Способ извлечения геотермальной энергии из добытой продукции действующей нефтяной скважины

Изобретение относится к средствам извлечения геотермальной энергии из продукции нефтегазовых скважин и может использоваться в качестве альтернативных источников энергии. Технический результат заключается в повышении эффективности использования геотермальной энергии пластовых вод, сопутствующих добываемой нефти, а также в снижении энергозатрат. Способ извлечения геотермальной энергии из добытой продукции действующей нефтяной скважины включает подключение входа теплового насоса к трубопроводу, помещенному в ствол скважины, а выхода - к системе распределения тепла потребителю. Согласно способу также осуществляют разделение в скважине с помощью скважинного сепаратора продукции нефтяной скважины на нефть и воду, затем с помощью скважинного насоса очищенную воду направляют в продуктопровод, подключенный к тепловому насосу, при этом тепловой насос включает внутренний замкнутый контур, проходящий через испаритель с жидкостью низкотемпературного кипения, конденсатор, компрессор и редукционный клапан, к конденсатору которого подключают отвод теплопровода потребителя, а к испарителю с жидкостью низкотемпературного кипения подключают отвод продуктопровода с очищенной водой. 1 ил.

 

Изобретение относится к средствам извлечения геотермальной энергии из продукции нефтегазовых скважин и может использоваться в качестве альтернативных источников энергии.

Известны геотермальные скважины с применением теплового насоса (http://www.biiks.ru/bur/geotermalnoe-burenie.htm).

Для работы теплового насоса не нужно топливо. Нужен источник электроэнергии для работы насоса и компрессора. Принцип действия теплового насоса аналогичен принципу действия холодильника. В обоих есть испаритель, компрессор, конденсатор и дросселирующее устройство - все части объединены в единый контур. В испарителе хладагент нагревается до температуры 6-8°C, отобранной от теплоносителя из скважины, закипает и испаряется. Полученный пар сжимается компрессором. При росте давления температура хладагента поднимается до 35-65°C. Это тепло отдается через теплообменник конденсатора рабочей жидкости потребителя. Охлажденный хладагент снова конденсируется, продавливается через дроссель, давление падает, и хладагент вновь поступает в испаритель, где готов испариться.

Тепловой насос обладает высоким КПД, но применяется в основном в установках для геотермальных водяных скважин, из которых поступает не загрязненный поток воды. Использование теплового насоса для извлечения геотермальной энергии из продукции нефтегазовых скважин, из которых отбирается смесь парафинистой нефти с водой, представляется проблематичным.

Известен способ извлечения геотермальной энергии из скважины, в котором использован тепловой насос, вход которого соединен с трубопроводами с заборной и поглощающей (инфильтрационной) скважинами, выход теплового насоса подключен трубопроводами к системе распределения тепла (пат. РФ 2341736, 20.12.2008).

К тепловому насосу подключен U-образный контур трубопровода, помещенный в скважину и по которому циркулирует жидкость, подаваемая с поверхности. Указанная жидкость нагревается в скважине и отдает свое тепло контуру теплового насоса.

В известном патенте не используется тепловая энергия добываемой скважинной жидкости, например смеси нефти и воды, а задействована система кругового оборота жидкости, циркулирующей в U-образном контуре, помещенном на глубине скважины с повышеной темпаратурой.

Задачей заявляемого изобретения является извлечение геотермальной энергии из добытой продукции действующих нефтегазовых скважин в процессе эксплуатации.

Указанная задача решается тем, что способ извлечения геотермальной энергии из добытой продукции действующей нефтяной скважины, включающий подключение входа теплового насоса к трубопроводу, помещенному в ствол скважины, а выхода - к системе распределения тепла потребителю, в отличие от известного, предусматривает разделение в скважине с помощью скважинного сепаратора продукции нефтяной скважины на нефть и воду, затем с помощью скважинного насоса очищенную воду направляют в продуктопровод, подключенный к тепловому насосу, при этом тепловой насос включает внутренний замкнутый контур, проходящий через испаритель с жидкостью низкотемпературного кипения, конденсатор, компрессор и редукционный клапан, к конденсатору которого подключают отвод теплопровода потребителя, а к испарителю с жидкостью низкотемпературного кипения подключают отвод продуктопровода с очищенной водой.

На чертеже представлена конструкция геотермальной установки для нефтяной скважины, с помощью которой реализуется заявляемый способ.

Геотермальная установка расположена на участке нефтяного месторождения с повышенным геотермическим градиентом на устье скважины 1, в которой установлен электропогружной насос 2 для подъема добываемой продукции, представляющей собой смесь нефти с водой, из скважины 1 на поверхность. К электропогружному насосу 2 проведен электрокабель 3 для питания от шкафа управления 4. Под электропогружным насосом 2 установлен сепаратор 5 для отделения нефти от сопутствующей воды.

Добываемая продукция на поверхности направлена в продуктопровод 6 для воды с входными задвижками 7 и 8, выходной задвижкой 9 и проходной задвижкой 10 и нефтепровод 11.

Геотермальная установка содержит блок теплонасоса 12 с внутренним замкнутым контуром 13, проходящим через испаритель 14, конденсатор 15, компрессор 16 и редукционный клапан 17.

Через испаритель 14 также проходит отвод продуктопровода 6, а через конденсатор 15 проходит отвод теплопровода 18 с входной задвижкой 19 и выходной задвижкой 20.

Сепаратор 5 снабжен разделительной манжетой 21, которая установлена на хвостовике 22, прикрепленном к электропогружному насосу 2. Хвостовик 22 в нижней части под разделительной манжетой 21 снабжен ограничителем 23, а в верхней части над разделительной манжетой - выпускным отверстием 24 для воды. В качестве выпускного отверстия для нефти использована отводящая трубка 25 с окнами и патрубками для сообщения пространства под разделительной манжетой 21 и пространства выше приема электропогружного насоса. На хвостовике ниже разделительной манжеты размещен с возможностью вертикального перемещения вдоль хвостовика 22 кожух в виде стакана 26 с направляющими, имеющими возможность контактирования с ограничителем 23 хвостовика 22 и со стенками внутренней поверхности обсадной колонны скважины. Поз. 27 - проходной кран нефтепровода 11 (конструкция сепаратора представлена также в пат. РФ №2291291, 10.01.2007).

Способ реализуется следующим образом.

В скважине 1 добываемая с помощью электропогружного насоса 2 продукция, представляющая собой смесь нефти с водой, разделяется сепаратором 5 на нефть и воду, которая поступает на поверхность и направляется через задвижку 8 продуктопровода 6 в автономный блок теплового насоса 12 через входную задвижку 7. В это время задвижка 10 продуктопровода 6 перекрыта. При этом очищенная от нефти добываемая вода через кожух-стакан 26 поступает в хвостовик 22 и далее через канал попадает на прием насоса 2, а нефть с газом через окна и патрубок отводящей трубки 25 отводится выше приема насоса 2 и далее накапливается в межтрубном пространстве скважины.

В блоке теплового насоса 12 вода, поступившая из скважины 1, имеющая положительную температуру в пределах 25-79 град., передвигается по продуктопроводу 6 в испаритель 14, где происходит передача тепла от скважинной воды хладагенту с низкой температурой испарения, циркулирующего в замкнутом контуре 13 блочного теплового насоса 12. Далее под действием компрессора 16 хладагент, поступающий из испарителя 14 в газообразном состоянии, сжимается до жидкого состояния и под высоким давлением подается в конденсатор 15, где избыточная тепловая энергия хладагента передается жидкости, циркулирующей в системе отопления по теплопроводу 18 потребителя и поступающей с пониженной температурой в блок теплового насоса 12 из системы отопления через входную задвижку 19 и выходящую из него с более высокой температурой после конденсатора 15 через выходную задвижку 20. Хладагент, циркулирующий в замкнутом контуре 13, из конденсатора 15 после теплообмена с жидкостью, циркулирующей в теплопроводе 18, поступает под некоторым избыточным давлением в редукционный клапан 17, где он сжимается до определенного уровня, под которым хладагент поступает в испаритель 14 и цикл его движения по внутреннему контуру 13 теплового насоса 12 повторяется.

Применение тепловых насосов в нефтяных скважинах, снабженных скважинными сепараторами, позволит повысить эффективность использования геотермальной энергии пластовых вод, сопутствующих добываемой нефти, без дополнительных трудозатрат на оборудование скважин нефтедобывающих предприятий и снизить их энергозатраты.

Способ извлечения геотермальной энергии из добытой продукции действующей нефтяной скважины, включающий подключение входа теплового насоса к трубопроводу, помещенному в ствол скважины, а выхода - к системе распределения тепла потребителю, отличающийся тем, что осуществляют разделение в скважине с помощью скважинного сепаратора продукции нефтяной скважины на нефть и воду, затем с помощью скважинного насоса очищенную воду направляют в продуктопровод, подключенный к тепловому насосу, при этом тепловой насос включает внутренний замкнутый контур, проходящий через испаритель с жидкостью низкотемпературного кипения, конденсатор, компрессор и редукционный клапан, к конденсатору которого подключают отвод теплопровода потребителя, а к испарителю с жидкостью низкотемпературного кипения подключают отвод продуктопровода с очищенной водой.



 

Похожие патенты:

Предлагается устройство, содержащее теплонасосное оборудование и систему сбора низкопотенциальной теплоты грунта, состоящую из двух и более зон, параллельно подключенных к теплонасосному оборудованию, каждая из которых, в свою очередь, включает один и более вертикальных герметичных грунтовых теплообменников коаксиального типа с внутренней трубой, покрытой теплоизолирующим слоем пористого материала с замкнутыми порами.

Изобретение относится к теплоэнергетике и может быть использовано в подземных аккумуляторах тепловой энергии. Подземный аккумулятор содержит колодец и по меньшей мере один туннель, соединенные друг с другом с обеспечением сообщения по текучей среде.

В одном варианте выполнения изобретения предложен способ подачи электроэнергии при помощи источника возобновляемой энергии, включающий: обеспечение первого источника возобновляемой энергии, причем первый источник возобновляемой энергии является непостоянным или не обеспечивает достаточного количества энергии; подачу энергии от первого источника возобновляемой энергии на электролизер с целью формирования энергоносителя посредством электролиза; избирательное реверсирование электролизера, позволяющее использовать его в качестве топливного элемента; и подачу энергоносителя на электролизер для выработки энергии, причем первый источник возобновляемой энергии, электролизер или энергоноситель получает дополнительное тепло от первого источника тепла; и первый источник тепла выбран из группы, состоящей из геотермального и солнечного источника тепла.

(57) Изобретение относится к теплоэнергетике и может быть использовано для создания системы низкотемпературной энергии в подземном контуре. Подземный контур используется, например, для передачи тепловой энергии, извлеченной из окружающей среды, к тепловому насосу или подобному устройству.

Изобретение относится к энергетике и может быть использовано для передачи тепла. Теплопроводный цилиндр, предназначенный для установки в накопителе тепла, снабжен множеством U-образных трубопроводов и выполнен так, что теплоизоляция находится между концом для впуска текучей среды и концом для выпуска текучей среды каждого из множества U-образных трубопроводов, причем две или более радиально размещенные секции U-образного трубопровода установлены внутри теплопроводного цилиндра, и отделены друг от друга, и имеют внутренние проходы, которые не сообщаются друг с другом внутри теплопроводного цилиндра.

Изобретение относится к трубопроводному транспорту. К наружной поверхности обогреваемого трубопровода плотно прилегает коллектор с теплоносителем.

Изобретение относится к трубопроводному транспорту и может быть использовано при транспортировке различных жидких и газообразных продуктов (пар, вода, углеводороды и др.) на предприятиях АПК, в коммунальном хозяйстве, нефтяной, химической и др.

Изобретение относится к технологиям добычи и применения глубокозалегающих подземных пластовых рассолов, обладающих, как правило, не только гидроминеральным потенциалом, в особенности промышленными концентрациями полезных компонентов для прямого использования или последующей переработки в товарные продукты, но и тепловым потенциалом, пригодным для использования по энергетическому назначению.

Изобретение относится к способам аккумулирования энергии в когенерационных системах, работающих в цикле тригенерации, в системах извлечения геотермальной энергии абсорбционным тепловым насосом, в системах использования низкопотенциальной тепловой энергии с помощью абсорбционного теплового насоса.

Изобретение относится к теплоэнергетике и может быть использовано в системах теплоснабжения производственных и жилых зданий. Геотермальное устройство включает теплообменник, сопряженный с тепловым насосом, грунтовый теплообменник, установленный в геотермальной скважине, трубопроводы, соединяющие теплообменники с образованием замкнутой системы, заполненной рабочим телом в виде жидкости, причем грунтовый теплообменник содержит опускную и подъемную трубы, сообщающиеся друг с другом в нижней зоне.

Группа изобретений относится к нефтяной и газовой отраслям промышленности и используется в системе промысловой подготовки газа при пониженном расходе поступающего газа.

Изобретение относится к оборудованию для нефтедобывающей промышленности, а именно к установкам для измерения дебита нефтяных скважин с предварительным разделением газожидкостной смеси на газ и жидкость с помощью сепараторов.

Изобретение относится к нефтяной и газовой промышленности и может быть использовано для предварительного разделения газожидкостной смеси в системе сбора и подготовки продукции нефтяных и газовых скважин.

Изобретение относится к способам измерения продукции нефтегазодобывающих скважин. Технический результат заключается в повышении точности измерений.

Группа изобретений относится к способам нагнетания текучей среды, центральным узлам управления скважины, способам удаления жидкости из газодобывающей скважины, способам разделения газа и жидкости текучей среды, устройствам для подъема насосного устройства.

Изобретение относится к нефтяной промышленности и может найти применение на нефтепромысле при подготовке нефтяной эмульсии к горячему обезвоживанию. Отстойник для внутрипромысловой подготовки нефти к горячему обезвоживанию включает корпус, узел ввода нефтяной эмульсии, узел вывода нефти и узел вывода пластовой воды.

Изобретение относится к нефтяной промышленности и может найти применение на нефтепромысле при подготовке пластовой воды для системы поддержания пластового давления.

Группа изобретений относится к способам и устройствам саморегуляции в заданных пределах уровней разделов фаз газ-нефть и нефть-вода в герметизированных проточных емкостях при изменяющихся параметрах фаз.

Изобретение относится к нефтегазодобывающей промышленности, а именно к конструкции фонтанной арматуры, используемой на газовых скважинах, в частности, в условиях активного водо- и пескопроявления.

Изобретение относится к оборудованию для нефтедобывающей промышленности, а именно к установкам для разделения газожидкостной смеси на газ и жидкость. Сепаратор-депульсатор содержит основной вертикальный вихревой циклон с тангенциальным подводом газожидкостной смеси, шнековым завихрителем, центральным трубопроводом для отвода газа и с расположенной под циклоном емкостью для сбора жидкости.

Изобретение относится к нефтяной и нефтегазоперерабатывающей промышленности и может быть использовано для предварительного разделения смеси на газ и жидкость в системах сбора и подготовки продукции нефтяных и газовых скважин. Устройство содержит трубопровод, в котором размещены завихритель и патрубки для подвода газожидкостной смеси и отвода жидкости и газа, центробежный сепаратор, выполненный в виде плоской спирали, закрытой с торцов пластинами с серповидными отражателями, и выходную трубу. Трубопровод выполнен наклонным под углом 30° и присоединен к вертикальной сепарационной камере. Завихритель с депульсатором установлен в патрубке для подвода смеси. Выходная труба соединена с сепарационной камерой и с коробом, установленным над отверстиями, выполненными по длине на боковой поверхности трубопровода, внутри которого соосно вдоль короба расположена дополнительная труба, закрытая с торцов и имеющая паз с углом от 90° до 120° по длине. Напротив паза в дополнительной трубе выполнены отверстия, идентичные отверстиям в трубопроводе, в которые вварены выводные трубки. Диаметр дополнительной трубы меньше или равен половине диаметра трубопровода. Боковое окно короба закрыто крышкой. В коробе над выводными трубками установлен сепаратор щелевого типа. Под коробом в трубопроводе выполнено отверстие для слива. На входе в сепарационную камеру установлен дефлектор. В колене выходной трубы над камерой сепарации размещена плоская винтовая спираль, а в камере над сливным патрубком размещен пеногаситель. На трубе, соединяющей короб с патрубком для отвода газа, может быть установлен шаровой кран. Технический результат: повышение эффективности сепарации газоводонефтяной смеси при снижении габаритов конструкции. 1 з.п. ф-лы, 1 ил.
Наверх