Способ получения лигатуры алюминий-скандий

Изобретение относится к области металлургии цветных металлов и может быть использовано для получения лигатуры алюминий-скандий. Способ включает приготовление и расплавление смеси, содержащей фториды алюминия, фториды натрия и алюминий, подачу оксида скандия, алюмотермическое восстановление скандия из его оксида с получением лигатуры алюминий-скандий и ее выгрузку. Перед расплавлением смеси в нее добавляют фторид калия, одновременно проводят алюмотермическое восстановление скандия и электролитическое разложение образующегося в ходе алюмотермической реакции глинозема, при этом подачу оксида скандия в расплав производят непрерывно, поддерживая концентрацию оксида скандия на уровне, обеспечивающем заданное содержание скандия в получаемой лигатуре, а после выгрузки лигатуры в расплав загружают алюминий. Предлагаемый способ позволяет получать лигатуру алюминий-скандий при пониженных температурах (800-850°С), упрощает технологию, способствует снижению энергозатрат. 4 з.п. ф-лы, 1 ил.

 

Изобретение относится к области металлургии цветных металлов и может быть использовано для получения лигатуры алюминий-скандий в условиях промышленного производства.

Известно, что добавка даже десятых долей скандия в алюминий значительно улучшает его технологические свойства: увеличивает прочность на 40%, пластичность на 50%, коррозионную стойкость в 10 раз, температурный интервал устойчивой работы сплавов возрастает на 100-500°С. Алюминиевые сплавы со скандием обладают сочетанием уникальных свойств: хорошей свариваемостью, возможностью деформироваться в режиме сверхпластичности, высокими механическими свойствами и др.

С развитием новых технологий, автомобилестроения, авиастроения и аэрокосмической отрасли спрос на сплавы алюминий-скандий с каждым годом растет. В настоящее время основная проблема использования скандия в производстве деформируемых алюминиевых сплавов заключается в высокой стоимости представленных на рынке лигатур алюминий-скандий.

Предлагаемое изобретение относится к области металлургии цветных металлов, в частности к технологии получения лигатур алюминий-скандий, применяемых для получения и модифицирования конечных алюминиевых сплавов.

Известен способ получения лигатуры алюминий-скандий с содержанием скандия 1,82-1,84 мас. %, включающий расплавление и выдержку в контакте с жидким алюминием при 820°С шихты следующего состава: хлорид калия, фториды натрия и алюминия, оксид скандия; возможно также включение алюминия в виде гранул, мелкораздробленной стружки (патент RU 2124574, C22C 1/03, опубл. 10.01.1999).

Недостатками способа являются сложность, неэффективность в приготовлении шихты, невысокое качество лигатуры, а также зашламление оксидно-солевой шихты оксидом алюминия, который образуется в результате алюмотермической реакции алюминия с оксидом скандия.

Известен способ получения лигатуры алюминий-скандий с содержанием скандия 1,5-30 мас. % алюмотермическим восстановлением фторида скандия, при соотношении в шихте ScF3:Al 1:(1,6-8) в три ступени с постепенным повышением температуры (авторское свидетельство SU 873692, C22C 1/03, опубл. 30.11.1983).

Недостатками известного способа является высокая (до 1300°С) температура, необходимая для полного восстановления фторида скандия, и длительность процесса (5-6 часов). Кроме того, к недостаткам следует отнести получение в конечном продукте субфторида алюминия AlF, который при охлаждении диссоциирует с образованием мелкодисперсного алюминия. Последний при разгерметизации восстановительной камеры окисляется с выделением большого количества энергии.

Наиболее близким к предлагаемому способу является способ получения сплавов и лигатур алюминий-скандий с содержанием скандия 0,4 мас. % (Цветные металлы, 1998, №7, с. 43-46) при электролизе криолит-глиноземного расплава (NaF-AlF3-Al2O3) с добавками оксида скандия.

Общими признаками известного и заявляемого способа являются ведение электролиза оксидно-галогенидного расплава, содержащего фторид натрия, фторид алюминия и оксид скандия, и алюмотермическое восстановление скандия.

Недостатками способа являются относительно высокая температура процесса (960-1000°С) и расход дополнительной электроэнергии на катодное осаждение скандия.

Задачей изобретения является упрощение технологии, создание способа непрерывного получения лигатуры алюминий-скандий с заданным составом.

При этом техническим результатом являются снижение температуры и энергозатрат процесса, а также регенерация оксидно-галогенидного расплава (электролитическое разложение образующегося в ходе реакции глинозема) и как следствие отсутствие отходов в виде отработанного флюса.

Технический результат достигается за счет того, что в способе получения лигатуры алюминий-скандий, включающем приготовление и расплавление смеси, содержащей фториды алюминия, фториды натрия и алюминий, подачу оксида скандия, алюмотермическое восстановление скандия из его оксида с получением лигатуры алюминий-скандий и ее выгрузку, перед расплавлением смеси, в нее добавляют фторид калия (KF), одновременно проводят алюмотермическое восстановление скандия и электролитическое разложение образующегося в ходе алюмотермической реакции глинозема, при этом подачу оксида скандия в расплав производят непрерывно, поддерживая концентрацию оксида скандия на уровне, обеспечивающем заданное содержание скандия в получаемой лигатуре а после выгрузки лигатуры, в расплав загружают алюминий.

Дополнительными признаками, способствующими достижению заявляемого технического результата, являются:

Приготовленную расплавленную смесь используют по меньшей мере в двух циклах получения лигатуры.

Концентрацию оксида скандия в электролите поддерживают 1-4 мас. %.

Расплавленная смесь содержит 1-40 мас. % KF.

Электролиз расплавленной смеси проводят при температуре 800-850°С.

Сущность предлагаемого способа заключается в следующем. При контакте оксидно-галогенидного расплава, содержащего фториды калия, натрия и алюминия, а также оксид скандия в количестве 1-4 мас. % происходит алюмотермическое восстановление скандия, в результате которого образуется лигатура алюминий-скандий с содержанием скандия 0,4-0,8 мас. %. При этом в расплаве происходит уменьшение концентрации оксида скандия и накопление (появление и увеличение концентрации) оксида алюминия (глинозема).

Суммарная алюмотермическая реакция процесса имеет следующий вид:

Содержание скандия в получаемой лигатуре определяется количеством загружаемого в расплав оксида скандия (Sc2O3), длительностью контакта алюминия с расплавом и константой скорости реакции (1).

Для непрерывного получения лигатуры алюминий-скандий периодически выгружают полученную лигатуру алюминий-скандий, после этого в расплав подгружают порцию чистого алюминия. При получении лигатуры непрерывно подают оксид скандия, а образующийся в расплаве оксид алюминия подвергают электролитическому разложению (электролизу). Максимальная сила тока на электролизере определяется исходя из скорости выгрузки лигатуры и скорости подачи оксида скандия в расплав. Минимальная сила тока подбирается исходя из площади алюминиевого катода и катодной плотности тока, необходимой для поддержания катодного выхода по току на высоком уровне.

Электролитическое разложение оксида алюминия происходит с использованием углеродного анода и алюминиевого катода. Суммарная реакция этого процесса имеет следующий вид:

Способ позволяет получать лигатуру алюминий-скандий при пониженных температурах (800-850°С), при этом можно многократно получать лигатуру из одного и того же расплава периодически заменяя в нем алюминий, что ведет к упрощению технологии, снижению энергозатрат на поддержание температуры процесса. Снижение температуры процесса в заявляемом способе также приводит к увеличению степени извлечения скандия.

Заявляемый способ может быть реализован с помощью экспериментальной установки, представленной на фигуре.

Расплав, содержащий 39 массовых % KF, 10 массовых % NaF, 51 массовых % AlF3 вместе с расплавленным алюминием 1 помещают в графитовый тигель 2 экспериментальной установки. В состав установки также входят нагревательные элементы 3, футеровка 4 и металлический кожух 5. Расплав нагревают до температуры 800-850°С, затем из бункера 6 в расплав непрерывно подают оксид скандия, одновременно пропуская через расплав электрический ток. Полученную лигатуру алюминий-скандий 7 извлекают из тигля, после этого добавляют расплавленный алюминий и продолжают вести процесс получения лигатуры, непрерывно подавая оксид скандия и пропуская электрический ток.

Предлагаемый способ опробован в экспериментальной установке вместимостью до 10 кг, рассчитанной на силу тока до 100 А. Лигатуру алюминий-скандий, содержащую 0,4-0,8 мас. % скандия, получали путем электролиза галогенидного расплава (мас. %) 39KF-10NaF-51AlF3 с добавкой 1-4 мас. % Sc2O3. Расплав солей массой 3,3 кг и алюминий марки А99 массой 6.7 кг помещали в графитовый тигель экспериментальной установки и нагревали до температуры 800-850°С. После плавления смеси в расплав добавляли оксид скандия.

При концентрации оксида скандия в расплаве от 1 до 4 мас. % и без протекания электрического тока время достижения близкой к равновесной концентрации скандия в алюминии по алюмотермической реакции (1) не превышает 30 мин. При этом полнота протекания алюмотермической реакции (1) составляет 30-60%.

Для электролитического разложения образовавшегося оксида алюминия через расплав солей пропускали электрический ток величиной 50-100 А. Исходя из величины катодной и анодной плотностей токов, которые составляли 0,3-0,7 А/см2 и 0,4-0,5 А/см2, соответственно, подбирали размеры графитового анода и алюминиевого катода. После приготовления алюминиево-скандиевой лигатуры, для организации непрерывного процесса, часть алюминиево-скандиевой лигатуры из тигля извлекали, а чистый алюминий и оксид скандия загружали.

Предлагаемый способ позволяет реализовать непрерывное получение алюминиево-скандиевой лигатуры с содержанием скандия 0,4-0,8 мас. % с применением электролиза оксидно-галогенидного расплава, содержащего фториды калия, натрия и алюминия, а также оксид скандия в количестве 1-4 мас. %.

1. Способ получения лигатуры алюминий-скандий, включающий приготовление и расплавление смеси, содержащей фториды алюминия, фториды натрия и алюминий, подачу оксида скандия, алюмотермическое восстановление скандия из его оксида с получением лигатуры алюминий-скандий и ее выгрузку, отличающийся тем, что перед расплавлением смеси в нее добавляют фторид калия, одновременно проводят алюмотермическое восстановление скандия и электролитическое разложение образующегося в ходе алюмотермической реакции глинозема, при этом подачу оксида скандия в расплав производят непрерывно, поддерживая концентрацию оксида скандия на уровне, обеспечивающем заданное содержание скандия в получаемой лигатуре, а после выгрузки лигатуры в расплав загружают алюминий.

2. Способ по п. 1, отличающийся тем, что приготовленную расплавленную смесь используют по меньшей мере в двух циклах получения лигатуры.

3. Способ по п. 1, отличающийся тем, что концентрацию оксида скандия в электролите поддерживают 1-4 мас.%.

4. Способ по п. 1, отличающийся тем, что расплавленная смесь содержит 1-40 мас.% фторид калия.

5. Способ по п. 1, отличающийся тем, что электролиз расплавленной смеси проводят при температуре 800-850°C.



 

Похожие патенты:
Изобретение относится к области металлургии, в частности к деформированным борсодержащим алюмоматричным композиционным материалам в виде листов, к которым предъявляются специальные требования по поглощению нейтронного излучения в сочетании с низким удельным весом.

Изобретение относится к области металлургии, в частности к деформируемым сплавам на основе алюминия, и может быть использовано при получении деформированных полуфабрикатов в виде прессованных профилей, прутков, труб, катаных плит и листов, предназначенных для использования в строительстве, судостроении, авиационной, автомобильной и других отраслях промышленности.

Изобретение относится к порошковой металлургии. Способ получения порошка квазикристаллического материала системы Al-Cu-Fe включает перемешивание порошков алюминия, меди и железа при соотношении компонентов, соответствующем области существования квазикристаллической фазы сплава системы Al-Cu-Fe, нагрев полученной смеси в камере в бескислородной атмосфере с последующим измельчением спека до получения порошка заданной дисперсности.

Изобретение относится к области металлургии цветных металлов и может быть использовано для производства лигатуры алюминий-скандий-иттрий, применяемой для модифицирования алюминиевых сплавов.

Изобретение относится к области металлургии, а именно к способу изготовления порошка сплава на основе урана, и может быть использовано при производстве ядерного топлива.

Изобретение относится к области металлургии, а именно к композиционным материалам (КМ) на основе сплавов оловянных баббитов и способам их получения, и может быть использовано для изготовления подшипников скольжения узлов трения в транспорте, турбиностроении, судостроении.

Изобретение относится к области металлургии, а именно к порошку сплава на основе урана, и может быть использовано при производстве топлива экспериментальных ядерных реакторов.

Группа изобретений относится к cпеченным коррозионностойким материалам на основе железа для узлов трения, работающих в агрессивных средах. Материал по варианту 1 содержит 3÷15 мас.% хрома, 1÷10 мас.% никеля, до 1,8 мас.% молибдена, до 2,0 мас.% углерода, 14÷25 мас.% меди, 0,1÷1,0 мас.% серы, 0,3÷3,0 мас.% марганца и остальное - железо.

Изобретение относится к порошковой металлургии. Порошковый антифрикционный материал на основе меди содержит 0,2 мас.% бора, 1,5 мас.% дисульфида молибдена, 1,5 мас.% графита и 1,1-1,9 мас.% стекла.

Изобретение относится к области порошковой металлургии. Способ спекания изделий из порошков твердых сплавов группы WC-Co включает электроимпульсное прессование при давлении 50-500 МПа, плотности импульса тока 50-500 кА/см2 и длительности импульса тока не более 10-3 с.

Изобретение относится к изготовлению сплавов на основе никелида титана, применяемых для медицинских имплантатов. Способ изготовления литых изделий включает переплав металлического полуфабриката индукционной центробежной плавкой в карборундовом тигле. Предварительно проводят выплавку образцов из сплава на основе никелида титана с различными концентрациями легирующей добавки в диапазоне 0,5-2%, испытывают образцы на память формы и сверхэластичность, определяют путем интерполяции оптимальную концентрацию легирующей примеси и с этой концентрацией выплавляют готовое изделие. В качестве металлического полуфабриката используют пористую заготовку, которую готовят диффузионным спеканием в вакууме смеси порошка никелида титана ПН55ПТ45 с легирующей добавкой при температуре 1230-1270°C в течение 0,5-5 минут, после чего подвергают ее холодной обработке давлением до пористости 25-30 об.%. Обеспечивается равномерное распределение легирующей добавки в сплаве. 2 ил.

Изобретение относится к области металлургии, а именно к производству жаропрочных сплавов на основе ниобия, которые могут быть использованы для изготовления рабочих лопаток ГТД. Способ получения высокотемпературного сплава на основе ниобия включает изготовление расходуемого электрода, плавку расходуемого электрода в вакуумной дуговой печи и разливку расплава. Готовят расходуемый электрод из шихтовых материалов в виде ниобия, кремния и по крайней мере одного из легирующих элементов, включающих титан, гафний, алюминий, хром, цирконий, молибден, вольфрам, олово и иттрий, плавку расходуемого электрода осуществляют с получением слитка, который затем подвергают переплаву в вакуумной индукционной печи при температуре 1800-2100°С в инертном керамическом тигле, выполненном по крайней мере из одного из оксидов иттрия, гафния, скандия или циркония, а разливку полученного расплава осуществляют в инертную форму. Полученные заготовки имеют равноосную структуру и однородный химический состав по всему объему и могут быть использованы для последующего литья с направленной структурой, что позволяет повысить ресурс и надежность работы авиационных газотурбинных двигателей. 4 з.п. ф-лы, 4 табл., 2 пр.

Изобретение относится к области металлургии и может быть использовано при получении магнитотвердого материала на основе системы редкоземельный металл-железо-кобальт-бор, который используют при изготовлении магнитов для создания навигационных приборов. В способе осуществляют загрузку железа и кобальта в плавильный тигель и их расплавление в вакууме, введение легирующих элементов в расплав, разливку расплава в форму и охлаждение отливки. При этом рабочий слой плавильного тигля содержит по меньшей мере один из оксидов магния, иттрия, гафния, скандия или циркония, после расплавления в вакууме в расплав вводят бор, далее в вакууме вводят в расплав по меньшей мере один редкоземельный металл, выбранный из группы: празеодим, гадолиний, неодим, церий, затем в атмосфере инертного газа вводят в расплав по меньшей мере один редкоземельный металл, выбранный из группы: диспрозий, самарий. Изобретение позволяет получить магнитотвердый материал системы РЗМ-Fe-Co-B со стабильным химическим составом, равномерным распределением легирующих элементов по всему объему слитка и высокой чистотой по примесям алюминия и кислорода. 6 з.п. ф-лы, 2 пр. 4 табл.

Изобретение относится к области металлургии, а именно к материалу на основе объемных металлических стекол на основе циркония, и может быть использовано для производства деталей микромашин и механизмов с требованиями высокой износостойкости и прочности. Сплав на основе циркония для изготовления объемных металлических стекол диаметром до 5 мм содержит, ат.%: Cu 20-25, Fe 5, Al 10, Sm 0,5-1, Zr - остальное. Способ получения в условиях низкого вакуума сплава на основе циркония для изготовления объемных металлических стекол диаметром до 5 мм характеризуется тем, что осуществляют загрузку в тигель из оксида циркония меди, железа, алюминия, самария и циркония чистотой 99,9%, размещают тигель в индукционной печи и осуществляют плавку при остаточном давлении 10-2-10-3 торр с последующей разливкой расплава при температуре 1100-1200°C в медную изложницу под давлением аргона. Получают сплав на основе циркония для изготовления объемных металлических стекол диаметром до 5 мм в условиях низкого вакуума с применением неинертных тиглей из диоксида циркония. Сплав характеризуется высокими значениями прочности и пластичности. 2 н.п. ф-лы, 12 ил., 3 пр.

Изобретение относится к области электротехники и нанотехнологии, в частности к нанокомпозитному материалу на основе меди (Cu) для производства силовых разрывных электрических контактов в переключателях мощных электрических сетей и вакуумных дугогасительных камерах и способу его получения. Нанокомпозиционный электроконтактный материал на основе меди состоит из частично разупорядоченной матрицы на основе меди, в которой распределены кластеры тугоплавких частиц размером менее 5 нм, при этом содержание тугоплавких частиц составляет от 20 до 80 мас.%. В качестве тугоплавких частиц могут быть использованы частицы хрома или вольфрама или молибдена. Способ получения нанокомпозиционного электроконтактного материала включает механическую обработку смесей металлов в высокоэнергетической шаровой планетарной мельнице с последующим твердофазным спеканием полученной активированной смеси. Высокоэнергетическую обработку проводят в атмосфере аргона при соотношении масс шаров и исходных порошков 20:1-40:1, при скорости вращения планетарного диска планетарной мельницы 694-900 об/мин и продолжительности обработки не более 90 минут. Спекание полученных нанокомпозионных частиц с размером тугоплавкого металла менее 5 нм осуществляют методом искрового плазменного спекания, при этом в камере создают вакуум или атмосферу инертного газа и через спекаемый образец пропускают импульсный электрический ток 1000-5000 A под нагрузкой до 50 МПа. Температура спекания образцов не превышает 1000°C при продолжительности процесса не более 15 минут. Повышение твердости, снижение пористости и удельного электросопротивления образцов является техническим результатом изобретения. 2 н. и 1 з.п. ф-лы, 1 ил., 3 пр.

Группа изобретений относится к горному делу и может быть применена для разрушаемого скважинного инструмента. Элемент в форме конической призмы включает в себя металлический композит, который имеет сотовую наноматрицу, содержащую материал наноматрицы с металлическими свойствами; металлическую матрицу, размещенную в сотовой наноматрице; и первый участок в форме конической призмы. При этом элемент в форме конической призмы имеет скорость разрушения от около 1 мг/см2/ч до около 10000 мг/см2/ч. Способ изготовления элемента в форме конической призмы включает в себя соединение порошка металлической матрицы, разрушающей добавки и металлического материала наноматрицы для образования композиции; прессование композиции для образования прессованной композиции; спекание прессованной композиции и прессование спеченной композиции для образования элемента в форме конической призмы, имеющего сужающийся участок на наружной поверхности элемента в форме конической призмы. Элемент в форме конической призмы можно применять, вводя в контакт участок в форме конической призмы элемента в форме конической призмы с сужающейся поверхностью изделия; прикладывая давление к элементу в форме конической призмы; вдавливая элемент в форме конической призмы в направлении относительно изделия, обеспечивающем расширение радиального размера изделия; и вводя в контакт элемент в форме конической призмы с текучей средой для разрушения элемента в форме конической призмы. Технический результат заключается в повышении эффективности инструмента, содержащего элемент в форме конической призмы. 8 н. и 22 з.п. ф-лы, 25 ил.

Группа изобретений относится к горному делу и может быть применена для разрушаемого скважинного инструмента. Разрушающаяся трубная заанкеривающая система содержит элемент в форме конической призмы; втулку по меньшей мере с одной первой поверхностью, радиально изменяющейся в ответ на продольное перемещение элемента в форме конической призмы относительно втулки, причем первая поверхность может взаимодействовать со стенкой конструкции; уплотнение по меньшей мере с одной второй радиально изменяющейся поверхностью и гнездо, имеющее контактную площадку, взаимодействующую с уплотнением со съемной пробкой, спускаемой на нее враспор. Элемент в форме конической призмы, втулка, уплотнение и гнездо являются разрушающимися и независимо содержат металлический композит, который включает в себя сотовую наноматрицу, содержащую материал наноматрицы с металлическими свойствами и металлическую матрицу, размещенную в сотовой наноматрице. Способ изоляции конструкции содержит установку разрушающейся трубной заанкеривающей системы в конструкции, радиальное изменение втулки для взаимодействия с поверхностью конструкции и радиальное изменение уплотнения для изоляции конструкции. Технический результат заключается в повышении эффективности инструмента, содержащего разрушающуюся трубную заанкеривающую систему. 4 н. и 27 з.п. ф-лы, 25 ил.

Изобретение относится к области металлургии, в частности к технологии приготовления модифицирующих лигатур алюминий-титан, которые применяются при приготовлении алюминиевых сплавов для измельчения структуры отливаемых из них изделий. В способе измельчение частиц алюминида титана TiAl3 происходит за счет введения в лигатуру при ее расплавлении в вакуумной индукционной высокочастотной печи при 1100-1200°C и разрежении 0,799-1,066 Па до 0,05 мас.% нанопорошка нитрида тантала TaN, содержащегося в объеме отпрессованного прутка, состоящего из композиции частиц алюминия и нанопорошка нитрида тантала TaN, с последующей разливкой лигатуры в изложницы без снятия вакуума. Изобретение позволяет использовать лигатуру для измельчения структуры литейных сплавов, модифицирующим агентом в которой являются частицы интерметаллического соединения алюминида титана TiAl3. 1 з.п. ф-лы, 1 пр.,1 табл.

Изобретение относится к области металлургии цветных металлов, в частности к получению сплава алюминия с редкоземельными металлами, и может быть использовано для получения алюминиевого сплава с 0,2-0,4 мас. % скандия в условиях промышленного производства алюминия. Способ электролитического получения алюминиевого сплава с содержанием скандия 0,2-0,4 мас. % включает добавление оксида скандия в криолит-глиноземный расплав, содержащий алюминий, и восстановление оксида скандия путем электролиза криолит-глиноземного расплава, содержащего алюминий и оксид скандия, при этом оксид скандия добавляют в расплав в количестве 1,5-3,1 мас. %, причем суммарную концентрацию оксида скандия и образующегося в процессе электролиза оксида алюминия поддерживают в пределах 2,0-4,5 мас. % путем периодического добавления в расплав оксида скандия, при этом полученный в процессе электролиза алюминиевый сплав с заданным содержанием скандия периодически выгружают. Изобретение направлено на непрерывное получение алюминиевого сплава, содержащего 0,2-0,4 мас. % скандия, за счет снижения в расплаве, образующегося в ходе алюмотермической реакции оксида алюминия. 1 пр.

Изобретение относится к порошковой металлургии с использованием технологии быстрой кристаллизации, в частности к получению заготовок из алюминиевых сплавов. Предложенный способ включает приготовление алюминиевого расплава, центробежное литье гранул, их охлаждение и последующую ступенчатую вакуумную дегазацию в герметичных технологических капсулах, затем ведут компактирование гранул в герметичных технологических капсулах без дополнительного нагрева в контейнере пресса, нагретом до температуры не менее 400°C, и механическую обточку скомпактированных брикетов с получением компактных заготовок. При этом центробежное литье гранул и охлаждение полученных гранул ведут в среде жидкого азота при постоянной его температуре минус 196°C, при этом скорость охлаждения при кристаллизации гранул составляет от 1,05×10000 до 100000 Кельвина в секунду. Обеспечивается снижение содержания водорода и кислорода в металле заготовок, увеличение механических свойств заготовок, уменьшение себестоимости продукции. 1 табл., 1 пр.
Наверх