Схема множественного доступа и структура сигнала для d2d коммуникаций

Изобретение относится к технике связи и может использоваться в беспроводных системах связи. Технический результат состоит в повышении пропускной способности каналов передачи. Для этого приведено описание структуры сигнала для использования в D2D коммуникации. В одном варианте осуществления для автоматической регулировки усиления на стороне приемника осуществляется вставка преамбулы в передаваемый сигнал. Также описаны способы планирования D2D передач с использованием множественного доступа с контролем несущей (CSMA) и схемы управления мощностью для управления помехой. 3 н. и 22 з.п. ф-лы, 7 ил.

 

Уровень техники

Коммуникации в режиме связи «устройство-устройство» (D2D) является одним из средств повышения эффективности LTE (Долгосрочное развитие) и других сотовых сетей. В режиме D2D связи терминалы (именуемые пользовательскими устройствами или UEs в LTE) взаимодействуют друг с другом непосредственно, а не через базовую станцию (именуемая как усовершенствованный узел В или eNB в LTE). D2D коммуникация между двумя или более устройствами D2D, как правило, очень локальна из-за наличия малого расстояния между D2D устройствами и использования очень низкой мощности передачи. D2D коммуникации также является мощным способом повышения пространственного повторного использования в системах сотовой связи для повышения пропускной способности.

Одним из подходов к развитию D2D коммуникаций в качестве основания LTE сетевой инфраструктуры является внеполосное решение, в котором D2D трафик выгружается в нелицензируемый диапазон (например, Wi-Fi, как это определено стандартами IEEE 802.11) на уровне приложений. Другой подход заключается во внутриполосном решении, в котором D2D передачи осуществляются в том же лицензированном диапазоне, используемом LTE сетью. Настоящее изобретение описывает аспекты внутриполосного подхода к D2D коммуникациям. В частности, с акцентом на структуру сигнала для поддержки внутриполосных D2D коммуникаций, планирование D2D передач и управление мощностью для увеличения помехозащищенности.

Краткое описание чертежей

Фиг. 1 показывает пример UE устройств для D2D коммуникаций и eNB.

Фиг. 2 иллюстрирует структуру сигнала для D2D коммуникаций в одном варианте осуществления.

Фиг. 3 показывает функционирование AGC в D2D приемнике в одном варианте осуществления.

Фиг. 4 показывает пример алгоритма, выполняемого D2D приемником в доступе к каналу через CSMA.

Фиг. 5 показывает пример нумерации, используемой для D2D слотов, распределенных по времени и частоте.

Фиг. 6 является схемой, иллюстрирующей недостатки работы CSMA, в случае изменения мощности передачи в зависимости от местоположения D2D устройств.

Фиг. 7 показывает работу банка автокоррелятора для определения мощности передачи из преамбулы.

Описание вариантов осуществления

В последующем описании и на чертежах в достаточной степени иллюстрируются конкретные варианты осуществления для предоставления возможности специалистам в данной области реализовать их на практике. Другие варианты осуществления могут содержать структурные, логические, электрические, технологические и другие изменения. Части и признаки некоторых вариантов осуществления могут быть включены в состав или замещены на другие из других вариантов осуществления. Варианты осуществления, изложенные в формуле изобретения, охватывают все возможные эквиваленты пунктов формулы изобретения.

Фиг. 1 показывает пример UE 10 и UE 20, каждое из которых включает в себя процессор 21, сопряженный с радиочастотным (RF) трансивером 22, который соединен с одной или более антенной 23. Базовая станция или eNB 40 показана с процессором 41, сопряженный к RF трансивером 42, который соединен с множеством антенн 43. Изображенные компоненты предназначены для представления конфигурации любого типа аппаратного/программного обеспечения для обеспечения беспроводного сопряжения как для LTE, так и для D2D коммуникации, и для выполнения функций обработки, как описано здесь. В варианте осуществления, показанном на чертеже, UEs 10 и 20 устанавливают связь с eNB 40 по LTE линии связи и друг с другом через D2D линию связи.

Физический уровень LTE основан на мультиплексировании с ортогональным частотным разделением (OFDM) для нисходящей линии связи и соответствующей технологии мультиплексирования с частотным разделением с передачей на одной несущей (SC-FDM) по восходящей линии связи. В OFDM/SC-FDM сложные модуляционные символы в соответствии со схемой модуляции, такой как QAM (квадратурная амплитудная модуляция), каждый в отдельности отображается на конкретной OFDM/SC-FDM поднесущей, передаваемой во время OFDM/SC-FDM символа, называемым ресурсным элементом (RE). RE является самым наименьшим временно-частотным ресурсом в LTE. LTE также предусматривает для MIMO (многоканальный вход-многоканальный выход) операции несколько уровней данных, передаваемых и принимаемых с помощью множества антенн, и где каждый из сложных модуляционных символов отображается на одном из нескольких уровнях передачи, и затем направляется на определенный порт антенны. Каждый RE затем однозначно идентифицируется на входе антенны, положением поднесущей и OFDM/SC-FDM индексом символа в пределах радиокадра. LTE передачи во временной области организованы в радиокадрах, каждый из которых имеет длительность 10 мс. Каждый радиокадр состоит из 10 субкадров, и каждый субкадр состоит из двух последовательных слотов по 0,5 мс. Каждый слот содержит шесть индексированных символов OFDM для расширенного циклического префикса и семь индексированных символов OFDM для нормального циклического префикса. Группа ресурсных элементов, соответствующая двенадцати последовательным поднесущим в пределах одного слота, обозначается как блок ресурсов (RB) или со ссылкой на физический уровень, как блок физических ресурсов (PRB). Каждая PRB пара состоит из двух слотов последовательных во времени.

В случае FDD (дуплексная связь с частотным разделением каналов) операции, где отдельные несущие частоты представлены для передачи по восходящей линии связи и нисходящей линии связи, описанная выше структура кадра применяется как в восходящей линии связи, так и в нисходящей линии связи без изменений. В TDD (дуплексная связь с временным разделением) операции субкадры выделяются либо на восходящую линии связи, либо на нисходящую линии связи в специальным субкадре при транзакции от нисходящую линии связи в восходящую линии связи (но не при транзакции от восходящей линии связи к нисходящей линии связи). eNB управляет выделением субкадров восходящей линии связи и нисходящей линии связи в пределах каждого радиокадра во время TDD операции.

D2D структура сигнала

При осуществлении внутриполосной D2D коммуникации UEs функционируют как D2D устройства, которые могут устанавливать связь, используя частотно-временные ресурсы, выделенные для D2D линии связи посредством eNB. Синхронизация осуществляется так же, как в обычной LTE линии связи, где каждое D2D устройство синхронизирует свою тактовую частоту и граничный символ/слот с eNB как обычное UE. В связи с тем, что D2D коммуникации, как правило, осуществляются на малых расстояниях, время распространения от одного и того же eNB к взаимодействующим D2D устройствам примерно одинаково. Точнее, разница между двумя временными моментами (например, граничные символы) взаимодействующей D2D пары должна составлять около 0,2-1 мкс, что находится в пределах циклического префикса OFDM или SC-FDM, что исключает необходимость в дополнительных механизмах синхронизации. Хотя временная и частотная синхронизация может быть достигнута, как и в обычной системе, все еще существуют дополнительные аспекты, характеризующие D2D коммуникации. Могут использоваться различные eNBs, такие как макро eNB и пико eNB, размещенные в области нахождения D2D устройств. eNBs могут управляться разными операторами, которые могут не синхронизировать свою деятельность друг с другом или имеют одинаковую длительность OFDM символа. Таким образом, должны быть определены опорный тактовый сигнал и/или опорная частота для взаимодействующих D2D устройств. Например, взаимодействующие D2D устройства могут быть ассоциированы с тем же eNB и данный eNB определяет eNB, например, макро или пико eNB для синхронизации. В дополнение к временной и частотной синхронизации другие физические и параметры MAC уровня, такие как несущая частота, ширина полосы пропускания, длина циклического префикса, ID группы и D2D частотно-временные ресурсы все должны быть указаны посредством eNB или D2D координатором или D2D владельцем группы. При использовании частотно-временных ресурсов, выделенных посредством eNB, возможны два варианта модуляции для D2D модуляции данных, OFDM и SC-FDM, которые используются для нисходящей линии связи и восходящей линии связи в традиционных LTE устройствах соответственно. Две схемы совместно используют большинство аппаратных компонентов, такие как используются для выполнения FFT (быстрого преобразования Фурье) и IFFT (обратного быстрого преобразования Фурье). Несмотря на то что SC-FDM меньше подвержено отрицательному воздействию высокого значения PAPR (отношение пиковой мощности к средней), чем OFDM, все еще желательно использовать OFDM для D2D. Во-первых, поскольку D2D коммуникации используются для связи ближнего действия, и пиковая мощность должна быть значительно меньше, чем у обычной передачи по восходящей линии связи. Во-вторых, SC-FDM подвержена воздействию межсимвольной помехи (ISI), в то время как OFDM нет. В-третьих, расходы по настройке канала меньше для OFDM, чем для SC-FDM.

Чтобы D2D приемник выполнил демодуляцию принятого сигнала, необходим настроечный сигнал канала. Для снижения сложности UE, который также выполнен с возможностью осуществлять D2D операции, существующие шаблоны опорного сигнала (RS), используемые в LTE, такие как UE-RS или DM-RS, могут также использоваться для D2D. Тем не менее характеристики канала, такие как задержка при многолучевости и изменение во времени, весьма различны для D2D линии связи по сравнению с типичной LTE линии связи. D2D устройства, как правило, используются в закрытом помещении и подвержены перемещениям на незначительные расстояния и незначительному разбросу задержки, чем обычные UE. Таким образом, плотность RS для D2D линии связи может быть меньше, чем у обычной сотовой связи, и снижение плотности RS улучшает пропускную способность. Так как OFDMA или SC-FDM могут использоваться для D2D коммуникаций, могут быть использованы несколько различные структуры для настроечного сигнала канала для каждого из них. Для OFDM настроечный сигнал канала представляет собой множество опорных поднесущих, которые могут быть подмножеством существующего RS шаблона. Например, по отношению к обычным LTE RB, только существующие RSs из первого слота PRB пары могут быть использованы для настройки канала с помощью RSs во втором слоте, используемого для передачи данных. Кроме того, принимая подмножество из существующих RSs, могут быть использованы различные RS шаблоны. Например, RS поднесущей может быть расположен только в первом OFDM символе PRB пары для уменьшения задержки оценки канала и расходов для настройки канала. Для SC-FDM настроечный сигнал канала может представлять собой один или несколько опорных символов, исключительно занимающие частотный диапазон или поддиапазон PRB в течение длительности символа. Опять же меньше RSs могут быть использованы для D2D линии связи, чем в обычном LTE восходящей линии связи RB, например, второй RS символ в RB может быть заменен символом данных.

При осуществлении традиционной LTE связи UE устанавливает связь только с eNB по каналам как нисходящей линии связи, так и восходящей линии связи. Это позволяет обеспечивать управление как временных параметров, так и уровень мощности посредством различных сигналов управления канала между eNB и UE, такие как обратная связь по дальности и обратная связь управления мощностью. Иначе обстоит дело при распределенной схеме D2D коммуникаций. В вязи с тем что одно D2D устройство может принимать сигналы от различных D2D устройств, принимаемая мощность, как правило, варьируется от устройства к устройству. Когда UE принимает сигнал на высокочастотной (RF) несущей, сигнал преобразуется с понижением частоты в основной полосе частот, усиливается и затем оцифровывается с помощью аналого-цифрового преобразователя (ADC) перед осуществлением демодуляции. Точная оцифровка принятого сигнала, однако, требует, чтобы коэффициент усиления был таким, чтобы результирующий усиленный сигнал находился в пределах надлежащего диапазона ADC. Для установки AGC может быть помещена короткая преамбула в начале передачи. Данная короткая преамбула должна быть расположена в том же частотном диапазоне или поддиапазоне, что и последующий сигнал данных. Короткая преамбула может содержать несколько периодов одного и того же сигнала во временной области, где повторение одного и того же сигнала позволяет обнаруживать преамбулу с помощью автокорреляции. Продолжительность короткой преамбулы может составлять, например, между 0,5 и 20 мкс.

В связи с тем что данные полезной нагрузки датчиков, которые могут быть основной частью D2D устройств, имеют небольшой размер, то 1 слот ×1 RB может быть определен в качестве основной единицы распределения ресурсов, которая называется здесь D2D слотом или D2D пакетом. Для полезной нагрузки большого размера основная единица распределения ресурсов может быть 2 слота ×1 RB. Пример структуры сигнала для D2D пакета 200, включающий в себя признаки, описанные выше для SC-FDM, показан на фиг. 2. После короткой SP преамбулы и опорного сигнала RS следуют SC-FDM символы для передачи управляющей информации или данные, которые передаются на ресурсных элементах, привязанных к физическому D2D управляющему каналу (PdCCH) или физическому D2D совместному каналу (PdSCH), соответственно. D2D пакет для OFDM будет аналогичен за исключением того, что опорные сигналы будут являться конкретными элементами ресурсов, распределенными по времени и частоте. Циклические префиксы OFDM или SC-FDM символов могут быть сделаны короче, чем те, которые используются в сотовой LTE связи. Фиг. 3 иллюстрирует работу D2D приемника с использованием короткой преамбулы D2D пакета. После приема RF сигнала несущей RF трансивером 301 результирующий сигнал преобразуется с понижением частоты в основной полосе частот посредством понижающего преобразователя 302, усиливается усилителем 303, дискретизируется и оцифровывается с помощью ADC 305 и затем демодулируется OFDM/SC-FDM демодулятором 306 для извлечения передаваемых символов. До дискретизации модуль 304 автоматической регулировки усиления определяет короткую преамбулу в начале D2D пакета и на основании уровня мощности сигнала регулирует коэффициент усиления усилителя 303.

Множественный доступ с распределенным управлением

При использовании внутриполосной схемы в D2D коммуникациях можно выделить два альтернативных способа для планирования передач. Один основан на использовании базовой станции, eNB для планирования и координирования D2D передач, используя выделенные частотно-временные ресурсы. Другой способ в основном основывается на самих D2D устройствах, которые осуществляют связь, используя эти выделенные частотно-временные ресурсы в условиях существования помех. Второй способ является наиболее подходящим для сетей беспроводных датчиков, которые обычно имеют пакеты небольшого размера, но большие накладные управленческие расходы. Для таких пакетов небольшого размера планирование и контроль помех посредством eNB может быть неэффективно, по меньшей мере, по двум причинам. Прежде всего используется большое количество D2D устройств и линий связи и eNB не может получать всю информацию относительной статуса помех между любыми двумя D2D линиями связи. И даже если eNB может запросить D2D устройства сообщить данные об измерении уровня помех, то система может быть не состоянии обеспечить обработку большого объема информации обратной связи или обеспечить большие накладные расходы по управлению в планировании в связи с наличием большого количества D2D передач.

В способе множественного доступа с распределенным управлением, описанном здесь, используется множественный доступ с контролем несущей (CSMA) для внутриполосной D2D коммуникации. CSMA обеспечивает не только способ высокого пространственного повторного использования, но также снижает уровень управленческих накладных расходов при осуществлении связи между D2D устройством и eNB. Как уже говорилось ранее, ресурсы для D2D коммуникаций выделяются посредством eNB. eNB передает информацию о выделенных ресурсах для группы D2D устройств. Группировка устройств может быть осуществлена в соответствии с качествами каналов между ними. Как описано выше, ресурсы могут быть разделены на D2D слоты или PRB пары, где группа выделенных D2D слотов или PRB пар могут быть локализованы во времени и/или по частоте или могут быть распределены по частоте и времени. В одном варианте осуществления каждый D2D слот используется в качестве временного интервала для сети типа Alohanet CSMA, включающей в себя механизм избегания коллизий для уменьшения частоты коллизий. Этапы примерного алгоритма показаны на фиг. 4 для передающего D2D устройства. На этапе 401 устройство случайным образом выбирает число N для начала обратного отсчета. На этапе 402 устройство обнаруживает начало следующего D2D слота. Если слот занят, то отсчет приостанавливается на этапе 403 и этап 402 повторяется. Если слот не занят, то N декрементируется на этапе 404. Если определено, что N уже было декрементировано до нуля на этапе 405, то устройство передает в следующем слоте на этапе 406. В противном случае устройство возвращается на этап 402. D2D слоты могут быть пронумерованы в последовательном порядке, как показано на фиг. 5, так что может быть осуществлен обратный отсчет слотов в пределах окна снижения мощности. Порядок слотов, как показано на фиг. 5, является частотой для уменьшения задержки при использовании полудуплексного режима D2D устройства.

В другом варианте осуществления передающее D2D устройство может указать время резервирования в PdCCH передаваемого пакета, чтобы указать, как долго устройство должно осуществлять передачу. При обнаружении времени резервирования, определенного в PdCCH, D2D устройства могут пропустить этап зондирования несущей и перейти в режим ожидания до истечения времени резервирования. Это снижает энергопотребление D2D устройств. Кроме того, поскольку задержка для сети типа Alohanet CSMA не ограничена, то другой вариант осуществления включает в себя использование eNB, если необходимо удовлетворить требование по задержке. Например, D2D устройство может запросить eNB направить D2D данные по местоположению D2D устройства, если D2D линия связи не может отправить данные в срок. Это улучшает латентность D2D графика, используя eNB как резервный вариант.

Детектирование уровня мощности и контроль помех

В D2D системе, как описано выше, множество D2D устройств могут конкурировать за доступ к каналу и передавать данные на другие D2D устройства. Так как D2D устройство может передавать данные на различные D2D устройства, расположенные на разных расстояниях, то мощность передачи должна быть изменена в зависимости от расстояния передачи для уменьшения помех, повышения пространственного повторного использования и оптимизации энергетической эффективности. В D2D сети с большим количеством узлов множественный доступ с контролем несущей (CSMA), как описано выше, является наиболее эффективным способом обеспечения управления доступом к каналу. Тем не менее только CSMA не может поддерживать справедливый доступ между узлами с различными уровнями мощности передачи. Причина в том, что устройство больше не может предсказать уровень помех в другом устройстве, используя принятый сигнал при обычном способе управления несущей. Например, как показано на фиг. 6, узел С должен осуществить передачу, и в то же время необходимо избежать появления помех для любых существующих передач в эфире. Узел С осуществляет контроль несущей и обнаруживает наличие существующих передач от узла А в узел В. В обычной CSMA, если мощность принимаемого сигнала, которая определяется посредством осуществления процедуры контроля несущей, ниже определенного порогового значения, то узлу С следует найти свободный канал и получить доступ к каналу. Здесь предполагается, однако, что уровень помех имеет взаимную связь между любой парой приемника и передатчика. Если на работу приемника оказывается воздействие помехи от передатчика, то на работу передатчика оказывает влияние тот же уровень помех, когда оригинальный передатчик прослушает передатчик оригинального приемника. Это зависит от того факта, что беспроводной канал является обратно зависимым и мощность передачи является постоянной для всех узлов. Тем не менее, когда мощность передачи варьируется в зависимости от узлов, то это предположение уже не верно. В примере, показанном на фиг. 6, узел А и узел В расположены близко друг к другу, узел А использует низкую мощность для установления связи с узлом В. Результирующая помеха от узла А для узла С мала вследствие использования уменьшенной мощности передачи. Поэтому, если узел С не имеет информации о том, что узел А осуществляет передачу на пониженной мощности, то узел С может начать передачу на повышенной мощности для установления связи с узлом В.

Решение этой задачи влечет за собой необходимость в определении уровня мощности передачи перед передачей, так чтобы другие узлы могли предсказать уровень помех. Информация об уровне мощности передачи может быть отправлена или транслирована в (D2D) канал управления узлом передатчика или узлом координатора. Вместо того чтобы использовать канал управления, который может быть в состоянии содержать несколько типов управляющей информации, информация об уровне мощности передачи может быть просто определена с помощью индикатора мощности передачи, который добавляется к D2D пакетам. Усовершенствованная спецификация параметров мощности передачи до фактической передачи может быть применена к CSMA и другим типам доступа к среде, таким как множественный доступ с распределенным управлением.

Поскольку уровень мощности передачи для других узлов устанавливается с учетом предсказания уровня помех, то необходимо достоверно передать информацию относительно усовершенствованной спецификации. Например, высокая мощность передачи или надежное кодирование, такое как повторение, распространение и код канала, могут быть применены для трансляции уровня мощности передачи. В типе контроля несущей управлением доступа к среде передачи данных D2D приемник, предназначенный для передачи, затем может использовать информацию о мощности передачи для оценки мощности передачи во время контроля несущей. В одном варианте осуществления уровень мощности передачи сигнализируется в начале каждого пакета передачи. После того как уровень мощности передачи обнаружен или оценен, потери в канале могут быть оценены путем вычитания мощности принимаемого сигнала из передаваемой мощности. Используя способ оценки потерь в канале, D2D приемник может решить, может ли он передавать и на каком уровне мощности. Ниже описаны примеры способов передачи индикатора мощности передачи.

В одном варианте осуществления D2D пакеты с различной мощностью передачи могут быть посланы с различными последовательностями преамбулы, где последовательность может быть обнаружена во время контроля несущей или во время оценки канала. Как описано выше, D2D преамбула пакета также может быть использована для установки адаптивной регулировки усиления (AGC) или для оценки канала. Например, короткие преамбулы с разными периодами (например, 2 мкс, 3 мкс или 5 мкс) могут использоваться для сигнализации уровня мощности передачи и установки AGC. Приемник может иметь банк автокорреляторов с различной продолжительностью корреляции (например, 2 мкс, 3 мкс или 5 мкс) для обнаружения прихода сигнала и уровня мощности передачи. Пример банка автокоррелятора в D2D приемнике, используемого для различения периодов преамбулы 2 мкс и 3 мкс, приведен на фиг. 7. После приема с помощью RF трансивера 301 и преобразования с понижением частоты к основной полосе частот посредством понижающего преобразователя 302 сигналы с задержкой 2 мкс и 3 мкс генерируются элементами 320 и 330 задержки соответственно. Варианты сигнала с задержкой затем коррелируются посредством корреляторов 310 и 311 сигнала без задержки. Выходные сигнала корреляторов затем сравниваются компаратором 312 для обнаружения последовательности преамбулы.

В другом варианте осуществления в отличие от вставки индикатора мощности передачи в последовательность преамбулы индикатор мощности передачи (TPI) может быть вставлен в настроечные сигналы канала, если предполагается использование цифровой дискриминации. Например, TPI может быть размещен в опорных сигналах, таких как единый SC-FDM символ, используемый как RS в SC-FDM, или в различных ресурсных элементах, используемых в качестве опорных сигналов в OFDM. Различные настроечные последовательности канала могут быть применены для каждого различного уровня мощности передачи. Так как количество уровней мощности может варьироваться от четырех до восьми, то лишь небольшое число последовательностей может быть необходимо, и ошибка обнаружения последовательности будет незначительной при SNR кадра данных. Для распределенных опорных сигналов, таких как в OFDM, уровень мощности передачи может быть обнаружен в течение всего D2D пакета по сравнению с другими вариантами осуществления. Если слушатель канала пропускает начало D2D пакета, то он все еще может получить информацию об уровне мощности передачи позже с помощью распределенных опорных сигналов.

Если количество уровней мощности передачи относительно велико, то предыдущие подходы могут нести высокую частоту появления ошибок в обнаружении последовательности. В другом варианте осуществления для решения данной технической задачи уровень мощности передачи может быть передан битами в заголовке физического уровня. Заголовок физического уровня может следовать за последовательностью для установки AGC, такой как короткие преамбулы. Это уменьшает задержку в контроле несущей и в потреблении мощности приемника. Приемник должен декодировать TPI биты из заголовка. Заголовок может иметь контрольные CRC биты для проверки обнаруженных TPI битов. Как обсуждалось выше, кроме информации об уровне мощности передачи, приемник может получить информацию о длительности передачи для предоставления возможности избежать коллизии. Такая информация о продолжительности передачи или времени резервирования канала может также передаваться в заголовке или неявно задается системой. В качестве примера имплицитной спецификации информация о продолжительности передачи может быть представлена одним субкадром для некоторой системы.

В другом варианте осуществления уровень мощности передачи сигнализируется при осуществлении обмена резервирования канала перед передачей блока данных, аналогично резервированию канала RTS/CTS, используемого в Wi-Fi. В сотовой D2D, резервирование канала может быть сделано с помощью передатчика и приемника с уровнем передачи, установленным по умолчанию (высоким), так что другие D2D устройства, находящиеся в непосредственной близости, могут получить информацию о зарезервированной продолжительности и мощности передачи в пределах длительности. В качестве альтернативы, базовая станция может передавать информацию о резервировании канала и уровне мощности передачи на соседние D2D устройства передающей пары.

Примеры вариантов осуществления

В одном варианте осуществления UE содержит трансивер для обеспечения беспроводного интерфейса для установления связи с eNB и для D2D коммуникации и схему обработки, подключенную к трансиверу, чтобы принимать информацию о распределении частотно-временных ресурсов для D2D коммуникации из eNB и устанавливать сеанс D2D коммуникации со вторым UE. Там, где используются многочисленные eNBs, схема обработки может быть использована для установки временной и частотной синхронизации с тем же eNB, как второе UE. Ресурсы или D2D коммуникации на и из второго UE могут иметь те же структуры ресурсов, что используются в сотовой связи LTE, или могут быть организованы в D2D слоты с каждым D2D слотом, начиная с преамбулы, и содержащие множество OFDM/SC-FDM символов. Длина циклического префикса OFDM/SC-FDM символов может быть короче, чем те, которые используются в связи сотовой LTE. Схема обработки может осуществлять обработку сигнала с понижением частоты и усиливать сигнал преамбул принятых D2D слотов до аналого-цифрового преобразования, в котором преамбулы принятых D2D слотов используются для автоматической регулировки усиления (AGC). Схема обработки может использовать преамбулу для AGC в начале пакета данных, если период времени, прошедший с момента последней передачи на второе UE, был настолько велик, что величина настройки AGC может находиться вне диапазона. Преамбула может представлять собой повторяющуюся последовательность сигналов во временной области, и каждый D2D слот может включать в себя один или несколько опорных символов. Настроечные сигналы канала или опорные сигналы D2D слота могут иметь более низкую плотность, чем используемые в сотовой LTE связи. Схема обработки может дополнительно обнаруживать преамбулу принятых D2D слотов посредством автокорреляции. Схема обработки может дополнительно инициировать сеанс связи со вторым UE с использованием множественного доступа с контролем несущей (CSMA) по отношению к D2D слоту посредством: контроля текущего D2D слота для определения наличия активности передачи; и, если текущий D2D слот не занят, отправку D2D передачи на второе UE в начале последующего D2D слота. Схема обработки может дополнительно инициировать сеанс связи со вторым UE посредством: если текущий D2D слот не занят, начала обратного отсчета с выбранного номера; уменьшая отсчет после каждого незанятого D2D слота, обнаружения и приостановления отсчета, при обнаружении занятого D2D слота; и отправки D2D коммуникации на второе UE в начале следующего D2D слота после того, как отсчет достигнет нуля. Обозначенное число для обратного отсчета может выбираться случайным или псевдослучайным образом. D2D слот может дополнительно включает в себя информацию о времени резервирования, закодированную в канале управления, который определяет, сколько D2D слотов должны быть последовательно переданы передающим устройством. D2D слоты могут быть последовательно пронумерованы во временной и/или частотной области. Схема обработки может дополнительно, когда информация о времени резервирования обнаружена в D2D слоте, не осуществлять контроль D2D слотов до окончания срока резервирования. Схема обработки может дополнительно, когда информация о времени резервирования обнаружена в D2D слоте, перейти в режим ожидания, до окончания срока резервирования. Схема обработки может дополнительно передавать информацию об индикации уровня мощности передачи в каждом D2D слоте. Преамбула может представлять собой повторяющуюся последовательность сигналов во временной области с периодичностью, которая показывает уровень мощности передачи. Схема обработки может дополнительно содержать банк корреляторов с различными значениями длительности корреляции для определения момента прихода преамбулы и уровне мощности передачи.

В другом варианте осуществления UE содержит трансивер для обеспечения беспроводного интерфейса для установления связи с eNB и для D2D коммуникаций и схему обработки, подключенную к трансиверу, чтобы: принимать информацию о распределении частотно-временных ресурсов для D2D коммуникации из eNB, и устанавливать сеанс D2D связи со вторым UE. Схема обработки может дополнительно передавать информацию об индикации уровня мощности передачи в одном или нескольких опорных символов, где указанный опорный символ или последовательность опорных символов обозначает уровень мощности передачи. Уровень мощности передачи может быть определен до фактической передачи данных для обеспечения предсказания помех при осуществлении передач на нескольких различных уровнях мощности. Схема обработки может дополнительно передавать и указывать уровень мощности передачи как кодированные биты в заголовке физического уровня следующей преамбулы. Заголовок физического уровня может дополнительно содержать указание на количество D2D слотов, которые составляют транспортный блок и которые должны быть посланы последовательно. Схема обработки может дополнительно принимать информацию о выделении частотно-временных ресурсов для D2D коммуникации из eNB в ответ на запрос о резервировании канала, и в котором информация об индикации уровня мощности передачи для D2D коммуникаций и продолжительности резервирования содержится в запросе на резервирование канала. Запрос на резервирование канала может быть передан на достаточно большой мощности, таким образом, и другие UEs в непосредственной близости от устройства могут принять информацию о резервировании канала и уровне мощности передачи.

В другом варианте осуществления UE содержит трансивер для обеспечения беспроводного интерфейса для установления связи с eNB и для D2D коммуникации и схему обработки, подключенную к трансиверу, чтобы: принимать информацию о распределении частотно-временных ресурсов для D2D коммуникации из eNB; устанавливать сеанс D2D связи со вторым UE, в котором D2D передачи в и из второго UE организованы в D2D слотах, с каждым D2D слотом, содержащим множество OFDM/SC-FDM символов, инициируя сеанс связи со вторым UE, используя множественный доступ с контролем несущей (CSMA) по отношению к D2D слоту путем: зондирования текущего D2D слота для определения наличия активности передачи; и если текущий D2D слот не занят, то осуществить D2D передачу на второе UE в начале последующего D2D слота. Схема обработки может дополнительно инициировать сеанс связи со вторым UE посредством: если текущий D2D слот не занят, начала обратного отсчета с выбранного номера; уменьшая отсчет после каждого незанятого D2D слота, при обнаружении занятого D2D слота приостанавливать обратный отсчет; и отправки D2D передачи на второе UE в начале следующего D2D слота после того, как отсчет достигнет нуля. Число для обратного отсчета может быть выбрано случайным или псевдослучайным образом. D2D слот может дополнительно включать в себя закодированную информацию о времени резервирования в канале управления, которая определяет, сколько D2D слотов должны быть последовательно передано передающим устройством. Схема обработки может дополнительно, когда обнаружена информация о времени резервирования в D2D слоте, прекратить зондирование D2D слотов до момента окончания периода времени резервирования. Схема обработки может дополнительно, когда обнаружена информация о времени резервирования в D2D слоте, перейти в режим ожидания до момента окончания периода времени резервирования.

Варианты осуществления, описанные выше, могут быть реализованы как способы эксплуатации и/или в различных аппаратных конфигураций, которые могут включать в себя процессор для выполнения инструкций, которые выполняют способы. Такие инструкции могут храниться на соответствующем носителе, из которого они передаются в запоминающее устройство или на другой носитель информации, обрабатываемый процессором.

Предмет изобретения был описан в контексте LTE сети. За исключением случаев, где будут возникать несоответствия, предмет изобретения может быть использован и в других типах сетей сотовой связи со ссылками на UE и eNB, замененные на терминал и базовую станцию соответственно.

Предмет изобретения был описан совместно с вышеупомянутыми конкретными вариантами осуществления. Следует иметь в виду, что эти варианты осуществления могут также быть объединены любым способом, который будет рассматриваться как предпочтительный. Кроме того, многие альтернативы, варианты и модификации будут очевидны специалистам в данной области. Другие такие альтернативы, варианты и модификации должны находиться в пределах объема прилагаемой формулы изобретения.

В соответствии с требованиями 37 C.F.R. Раздела 1.72 (b) предоставляется реферат, который позволит читателю выяснить природу и суть технического раскрытия. Представленный реферат не будет использоваться для ограничения или интерпретации объема или сути пунктов формулы изобретения. Нижеследующая формула изобретения включена в данное подробное описание, каждый пункт формулы изобретения рассматривается в качестве отдельного варианта осуществления.

1. Пользовательское устройство (UE), содержащее:
трансивер для обеспечения беспроводного интерфейса для установления связи с eNB (усовершенствованный узел В) и для осуществления D2D (устройство-устройство) коммуникаций; и
схему обработки, подключенную к трансиверу, для:
приема информации о выделении частотно-временных ресурсов для D2D коммуникаций с eNB;
установления D2D сеанса связи со вторым UE, в котором D2D передачи на и из второго UE организованы в D2D слотах, где каждый D2D слот начинается с преамбулы и содержит множество OFDM или SC-FDM символов;
выполнения автоматической регулировки усиления (AGC), используя преамбулы принятых D2D слотов; и
передачи D2D слотов с информацией об индикации уровня мощности передачи, которая используется для последующих передач UE.

2. Устройство по п. 1, в котором преамбула представляет собой повторяющуюся последовательность сигналов во временной области.

3. Устройство по п. 2, в котором схема обработки дополнительно обнаруживает преамбулу принятых D2D слотов посредством автокорреляции.

4. Устройство по п. 2, в котором каждый D2D слот включает в себя один или несколько опорных символов.

5. Устройство по п. 2, в котором схема обработки дополнительно инициирует сеанс связи со вторым UE с использованием множественного доступа с контролем несущей (CSMA) по отношению к D2D слоту посредством:
зондирования текущего D2D слота для определения наличия активности передачи; и,
если текущий D2D слот не занят, осуществления D2D передачи на второе UE в начале последующего D2D слота.

6. Устройство по п. 5, в котором схема обработки дополнительно инициирует сеанс связи со вторым UE посредством:
если текущий D2D слот не занят, начала обратного отсчета с выбранного числа;
декрементации обратным отсчетом после обнаружения каждого незанятого D2D слота и приостановления обратного отсчета при обнаружении занятого D2D слота; и
осуществления D2D передачи на второе UE в начале следующего D2D слота после того, как обратный отсчет достигнет нуля.

7. Устройство по п. 6, в котором указанное число для обратного отсчета выбирается случайным или псевдослучайным образом.

8. Устройство по п. 5, в котором D2D слот дополнительно включает в себя информацию о времени резервирования, закодированную в канале управления, которая определяет, сколько D2D слотов должны быть последовательно переданы передающим устройством.

9. Устройство по п. 8, в котором схема обработки дополнительно, когда определяется информация о времени резервирования в D2D слоте, прекращает зондирование D2D слотов до окончания периода времени резервирования.

10. Устройство по п. 9, в котором схема обработки дополнительно, когда определяется информация о времени резервирования в D2D слоте, переходит в режим ожидания до окончания периода времени резервирования.

11. Устройство по п. 5, в котором D2D слоты нумеруются последовательно во временной и/или частотной областях.

12. Устройство по п. 1, в котором преамбула представляет собой повторяющуюся последовательность сигналов во временной области с периодичностью, показывающей уровень мощности передачи.

13. Устройство по п. 12, в котором схема обработки дополнительно содержит банк корреляторов с различными длительностями корреляции для определения приема преамбулы и уровня мощности передачи.

14. Устройство по п. 1, в котором схема обработки дополнительно передает информацию об индикации уровня мощности передачи в одном или нескольких опорных символах, где указанный опорный символ или указанная последовательность опорных символов обозначает уровень мощности передачи.

15. Устройство по п. 1, в котором схема обработки дополнительно передает и указывает на уровень мощности передачи как кодированные биты в заголовке физического уровня, следующем за преамбулой.

16. Устройство по п. 15, в котором заголовок физического уровня дополнительно содержит индикацию количества D2D слотов, которые составляют транспортный блок и которые должны быть посланы последовательно.

17. Устройство по п. 1, в котором схема обработки дополнительно принимает информацию о распределении частотно-временных ресурсов для D2D коммуникаций из eNB в ответ на запрос о резервировании канала и в котором индикация уровня мощности передачи для D2D коммуникаций и продолжительность резервирования содержится в запросе на резервирование канала.

18. Устройство по п. 17, в котором запрос на резервирование канала передается на достаточно высокой мощности, чтобы другие UEs, находящиеся в непосредственной близости от устройства, могли принять информацию о резервировании канала и уровне мощности передачи.

19. Пользовательское устройство (UE), содержащее:
трансивер для обеспечения беспроводного интерфейса для обеспечения D2D (устройство-устройство) коммуникаций; и
схему обработки, подключенную к трансиверу, для:
инициирования D2D сеанса связи со вторым UE, в котором D2D передачи на и из второго UE организованы в D2D слотах, где каждый D2D слот содержит множество OFDM или SC-FDM символов, используя множественный доступ с контролем несущей (CSMA) по отношению к D2D слоту, схема обработки дополнительно выполнена с возможностью:
зондировать текущий D2D слот для определения наличия активности передачи; и,
если текущий D2D слот не занят, осуществлять D2D передачу на второе UE в начале последующего D2D слота,
в котором D2D слот дополнительно включает в себя информацию о времени резервирования, закодированную в канале управления, которая определяет, сколько D2D слотов должно быть последовательно передано передающим устройством, и
в котором схема обработки дополнительно, когда определяется информация о времени резервирования в D2D слоте, прекращает зондирование D2D слотов до окончания периода времени резервирования.

20. Устройство по п. 19, в котором схема обработки дополнительно инициирует сеанс связи со вторым UE посредством:
если текущий D2D слот не занят, начала обратного отсчета с выбранного номера;
декрементации обратным отсчетом после обнаружения каждого незанятого D2D слота и приостановления обратного отсчета при обнаружении занятого D2D слота; и
осуществления D2D передачи на второе UE в начале следующего D2D слота после того, как обратный отсчет достигнет нуля.

21. Устройство по п. 20, в котором указанное число для обратного отсчета выбрано случайным или псевдослучайным образом.

22. Устройство по п. 19, в котором схема обработки дополнительно, когда определяется информация о времени резервирования в D2D слоте, переходит в режим ожидания до окончания периода времени резервирования.

23. Способ работы пользовательского устройства (UE), содержащий:
прием информации о выделении частотно-временных ресурсов для D2D коммуникаций из усовершенствованного узла В (eNB);
в котором D2D передачи на и из второго UE организованы в D2D слотах, где каждый D2D слот содержит множество OFDM или SC-FDM символов;
зондирование текущего D2D слота для определения наличия активности передачи; и,
если текущий D2D слот не занят, осуществление D2D передачи на второе UE в начале последующего D2D слота, при этом способ дополнительно содержит вставку информации о времени резервирования, закодированную в канале управления, которая определяет, сколько D2D слотов должны быть переданы последовательно, и прекращение зондирования D2D слотов до окончания периода времени резервирования, когда обнаружена информация о времени резервирования в D2D слоте.

24. Способ по п. 23, дополнительно содержащий:
если текущий D2D слот не занят, начало обратного отсчета с выбранного номера;
декрементацию обратным отсчетом после обнаружения каждого незанятого D2D слота и приостановление обратного отсчета при обнаружении занятого D2D слота; и осуществление D2D передачи на второе UE в начале следующего D2D слота после того, как обратный отсчет достигнет нуля.

25. Способ по п. 23, дополнительно содержащий вставку преамбулы для использования вторым UE в D2D передаче.



 

Похожие патенты:

Изобретение относится к системам радиосвязи, которые используют ретрансляторы с многостанционным доступом, и направлено на создание многоступенчатых систем ретрансляции на базе полносвязных кластеров с восстановлением информации в каждом кластере.

Изобретение относится к системе беспроводной связи, когда передача сообщений осуществляется через ненадежную среду между мобильным устройством и сетью с радиодоступом.

Изобретение относится к системе беспроводной связи, использующей технологию межмашинной связи, и предназначено для обеспечения конфигурирования кадра, включающего в себя частичный идентификатор ассоциации (PAID).

Изобретение относится к технике связи и может использоваться для передачи сигналов. Достигаемый технический результат - осуществление управляемости помехи между сигналами восходящей линии связи разных пользователей и повышение эффективности передачи сигнала восходящей линии связи пользовательским терминалом.

Изобретение относится к радиотехнике и может использоваться для определения местоположения подвижных объектов. Технический результат состоит в повышении точности определения координат.

Изобретение относится к системе беспроводной связи. Техническим результатом является обеспечение способа и устройства для приема канала управления нисходящей линии связи на пользовательском оборудовании в системе беспроводной связи.

Изобретение относится к системам радиосвязи и может быть использовано в качестве мобильной многоканальной радиоприемной аппаратной для организации линий радиосвязи на полевых узлах связи.

Изобретение относится к сети беспроводной связи, использующей технологию, которая обеспечивает передачи данных небольшого размера в пользовательском устройстве (UE), выполненного с возможностью осуществлять коммуникации машина-машина (МТС).

Изобретение относится к области беспроводной связи, в частности сети с беспроводным каналом передачи данных для обеспечения однорангового соединения (D2D). Изобретение основано на приеме сообщения оптимизации потока трафика в первом узле передачи в беспроводной сети из модуля (DF) функционального обнаружения.

Изобретение относится к области железнодорожной автоматики и связи и может быть использовано для контроля локомотивных устройств безопасности. Система содержит установленные в диспетчерском центре блок контроля локомотивных радиостанций, блок памяти, блок обработки и анализа данных, аппаратно-программное устройство автоматизированного рабочего места поездного диспетчера, блок оповещения и блок идентификации.

Изобретение относится к средствам связи, а именно к средствам радиосвязи ультракоротковолнового (УКВ) диапазона. Техническим результатом заявленного изобретения является расширение функциональных возможностей радиостанции в части обеспечения организации симплексных и дуплексных радиоканалов в расширенном УКВ диапазоне частот, передачи по ним телефонных, телеграфных сообщений и данных с повышенной достоверностью передачи информации. Упомянутый технический результат достигается тем, что в УКВ-радиостанцию, содержащую приемопередатчик, выносной пульт управления и антенну, дополнительно введены оконечная аппаратура (OA) телефонной и телеграфной связи, аппаратура адаптации, блок цифрового уплотнения и блок разделительных фильтров, а приемопередатчик выполнен в виде унифицированного блока, состоящего из блока управления и коммутации (УК), пульта управления, микро-ЭВМ, базового приемовозбудителя, включающего в себя усилитель низкой частоты (НЧ), унифицированный синтезатор частот (СЧ), опорный генератор, высокочастотный коммутатор, устройство обмена информацией, приемник и буферный усилитель, блока согласования приемопередатчика, управляемого генератора, усилителя мощности, переключателя передачи радиостанции, фильтра дополнительной селекции и автоматического согласующего устройства, а также тем, что блок УК радиостанции содержит блок подключения цепей, усилитель низкой частоты (НЧ), регенератор, коммутатор, переключатель, блок регистров, устройство вывода информации, приемник тонального вызова (ПТВ), согласователь уровней, устройство обмена информацией, измеритель промежуточной частоты (ПЧ), формирователь меток времени (MB) и блок памяти, приемник содержит первый, второй, третий и четвертый усилители высокой частоты (ВЧ), блок автоматической настройки контуров (АНК), коммутатор поддиапазонов, первый смеситель, линию задержки, подавитель импульсных помех, кварцевый фильтр, разветвитель, усилитель первой промежуточной частоты (ПЧ1), второй смеситель, кварцевый генератор и ограничитель-дискриминатор. 2 з.п. ф-лы, 3 ил.

Изобретение относится к технике связи и может использоваться для построения адаптивных линий связи.Технический результат состоит в повышении помехозащищенности обмена данными между станциями связи за счет непрерывного анализа состояния всех каналов, выделенных для связи и хранения информации об этом, выделения для передачи, приема, анализа, совместной обработки принимаемых сигналов нескольких частотных каналов с максимальными отношениями сигнал/шум как в прямом направлении, так и в обратном направлении, формирования новых планов связи, передачи этой информации соответствующим абонентам системы, хранения ее до деградации параметров хотя бы одного из работающих радиоканалов и перехода на новый план связи в дальнейшем. Для этого в систему введены вычислитель, устройство кодирования и декодирования, приемник сигналов глобальных навигационных спутниковых систем. 1 ил.

Изобретение относится к области радиосвязи, а именно к системам подвижной радиосвязи (сотовой связи), и может быть использовано для организации связи мобильных абонентов в системе радиосвязи специального назначения систем подвижной радиосвязи. Технический результат состоит в повышении скорости и стабильности соединения подвижных абонентов. Для этого способ заключается в том, что на стационарных и выносных радиоцентрах в каждой зоне устанавливают контрольный приемник (КП), с помощью которого сканируют радиоканалы системы связи в каждой зоне для анализа качества цифрового канала, поступающего от абонентских станций, информацию с контрольных приемников вместе с координатами расположения абонентских станций в системе ГЛОНАС/GPS и их идентификационными номерами по интерфейсу Ethernet (С1-ФЛ, ТЧ - канал) физических линий направляют на устройство управления контрольными приемниками (УУКП) программно-аппаратного комплекса центра коммутации (ПАКЦК), где осуществляют анализ уровня и достоверности сигнала в цифровом радиоканале в зоне движения мобильных абонентов, и в случае увеличения сигнала и качества цифрового радиоканала на одном КП и одновременного уменьшения на другом, при достижении определенного, априори заданного порога, качества цифрового канала, производят передачу сопровождения мобильного абонента от одного РЦ (зоны) другому РЦ (зоне) или обратно по гистерезисному закону, который задают основным устройством управления (ОУУ), при этом переход абонента из зоны в зону осуществляют на основании анализа данных, полученных из различных зон от тех контрольных приемников, которые сопровождают данного абонента, при этом частоту радиоцентра зоны, в которую переходит абонент, переключают на частоту абонента, а частоту радиоцентра зоны, из которой переходит абонент, возвращают на частоту дежурного приема, которая в каждой зоне своя, причем абонент во время следования по маршруту в режиме «Переговоры» работает на одной частоте. Многозоновая система радиосвязи с подвижным мобильным абонентом (АРС) содержит в каждой зоне радиоцентр (РЦ) с, по меньшей мере, одной радиостанцией (ЦРС), связанные по физическим каналам через коммутационно-линейное оборудование (КЛО) с программно-аппаратным комплексом центра коммутации (ПАКЦК), при этом радиоцентры содержат ЦРС, работающие на одинаковых частотах, и контрольный приемник (КП), размещенный в непосредственной близости от ЦРС и связанный с ПАКЦК, причем каждый РЦ имеет резервные ЦРС. 2 н.п. ф-лы, 2 ил.

Изобретение относится к телекоммуникационным системам и может быть использовано в качестве мобильной аппаратной на сетях сотовой связи, развертываемых в полевых условиях. Технический эффект от предлагаемой полезной модели заключается в обеспечении возможности организации нескольких сетей связи, включая сеть радиорелейной многоканальной связи, сети широкополосного беспроводного и проводного доступа, УКВ и KB радиосети в полевых условиях на необорудованной в отношении связи территории, обеспечении выхода с оборудованных рабочих мест должностных лиц в организованные сети связи и в телефонную сеть связи общего пользования с возможностью передачи по образованным трактам и каналам связи различных телефонных сообщений, видеоинформации, документальной информации и данных, достигаемый за счет того, что в мобильную аппаратную системы подвижной связи, содержащую устройство коммутации, радиорелейную станцию с антенной, широкополосный модем, блок шифрования, УКВ радиостанцию подвижной связи с антенной, портативный компьютер технологического автоматизированного рабочего места (АРМ), малогабаритный принтер, три ТА автоматической телефонной связи и соединительную линию от внешней автоматической телефонной станции, дополнительно введены маршрутизатор, базовая станция широкополосного беспроводного доступа (ШБД) с антенной, комбинированный мультиплексор, блок кабельного ввода, возимая коротковолновая (KB) радиостанция с антенной, навигационный приемник со встроенной антенной, криптографический маршрутизатор, многоканальная аппаратура передачи данных, межсетевой экран, интерактивный стол, выполненный в виде интерактивного, мультимедийного устройства на базе ЖК-дисплея, АРМ должностного лица, оборудованное на базе портативного компьютера, коммутатор IP-телефонии, четвертый ТА, ВОЛС для передачи сигналов группового потока Е3, ВОЛС для передачи сигналов группового потока Е1, соединительная линия для передачи сигналов группового потока Е1, проводная линия Ethernet и проводная линия xDSL. Новая совокупность признаков и изменение связей между блоками способствовали решению поставленной задачи. 1 з.п. ф-лы, 1 ил.

Изобретение относится к беспроводной связи. Способ приема MBMS в системе радиосвязи включает в себя прием информации с Описанием пользовательской услуги (USD), включающей в себя информацию о времени начала и окончания сеанса MBMS, определение того, происходит ли сеанс MBMS в настоящее время, на основе информации о времени в USD-информации, и прием данных MBMS сеанса MBMS. Технический результат заключается в облегчении приема услуги широковещательной/многоадресной передачи мультимедиа (MBMS), предоставляемой в системе Долгосрочного развития (LTE), без необходимости приема канала управления многоадресной передачей. 4 н. и 14 з.п. ф-лы, 10 ил.

Изобретение относится к области систем обмена данными для обмена ответственной информацией между средствами автоматики и объектами управления. Система включает первый и второй многоканальные задатчики-передатчики, блок контроля, линейное устройство, первый и второй каналы связи, формирователь кодовой информации, блокирующий ключ, пульт управления, объект управления и монитор. Причем вход монитора подключен ко второму выходу формирователя кодовой информации, при этом объекты управления выполнены с возможностью формирования квитанций при выполнении соответствующих управляющих воздействий, а линейные устройства - с возможностью преобразования указанных квитанций в сообщения, аналогичные передаваемым по первому каналу связи, кроме того, выход каждого объекта управления подключен ко второму входу линейного устройства, а выходы второго канала связи по числу объектов управления - к соответствующим входам блока контроля, второй выход которого соединен с входом пульта управления. Достигается повышение надежности и достоверности доведения команд до объектов управления и обеспечение контроля выполнения объектами управления переданного управляющего воздействия. 1 ил.

Изобретение относится к беспроводной связи. При приеме службы широковещательной многоадресной передачи мультимедиа (MBMS) терминалом в системе мобильной связи определяют, пересылается ли информация об идентификаторе зоны уверенного приема (SAI) на обслуживающей соте во время MBMS; принимают эту информацию о SAI на обслуживающей соте, когда определено, что эта информация о SAI пересылается; определяют посредством использования принятой информации о SAI обслуживающей соты того, совпадает ли SAI MBMS с SAI обслуживающей соты; и изменяют приоритет частоты обслуживающей соты при повторном выборе соты на наивысший приоритет, если определено, что SAI MBMS совпадает с SAI обслуживающей соты. Технический результат заключается в обеспечении возможности эффективно принимать MBMS службы посредством осуществления выбора терминалом правильной частоты или соты, когда запускается MBMS служба, представляющая интерес. 2 н. и 12 з.п. ф-лы, 11 ил.

Изобретение относится к системе цифрового телевизионного вещания. Изобретение раскрывает способ и аппарат для передачи и приема потоков данных, согласно которому потоки данных принимаются, эти потоки данных отображаются в физический слот, формируется по меньшей мере один кадр, который включает в себя физический слот, по меньшей мере один кадр передается по меньшей мере на одной радиочастоте, по меньшей мере один кадр принимается по меньшей мере на одной радиочастоте. Обнаруживается местоположение физического слота, включенного в состав каждого кадра, принимаются потоки данных, распределенные в физический слот по его местоположению. Физический слот включает в себя битовую информацию, указывающую число антенн, передающих по меньшей мере один кадр. 4 н. и 32 з.п. ф-лы, 9 ил.

Изобретение относится к технике связи и может использоваться в системах мобильной связи. Технический результат состоит в повышении надежности связи. Для этого описывается работа пользовательского оборудования (UE) с различными таймерами. Согласно данной схеме, когда UE принимает значения для каждого таймера, относящегося к работе в режиме прерывистого приема (DRX), из сети, UE выполняет мониторинг физического канала управления нисходящей линии связи (PDCCH) с подкадра n+1 до подкадра n+X, основываясь на первом таймере из числа вышеупомянутых таймеров, когда первое событие для запуска первого таймера происходит в подкадре n, и выполняет мониторинг PDCCH с подкадра n до подкадра n+X-1, основываясь на втором таймере из числа упомянутых таймеров, когда второе событие для запуска второго таймера происходит в подкадре n. 2 н. и 10 з.п. ф-лы, 11 ил., 4 табл.

Изобретение относится к технологии беспроводной связи, в частности к Связи Машинного Типа (MTC), и предназначено для снижения перегрузки доступа, когда улучшенному Узлу В (eNB) передают запросы на доступ одновременно некоторое количество Пользовательских Оборудований (UE). Предоставлены система и способ, которые используют Расширенный Запрет Доступа (EAB), когда устройство MTC выполняет попытку получить доступ к eNB в системе беспроводной связи. Когда UE, поддерживающее MTC, устройство MTC, выполняет попытку получить доступ к сети, система и способ определяют, может ли оно получить доступ к сети, и выполняют процедуру доступа. Система и способ могут управлять операциями UE, которое выполняет попытку получить доступ к сети, тем самым предотвращая избыточный доступ. 2 н. и 10 з.п. ф-лы, 10 ил., 1 табл.
Наверх