемых в малоэтажном строительстве. Способ изготовления газобетона включает дозирование и смешивание 0,96 кг алюминиевой пудры с 20 кг кварцевого песка и 3,4 кг золы-уноса, их совместный помол до прохождения через сетку № 0,63, дозирование и последовательное добавление 15,6 кг портландцемента, 15,6 кг молотой негашеной извести и 18,6 кг воды, нагретой до температуры 70-100°C, укладку полученной смеси в нагретые до температуры 35-45°C формы, затвердевание, извлечение из форм и тепловлажностную обработку при температуре 175°C и давлении 0,8 МПа в течение 10-12 часов.

Группа изобретений относится к производству сухих смесей для изготовления изделий из ячеистого бетона поризованного газом и может быть использовано на заводах ячеистобетонных изделий.
Изобретение относится к промышленности строительных материалов, в частности к технологии изготовления керамзитобетонной смеси, ресурсосберегающим технологиям легких бетонов.

Изобретение относится к способу получения блочной стеклокристаллической пенокерамики. Техническим результатом изобретения является изготовление пенокерамических материалов толщиной до 200 мм с равномерно замкнутой мелкопористой структурой по всему объему материала и высокими физико-химическими свойствами. Способ включает подготовку тонкомолотой стеклокристаллической фазы с размером частиц 1-50 мкм, содержащей отходы производства с содержанием не менее 10 мас.% карбида кремния. Затем проводят подготовку тонкомолотой шихты для изготовления пеноблоков, имеющей размер частиц 1-50 мкм и содержащей тонкомолотую стеклокристаллическую фазу в количестве 5-95 мас.% и связующий компонент - остальное. Из шихты прессуют заготовки толщиной 15-60 мм в виде крупноразмерных плиток, сушат их до остаточной влажности 0,5%. Далее осуществляют обмазку двухслойным ангобом их нижних и двух боковых поверхностей, параллельных движению роликового транспортера. Высушенные плитки по роликовому транспортеру без применения форм и поддонов поступают в печь обжига. В печи обжига в конце зоны спекания плиток скорость роликового транспортера меньше на 10-25%, чем до нее. После вспенивания в конце печи обжига брус подвергают резкому охлаждению, наносят надрез и после выхода бруса из печи обжига осуществляют его разделение на блоки по линиям надреза с последующим их отжигом и механической обработкой. 23 з.п. ф-лы, 2 табл.
Наверх