Конусная инерционная дробилка с модернизированной трансмиссией

Изобретение относится к дробильному измельчительному оборудованию, в частности к конусным дробилкам, и может быть использовано в строительной и горно-обогатительной отраслях промышленности. Конусная инерционная дробилка содержит опертый на фундамент 9 корпус 1, наружный конус 2 и внутренний конус 3, размещенный внутри корпуса 1 на сферической опоре 4. На валу 5 внутреннего конуса 3 посредством втулки скольжения 12 расположен дебаланс 6. Втулка скольжения 12 дебаланса 6 через трансмиссионную муфту 13 соединена с ведущим валом 5. На ведущем валу 5 закреплен шкив 15 с противодебалансом 11, через который передается вращательный момент от двигателя. Трансмиссионная муфта 13 выполнена в виде дисковой муфты, состоящей из ведущей и ведомой полумуфт и расположенного между ними плавающего диска. Ведущая полумуфта выполнена в виде диска с вогнутой рабочей торцевой поверхностью и радиально расположенной на ней шпонкой. Ведомая полумуфта выполнена в виде диска с выгнутой торцевой рабочей поверхностью и радиально расположенной на ней шпонкой. Плавающий диск имеет выгнутую и вогнутую торцевые поверхности, обращенные к ведущей и ведомой полумуфтам соответственно. Дробилка обеспечивает повышение надежности работы. 6 з.п. ф-лы, 4 ил.

 

Изобретение относится к области тяжелого машиностроения, к дробильному измельчительному оборудованию, в частности к конусным дробилкам, и может быть использовано в технологических процессах строительной и горно-обогатительной отраслях промышленности.

Современные конусные инерционные дробильные агрегаты представляют собой сложные и трудоемкие в эксплуатации машины. Одна из самых важных проблем - это возможность создания эффективной конструкции, одновременно обладающей высокой надежностью, экономичностью, защитой от сбоев и вместе с тем простотой в эксплуатации и сервисном обслуживании.

Из уровня техники известно, что конусная инерционная дробилка содержит корпус с наружным конусом и размещенным внутри него внутренним конусом, обращенные друг к другу поверхности которых образуют камеру дробления. На валу внутреннего подвижного конуса установлен дебаланс, приводимый во вращение трансмиссией. При вращении дебаланса создается центробежная сила, заставляющая внутренний конус обкатываться по наружному конусу без зазора, если в камере дробления нет перерабатываемого материала (на холостом ходу); или через слой дробимого материала.

Теория вопроса описана в специальной литературе, например «Энциклопедия Машиностроение» под редакцией академика РАН Фролова К.В., Москва, Машиностроение, 2011, том IV-24 «Горные машины», ISBN 978-5-94275-567-6, содержит главу 7.3 «Конусные инерционные дробилки», стр. 418.

Одним из слабых мест конструкции конусной дробилки является трансмиссионный узел, иначе говоря, способ и устройство, используемые для передачи крутящего момента от двигателя к дебалансу. В общем случае, трансмиссионный узел должен обеспечивать передачу требуемого крутящего момента, одновременно быть надежным, компактным и экономически обоснованным с точки зрения стоимости его производства, монтажа и эксплуатационного обслуживания.

Известно применение шарового опорно приводного шпинделя в качестве трансмиссионного узла. Теория вопроса описана в литературе: «Вибрационные дробилки», Вайсберг Л.А. и другие, Издательство ВСЕГЕИ, Санкт-Петербург, 2004, ISBN 93761-061-X, Расчет приводных элементов при нерегулярной обкатке внутреннего конуса, стр. 89, также рис. 33 и 34.

Конструкция шарового опорно-приводного шпинделя основана на «Универсальной муфте» (Universal joint), предложенной А. Рзеппа (A.Rzeppa) в 1933 году, патент на изобретение US 2010899. В специальной литературе данная конструкция имеет также название «шарнир равных угловых скоростей». Упомянутая муфта состоит из двух кулаков: внутреннего, связанного с ведущим валом, и наружного, связанного с ведомым валом. В обоих кулаках имеется по шесть тороидальных канавок, расположенных в плоскостях, проходящих через оси валов. В канавках находятся шарики, положение которых задается сепаратором, взаимодействующим с валами через делительный рычажок. Один конец рычажка поджимается пружиной к гнезду внутреннего кулака, другой скользит в цилиндрическом отверстии ведомого вала. При изменении относительного положения валов рычажок наклоняется и поворачивает сепаратор, который в свою очередь, изменяя положение шариков, обеспечивает их расположение в бисекторной плоскости. В данном шарнире крутящий момент передается через все шесть шариков. Предельный угол между осями валов 35-38°.

Известно применение опорно-приводного шпинделя в изобретении «Конусная инерционная дробилка», SU 1118408. Упомянутая дробилка содержит корпус с наружным конусом и сферической опорой внутреннего дробящего конуса, имеющего дебаланс и опорно-приводной шаровой шпиндель со сферической пятой, опертой на сферический подпятник, и упругую компенсационную муфту, нижняя полумуфта которой соединена с контрприводом, а верхняя - со шпинделем, верхняя полумуфта жестко соединена с опорно-приводным шпинделем, а сферическая пята и подпятник размещены на корпусе.

За прототип принимается изобретение «Инерционная конусная дробилка», RU 2174445, которое представляет собой пример использования шаровой опорно-компенсационной муфты для передачи крутящего момента при одновременном решении проблем динамического уравновешивания дробилки.

Согласно этому изобретению, в инерционной конусной дробилке, содержащей опертый на фундамент через эластичные амортизаторы корпус с наружным конусом и размещенный внутри него на сферической опоре внутренний конус, на валу которого с помощью подшипника смонтирован приводной неуравновешенный ротор с возможностью регулировки его центра тяжести относительно оси вращения, соединенной через шаровую опорно-компенсационную муфту и через размещенный в подшипниках корпуса промежуточный вал с приводным шкивом и двигателем; в которой корпус подшипника ротора и корпус шкива выполнены с цилиндрическими поверхностями, эксцентричными относительно оси вращения, шкив снабжен неуравновешенным грузом и упомянутые неуравновешенные грузы также выполнены эксцентричными и установлены с возможностью полного поворота на ответных эксцентрических цилиндрических поверхностях подшипника ротора и шкива и возможностью фиксации их в необходимом положении относительно эксцентриситета упомянутых поверхностей и друг друга.

Шаровая опорно-компенсационная муфта состоит из вертикально ориентированного опорно-приводного шпинделя, вставленного через подпятники в нижнюю (ведущую) и верхнюю (ведомую) полумуфты. В полумуфтах размещены по шесть полуцилиндрических канавок, на головках шпинделя размещены по шесть полусферических углублений, в которые вставлены соответственно шесть шариков. Нижняя полумуфта получает крутящий момент от промежуточного (ведущего) вала, приводит во вращение шпиндель, который в свою очередь вращает верхнюю (ведомую) полумуфту и соединенный с ней ротор (дебаланс).

Применение шаровой опорно-компенсационной муфты в качестве трансмиссии имеет существенные недостатки.

В данной муфте крутящий момент в каждый отдельный момент времени при каждом конкретном угле отклонения валов передается при помощи только двух шариков, находящихся на оси напряжения, в то время как остальные две пары шариков не нагружены. Рабочая пара шариков принимает на себя всю нагрузку и с увеличенной силой продавливает соответствующие им полуцилиндрические канавки, что приводит к быстрому износу полумуфт и выходу их из строя. Неравномерное распределение нагрузки и ограниченная площадь рабочего контакта шариков приводят в конце концов к разрушению самих шариков. Поскольку головка шпинделя полностью заключена в полумуфту, то постепенный износ внутренних элементов муфты нельзя контролировать визуально. Постепенный неконтролируемый износ приводит к нарушению геометрии устройства, что в свою очередь приводит к ограничению величины передаваемого крутящего момента, и наконец к полному и, как правило, аварийному (непредсказуемому) выходу из строя всего трансмиссионного узла, и остановке агрегата.

Специальные требования, предъявляемые к трансмиссионному узлу, определяются особенностями кинематической схемы конусной инерционной дробилки с использованием дебаланса, которая предполагает движение внутреннего конуса по сложным произвольным траекториям с возможностью расположения вала конуса в любом положении относительно вертикальной оси симметрии дробилки.

В связи с этим целью настоящего изобретения является создание такой схемы трансмиссионного узла, которая должна обеспечить надежную и свободную передачу крутящего момента от приводного вала ко втулке дебаланса без каких-либо ограничений при любом положении оси вала внутреннего конуса; при любом взаимном расположении оси вала внутреннего конуса и дебаланса в случае попадания в камеру дробления недробимых тел, при которых втулка дебаланса должна вращаться вокруг неподвижного вала внутреннего конуса, находящегося в непредсказуемом положении.

Кроме того, важным ограничивающим параметром является общая высота конструкции дробящего агрегата: если высота дробилки существенно увеличивается, то, как следствие, увеличивается высота всей технологической цепочки, доставляющей исходный дробимый материал в верхний подающий бункер, что увеличивает капитальные затраты на установку оборудования.

Следовательно, еще одной целью настоящего изобретения является по меньшей мере сохранение, а в лучшем случае уменьшение общей высоты дробильного агрегата.

Поставленная цель может быть реализована за счет принципиального изменения конструкции трансмиссионного узла.

За основу новой конструкции трансмиссионного узла предлагается взять компенсирующую дисковую муфту, которая впервые была предложена инженером Джоном Олдхемом, Ирландия, в 1820 году. Другие названия подобных устройств, используемые в специальной литературе: «кулачково-дисковая муфта», «крестово-кулисная муфта» или «муфта Олдхема» ( англ. «Oldham coupler»). Подробная информация изложена в Википедии http://ru.wikipedia.org/wiki/Муфта_кулачково-дисковая.

Муфта Олдхема предназначена для передачи крутящего момента между двумя параллельными валами с целью компенсации радиального смещения осей вращения валов. Муфта состоит из двух полумуфт, выполненных в виде дисков: ведущей полумуфты, соединенной с ведущим валом, и ведомой полумуфты, соединенной с ведомым валом, между которыми расположен промежуточный плавающий диск. Каждая полумуфта имеет радиально расположенную шпонку на рабочей торцевой поверхности, плавающий диск имеет радиальные пазы, расположенные взаимно перпендикулярно друг другу на обеих торцевых поверхностях. Все торцевые поверхности деталей плоские. Шпонки полумуфт плотно входят в пазы плавающего диска таким образом, что пара шпонка-паз ведущей полумуфты перпендикулярна паре шпонка-паз ведомой муфты. Ведущие вал-полумуфта передают вращательный момент плавающему диску, который в свою очередь приводит во вращение ведомые полумуфту-вал.

В процессе работы плавающий диск вращается вокруг своего центра с той же скоростью, что ведущий и ведомый валы, при этом диск скользит по пазам, совершая движение вращения-скольжения, компенсируя радиальную несоосность валов. Для уменьшения потерь на трение и изнашивания сопряженных поверхностей они подлежат периодическому смазыванию, для чего в деталях муфты могут быть предусмотрены специальные отверстия.

Преимуществами классической конструкции муфты Олдхема является простота конструкции, обусловленная простотой составляющих ее деталей, как следствие этого, высокая надежность и компактный размер.

Недостатком классической конструкции муфты Олдхема является невозможность передачи вращательного момента в том случае, когда оси вращения ведущего и ведомого валов отклоняются на определенный угол, так называемое угловое смещение валов.

Задачей настоящего изобретения является усовершенствование муфты Олдхема таким образом, чтобы на ее основе можно было создать трансмиссионный узел, передающий сложное вращение от ведущего вала дробилки ко втулке дебаланса, подразумевающее угловое смещение осей их вращения.

Поставленные задачи решаются в конусной инерционной дробилке, которая содержит:

опертый на фундамент через эластичные амортизаторы корпус с наружным конусом и размещенный внутри него на сферической опоре внутренний конус,

на приводном валу которого с помощью втулки скольжения расположен дебаланс с возможностью регулировки его центра тяжести относительно оси вращения,

втулка скольжения дебаланса соединена через трансмиссионную муфту с ведущим валом, со шкивом с закрепленным на нем противодебалансом, через который передается вращательный момент от двигателя.

Конусная инерционная дробилка имеет следующие отличия:

трансмиссионная муфта выполнена в виде дисковой муфты, которая состоит из ведущей полумуфты, выполненной в виде диска и соединенной через втулку и опорный диск с ведущим валом, имеющей вогнутую рабочую торцевую поверхность и вогнутую геометрию радиально расположенной на ней шпонки,

ведомой полумуфты, выполненной в виде диска и соединенной со втулкой скольжения дебаланса, имеющей выгнутую торцевую рабочую поверхность и выгнутую геометрию радиально расположенной на ней шпонки,

и расположенный между полумуфтами плавающий диск, имеющий выгнутую торцевую поверхность, обращенную к ведущей полумуфте и выгнутую геометрию радиально расположенного на ней паза, вогнутую торцевую поверхность, обращенную к ведомой полумуфте, и вогнутую геометрию радиально расположенного на ней паза, при этом пазы выполнены перпендикулярно друг другу.

Конусная инерционная дробилка имеет дополнительные отличия.

Диаметр ведущей полумуфты больше диаметра ведомой муфты и диаметра плавающего диска.

Ведущая полумуфта имеет установочные отверстия по периферии диска, совпадающие с установочными отверстиями по краю втулки.

Ведомая полумуфта имеет установочные отверстия по периферии диска, совпадающие с установочными отверстиями по краю втулки скольжения дебаланса.

Радиусы вогнутости и выгнутости сопряженных торцевых поверхностей дисков муфты равны, причем центры всех упомянутых радиусов расположены в одной точке, которая совпадает с центром радиуса кривизны внутренней поверхности сферической опоры внутреннего конуса.

Ведущая и ведомая полумуфта и плавающий диск имеют маслопроводящие отверстия, расположенные в центрах соответствующих дисков, причем маслопроводящее отверстие плавающего диска выполнено большего диаметра, чем маслопроводящие отверстия в полумуфтах.

Вращение трансмиссионной муфты может быть направлено в любую сторону.

Существо настоящего изобретения поясняется следующими фигурами.

На фиг. 1 показана общая схема инерционной конусной дробилки в поперечном разрезе.

На фиг. 2 и 3 представлена трансмиссионная муфта и сопряженные с ней элементы дробилки.

На фиг. 4 представлена трансмиссионная муфта в сборе, в рабочем положении.

Изобретение конструктивно реализуется следующим образом.

Корпус (1) установлен на фундамент (9) через эластичные амортизаторы (10).

Наружный дробящий конус (2) и внутренний дробящий конус (3), размещенный на сферической опоре (4), образуют между собой дробящую камеру. На валу (5) внутреннего конуса (3) установлена втулка скольжения дебаланса (12) и дебаланс (6). Втулка скольжения дебаланса (12) соединена трансмиссионной муфтой (13) со втулкой (14), которая одета на ведущий вал (31).

На ведущем валу (31) ниже уровня дна корпуса (1) закреплен приводной шкив (15), на котором смонтирован противодебаланс (11). Противодебаланс (11) находится в противофазе к дебалансу (6). Приводной шкив (15) выполнен с возможностью соединения его с электродвигателем.

Трансмиссионная муфта выполнена следующим образом.

Ведущая полумуфта (28) представляет собой диск с вогнутой рабочей торцевой поверхностью (33), вогнутой геометрией шпонки (27), маслопроводящим отверстием (30) и установочными отверстиями (29), расположенными по периферии диска. Оборотная (нерабочая) торцевая поверхность диска (28) имеет выступ, диаметр которого равен внутреннему диаметру втулки (14).

Ведомая полумуфта (17) представляет собой диск с выгнутой рабочей торцевой поверхностью (21), выгнутой геометрией шпонки (20), маслопроводящим отверстием (19) и установочными отверстиями (18), расположенными по периферии диска. Оборотная торцевая поверхность диска (17) имеет выступ, диаметр которого равен внутреннему диаметру втулки скольжения дебаланса (12).

Плавающий диск (24) имеет выгнутую торцевую поверхность (25), обращенную к ведущей полумуфте (28), и выгнутую геометрию паза (23), вогнутую торцевую поверхность (32), обращенную к ведомой полумуфте (17), и вогнутую геометрию паза (22), расположенного перпендикулярно пазу (23), и маслопроводящее отверстие (26).

Полумуфты (28) и (17) и плавающий диск (24) сопрягаются между собой вогнуто-выгнутыми торцевыми поверхностями таким образом, чтобы шпонки полумуфт плотно входили в соответствующие им пазы плавающего диска: шпонка (27) входит в паз (23) и шпонка (20) входит в паз (22). Маслопроводящие отверстия располагаются друг над другом, причем маслопроводящее отверстие плавающего диска (26) выполнено большего диаметра, чем маслопроводящие отверстия (19) и (30) в полумуфтах.

Втулка (14) имеет установочные отверстия (34), соответствующие установочным отверстиям (29) ведущей полумуфты (28), при помощи которых детали жестко соединяются друг с другом. Втулка дебаланса (12) имеет установочные отверстия (16), соответствующие установочным отверстиям (18) ведомой полумуфты (17), при помощи которых детали жестко соединяются друг с другом.

Внутри ведущего вала (31) предусмотрен масляный канал (7). Масляный патрубок (8) закреплен на входе в масляный канал с возможностью вращения.

Изобретение работает следующим образом.

От двигателя вращательный момент поступает на шкив (15), приводя в движение закрепленный на нем противодебаланс (11) и ведущий вал (31). Ведущий вал (31) приводит во вращение втулку (14) и связанную с ней ведущую полумуфту (28), которая передает вращательный момент к ведомой полумуфте (17) через плавающий диск (24) за счет сцеплений шпонка-паз.

Ведомая полумуфта (17) передает крутящий момент втулке скольжения дебаланса (12) и дебалансу (6). Последний развивает центробежную силу и через вал (5) заставляет внутренний конус (3) совершать обкатку по наружному конусу (2) через слой дробимого материала.

В случае если ведущий вал (31) и вал (5) расположены строго на одной оси вращения, то плавающий диск (24) совершает простое движение вращения, повторяя его за ведущей полумуфтой (28) и передавая вращение ведомой полумуфте (17).

В рабочем режиме дробилки (фиг. 4) упомянутые валы (31) и (5) имеют угловое расхождение осей вращения α, в этом случае плавающий диск (24) получает вращательный момент от ведущей полумуфты (28) и совершает сложное движение вращение-скольжение-качание за счет того, что собственно диск (24) вращается вокруг своей оси, шпонки (20) и (27) скользят в соответствующих им пазах (22) и (23), а сопряженные торцевые поверхности дисков (21) (32) и (25) (33) качаются за счет своей вогнуто-выгнутой геометрии.

Рабочее угловое расхождение упомянутых осей α составляет диапазон от 0º до 5º.

Сопряженные вогнуто-выгнутые торцевые поверхности дисков муфты плотно прилегают друг к другу, так как радиусы кривизны сопряженных поверхностей (21) и (32) равны между собой и радиусы кривизны сопряженных поверхностей (25) и (33) равны между собой, таким образом движение скольжения-качания дисков муфты происходит без зазора.

Все центры радиусов кривизны упомянутых сопряженных поверхностей находятся в той же точке, что центр радиуса кривизны внутренней поверхности сферической опоры (4) внутреннего конуса (3).

Таким образом, радиус вогнутой торцевой поверхности (33) ведущей полумуфты (28) больше радиуса выгнутой торцевой поверхности (21) ведомой полумуфты (17), который в свою очередь больше радиуса вогнутой внутренней поверхности сферической опоры (4) внутреннего конуса (3).

Все поверхности трения муфты нуждаются в смазке. Через масляный патрубок (8) масло под давлением подается в масляный канал (7), затем поступает к трансмиссионной муфте (13) через маслопроводящие отверстия дисков.

Диаметр маслопроводящего отверстия (26) плавающего диска (24) выполнен диаметром такого размера, большего, чем маслопроводящие отверстия (30) и (19), что при любом рабочем отклонении плавающего диска (26) и ведомой полумуфты (17) от вертикальной оси маслопроводящие отверстия не перекрываются и доступ масла ко всем сопряженным поверхностям муфты сохраняется.

Вращение трансмиссионной муфты может быть направлено в любую сторону.

По сравнению с традиционной для дробилок шаровой опорно-компенсационной муфтой предложенная в настоящем изобретении трансмиссионная муфта имеет ряд существенных преимуществ.

Прежде всего, центральным передаточным элементом предложенной муфты является простой плавающий диск с искривленными торцевыми поверхностями и двумя пазами, в то время как шаровая опорно компенсационная муфта в качестве передаточного звена имеет гантелевидный опорный шпиндель сложной конструкции с шестью парами углубление-шарик, расположенными одновременно с двух сторон.

В качестве полумуфт в предложенной муфте выступают простые диски с искривленными торцевыми поверхностями и радиально расположенными шпонками, в то время как шаровая опорно-компенсационная муфта имеет полумуфты в виде сложных полых цилиндров с дном и с полуцилиндрическими канавками, сформированными на их внутренней поверхности и точно ориентированными на пары углубление-шарик. Следовательно, конструкция предложенной муфты значительно проще.

Очевидно, что конструктивное сопряжение шпонка-паз может выдерживать значительно большие нагрузки в течение более длительного времени, чем сопряжение канавка-шарик-углубление.

Следовательно, трансмиссионная муфта может дольше работать при передаче большего крутящего момента без риска аварийного выхода из строя, следовательно, возможно использование приводного двигателя большей мощности при тех же характеристиках дробильного агрегата. Таким образом, один и тот же дробильный агрегат, оборудованный предложенной муфтой, может работать в более широком диапазоне мощностей и нагрузок, что делает его более универсальной машиной.

Вертикальный размер предложенной муфты меньше, чем вертикальный размер шаровой опорно-компенсационной муфты, примерно наполовину, следовательно, конструктивный раздел корпуса дробилки, отведенный под трансмиссионный узел, соразмерно уменьшается. Реализация настоящего изобретения даст возможность понизить весь дробильный агрегат примерно на 17-20% от первоначальной высоты.

Стоимость производства предложенной муфты ввиду ее конструктивной простоты существенно ниже, чем стоимость традиционной муфты, а учитывая также экономию затрат на упрощенный монтаж и на снижение высоты корпуса, общую стоимость дробильного агрегата можно уменьшить примерно на 5-10%.

Все детали муфты можно легко разделять и заменять независимо друг от друга, не разбирая другие детали машины, что гарантируется простым способом крепления дисков муфты к несущим деталям агрегата. Визуальный контроль за ее состоянием и степенью износа можно осуществлять через люк в боковой части корпуса. Следовательно, предложенная муфта требует упрощенное сервисное обслуживание, значительно менее затратное и более удобное в реальных полевых условиях.

Трансмиссионная муфта может быть изготовлена из любых конструкционных материалов и их сочетаний, при этом выбор материалов обуславливается конкретными условиями эксплуатации; при помощи любых известных методов механической обработки материалов.

Однако наилучшим сочетанием с точки зрения оптимизации работоспособности будет вариант, при котором полумуфты и шпонки изготовлены из высокопрочных легированных марок сталей, плавающий диск может быть изготовлен из высокопрочных пластиков или из бронзового сплава, а в качестве способа крепления шпонок будет использован способ «прессовой посадки».

1. Конусная инерционная дробилка, которая содержит
опертый на фундамент через эластичные амортизаторы корпус с наружным конусом и размещенный внутри него на сферической опоре внутренний конус,
на валу которого с помощью втулки скольжения расположен дебаланс с возможностью регулировки его центра тяжести относительно оси вращения,
втулка скольжения дебаланса через трансмиссионную муфту соединена с ведущим валом, на котором закреплен шкив с противодебалансом, через который передается вращательный момент от двигателя,
отличающаяся тем, что
трансмиссионная муфта выполнена в виде дисковой муфты, состоящей из
ведущей полумуфты, выполненной в виде диска, имеющего вогнутую рабочую торцевую поверхность и вогнутую геометрию радиально расположенной на ней шпонки,
ведомой полумуфты, выполненной в виде диска, имеющего выгнутую торцевую рабочую поверхность и выгнутую геометрию радиально расположенной на ней шпонки,
и расположенного между полумуфтами плавающего диска, имеющего выгнутую торцевую поверхность, обращенную к ведущей полумуфте, и выгнутую геометрию радиально расположенного на ней паза, вогнутую торцевую поверхность, обращенную к ведомой полумуфте, и вогнутую геометрию радиально расположенного на ней паза, при этом пазы выполнены перпендикулярными друг другу.

2. Конусная инерционная дробилка по п. 1, отличающаяся тем, что ведущая полумуфта соединена через втулку и опорный диск с ведущим валом и имеет установочные отверстия по периферии диска, совпадающие с установочными отверстиями по краю втулки.

3. Конусная инерционная дробилка по п. 1, отличающаяся тем, что ведомая полумуфта соединена со втулкой скольжения дебаланса и имеет установочные отверстия по периферии диска, совпадающие с установочными отверстиями по краю втулки скольжения дебаланса.

4. Конусная инерционная дробилка по п. 1, отличающаяся тем, что диаметр ведущей полумуфты больше диаметра ведомой муфты и диаметра плавающего диска.

5. Конусная инерционная дробилка по п. 1, отличающаяся тем, что радиусы вогнутости и выгнутости сопряженных торцевых поверхностей дисков муфты равны, причем центры всех упомянутых радиусов расположены в одной точке, которая совпадает с центром радиуса кривизны внутренней поверхности сферической опоры внутреннего конуса.

6. Конусная инерционная дробилка по п. 1, отличающаяся тем, что ведущая полумуфта, ведомая полумуфта и плавающий диск имеют маслопроводящие отверстия, расположенные в центрах соответствующих дисков, причем маслопроводящее отверстие плавающего диска выполнено большего диаметра, чем маслопроводящие отверстия в полумуфтах.

7. Конусная инерционная дробилка по п. 1, отличающаяся тем, что вращение трансмиссионной муфты может быть направлено в любую сторону.



 

Похожие патенты:

Группа изобретений относится к средствам дробления и измельчения различных материалов и может быть использована в инерционных конусных дробилках. Способ заключается в том, что измеряют положение и/или движение дробильной головки, на основании упомянутого измерения получают величины гирационного перемещения, которые сравнивают с опорной величиной гирационного перемещения.

Изобретение относится к конусным дробилкам и может быть использовано в строительной и горно-обогатительной отраслях промышленности. Конусная инерционная дробилка содержит корпус 1, наружный конус 2 и размещенный внутри него на сферической опоре 4 внутренний конус 3.

Изобретение относится к области тяжелого машиностроения, к дробильному измельчительному оборудованию, в частности к конусным дробилкам, и может быть использовано в технологических процессах строительной и горно-обогатительной отраслях промышленности.

Дробилка относится к средствам для измельчения различных материалов и может быть использована в строительной и горно-обогатительной отраслях промышленности. Дробилка содержит опертый на фундамент 9 через эластичные амортизаторы корпус 1 с наружным конусом 2 и размещенный внутри него на сферической опоре 4 внутренний конус 3.

Изобретение относится к устройствам обработки минерального материала, содержащим внешнюю и внутреннюю изнашиваемые детали. Внутренняя изнашиваемая деталь содержит внешнюю изнашиваемую поверхность, включающую изнашиваемые поверхности начальной и конечной стадии срока службы, и выступ, проходящий от изнашиваемой поверхности конечной стадии.

Группа изобретений относится к способу управления гираторной конусной дробилкой и гидравлическому контуру для осуществления этого способа. Способ управления заключается в том, что размер зазора дробилки, образованного внутренним и наружным корпусами, поддерживают посредством по меньшей мере одного гидравлического цилиндра, причем при превышении давления гидравлической жидкости первой пороговой величины давления гидравлическую жидкость из цилиндра удаляют.

Группа изобретений относится к внешней дробящей броне гирационной дробилки. Дробилка содержит дробящую броню (106) с единственным фланцевым участком (122).

Изобретение предназначено для измельчения зерна, семян бобовых культур, гречихи и других в пищевой промышленности и сельском хозяйстве. Внутри корпуса (3) конусной инерционной дробилки установлены неподвижный статор (4) и подвижный ротор (6).

Изобретение относится к измельчительным устройствам, к системам и способам очистки дробилки от инородного тела. Система 100 содержит по меньшей мере один цилиндр 70 двустороннего действия, служащий как для поддержания постоянного дробильного усилия между головкой 500 и чашей 400, так и для обеспечения очистительного хода, способствующего прохождению этого инородного материала.

Изобретение относится к конусным дробилкам мелкого дробления. Дробилка содержит установленный на опорную раму через амортизаторы корпус с наружным конусом и размещенным внутри него на сферической опоре внутренним конусом с валом, на котором с помощью подшипника установлен регулируемый дебалансный вибратор.

Изобретение относится к устройствам для тонкого измельчения хрупких высокотвердых материалов и может быть использовано для получения микропорошков керамических материалов, пигментов, присадок в топливо и других материалов. Мельница содержит закрытый корпус с патрубками 1, 2 соответственно для ввода и вывода продукции, цилиндрическую рабочую камеру 3 с внутренней футеровкой 5 и расположенную в закрытом корпусе и имеющую внешнюю водяную рубашку 4, и соединенный с приводом вращения 7 вертикальный ротор в виде вала 6 и соединенных с ним горизонтальных опорных дисков 8. Вертикальный ротор установлен в рабочей камере 3 по ее оси. На опорных дисках 8 посредством осей вращения 9 закреплены мелющие элементы 10, центр тяжести которых смещен относительно оси вращения. Мелющие элементы 10 состоят из металлического корпуса и закрепленной на нем мелющей вставки, которая при вращении элемента контактирует с поверхностью футеровки 5. При этом мелющие вставки и футеровка рабочей камеры выполнены из керамического композиционного материала, содержащего алмаз - 20-75% об., карбид кремния - 20-75% об., кремний - 3-40% об. Мельница характеризуется повышенным ресурсом работы и более широкой областью применения. 2 ил.
Изобретение относится к способам получения микропорошков твердых материалов, например микропорошков керамических материалов, пигментов. Способ заключается в том, что измельчение частиц твердых материалов производят в роторно-истирающей мельнице, в которой мелющие вставки и футеровка рабочей камеры выполнены из керамического композиционного материала, содержащего алмаз - 20-75 об.%, карбид кремния - 20-75 об.%, кремний - 3-40 об.% Способ обеспечивает получение химически чистых микропорошков твердых материалов.

Изобретение относится к средствам измельчения и может быть использовано для переработки пищевых отходов в сфере общепита, пищевой промышленности, сельском хозяйстве. Измельчитель пищевых отходов содержит корпус 1 с загрузочным люком 2 и рабочей камерой 3. Рабочая камера 3 снабжена неподвижной дробящей поверхностью в виде полого конуса 4 и установленной с зазором относительно измельчающего органа в виде подвижной измельчающей шарошки 5 с приводом от электродвигателя 8. Подвижная измельчающая шарошка 5 установлена на валу 6 с дебалансом 9, прикреплена к основанию чаши 7 и представляет собой усеченный конус, на конической поверхности которого в шахматном порядке в три яруса размещены резьбовые гнезда 12 для ввинчивания пирамидальных штифтов 13. Измельчитель позволяет перерабатывать как твердые компоненты, так и пленочные или волокнистые компоненты пищевых отходов. 10 з.п. ф-лы, 2 ил.

Блокировочная система, предназначенная для использования в дробилке для породы. Блокировочная система 20 содержит стационарный корпус 24, дробящую головку 26 конусной дробилки, узел вращения 27, вал 28, подшипники 30, дробильную камеру 31, броню 32 дробильной камеры 31 и рабочую гидравлическую жидкость. Предпочтительно блокировочная система включает устройство для нагнетания потока, предназначенное для обеспечения потока рабочей гидравлической жидкости, источник рабочей гидравлической жидкости, предназначенный для подачи рабочей гидравлической жидкости, регулирующий клапан, сообщающийся по текучей среде с источником рабочей гидравлической жидкости и предназначенный для обеспечения потока рабочей гидравлической жидкости к источнику рабочей гидравлической жидкости, и узел передачи крутящего момента, предназначенный для соединения дробящей головки 26 конусной дробилки и источника рабочей гидравлической жидкости и для передачи крутящего момента от дробящей головки 26 конусной дробилки на стационарный корпус. При этом в блокировочной системе 20 используется такая же рабочая гидравлическая жидкость, что и в других системах дробилки для породы. Способ управления блокировочной системой 20 заключается в том, что посредством устройства для нагнетания потока обеспечивают поток рабочей гидравлической жидкости, посредством источника рабочей гидравлической жидкости подают рабочую гидравлическую жидкость, при этом регулирующим клапаном, сообщающимся по текучей среде с источником рабочей гидравлической жидкости, обеспечивают поток рабочей гидравлической жидкости к источнику рабочей гидравлической жидкости. В блокировочной системе используют такую же рабочую гидравлическая жидкость, что и в других системах дробилки для породы. Блокировочная система и способ обеспечивают возможность управления вращением дробящей головки конусной дробилки, исключая при этом перекрестное загрязнение рабочих гидравлических жидкостей. 2 н. и 21 з.п. ф-лы, 10 ил.

Изобретение относится к устройствам для дробления твердых материалов, а именно к инерционным конусным дробилкам с вертикальной осью, и может быть широко использовано в горнорудной, металлургической и строительной отраслях промышленности. Вибрационная дробилка содержит корпус 1 с верхним загрузочным отверстием 2, внутренним конусом 3 и фланцем 4. Дробящее тело имеет конус 5, к которому снизу при помощи осевого стержня 6 прикреплен диск 7. Между рабочими поверхностями конусов имеется кольцевой щелевой зазор 8 (камера дробления) с кольцевым разгрузочным отверстием 9. На нижнем торце конуса 5 установлен кольцевой направляющий фартук 10, имеющий форму сужающегося книзу конуса. В диске 7 на его периферийной части размещены верхние дебалансные вибраторы 11. В диске 7 ближе к центру под кольцевым разгрузочным отверстием 9 выполнены сквозные отверстия 12, распределенные по окружности и предназначенные для прохождения дробленого материала. В центральной части диска 7 на нижнем торце имеется кольцевой направляющий фартук 13, выполненный аналогично фартуку 10. Под диском 7 установлена платформа 14, в которой на периферийной части размещены нижние дебалансные вибраторы 15, а ближе к центру непосредственно под отверстиям 12 выполнены сквозные отверстия 16, также расположенные по окружности и предназначенные для прохождения дробленого материала. Платформа 14 установлена на опоре 17 посредством пружин 18 нижнего яруса. Диск 7 дробящего тела установлен на платформе 14 посредством пружин 19 среднего яруса, а корпус 1 своим фланцем 4 установлен на диске 7 посредством пружин 20 верхнего яруса. В дробилке обеспечивается практически полная изоляция опоры от неуравновешенных динамических сил за счет использования эффекта виброгашения. 3 з.п. ф-лы, 4 ил.

Группа изобретений относится к устройствам уплотнительных систем, способам уплотнения и может быть использована в резьбовых соединениях конусных гирационных дробилок. Уплотнительная система 20 содержит элемент с наружной резьбой, включающий секцию с наружной резьбой, имеющую внутреннюю часть, элемент с внутренней резьбой, имеющий секцию с внутренней резьбой и канавку для уплотнения скребкового типа, выполненного с возможностью его установки в вышеуказанной канавке, в которой усилия, создаваемые оборудованием, передаются непосредственно элементу с внутренней резьбой от секции с наружной резьбой. Канавка для уплотнения скребкового типа и уплотнение скребкового типа расположены вдоль только небольшой части дуги окружности секции с внутренней резьбой, а уплотнение скребкового типа включает выступ. Уплотнительная система содержит опорную чашу 24 с резьбовой секцией 26 опорной чаши 24, которая имеет внутренний участок 28, верхнюю станину 30, имеющую резьбовую секцию 32 верхней станины 30 и канавку для уплотнения скребкового типа 34, выполненного с возможностью его установки в вышеуказанной канавке и внутри резьбовой секции 26 опорной чаши 24, в которой усилия дробления, создаваемые дробилкой для породы, передаются непосредственно верхней станине 30 от резьбовой секции 26 опорной чаши 24. Канавка для уплотнения скребкового типа и уплотнение скребкового типа расположены вдоль только небольшой части дуги окружности секции с внутренней резьбой, а уплотнение скребкового типа включает выступ. Способ уплотнения внутренней части резьбовой секции элемента с наружной резьбой заключается в создании вышеописанной уплотнительной системы. В уплотнительной системе и способе исключена передача усилий дробления по всей окружности уплотнительной поверхности опорной чаши. 3 н. и 16 з.п. ф-лы, 8 ил.

Изобретение относится к способам дробления твердых материалов с помощью вибрационной конусной дробилки. Способ заключается в том, что частоту вращения дебалансных вибраторов, установленных на внешнем конусе с возможностью плавного регулирования частоты вращения, устанавливают соответствующей минимальной амплитуде колебаний внешнего конуса вибрационной конусной дробилки, включающей внутренний конус, установленный посредством упругого подвеса на внешнем конусе, установленном посредством упругого подвеса на неподвижном основании. Способ обеспечивает повышение производительности дробления. 2 ил.

Группа изобретений относится к износостойкому вкладышу дробилки, который может быть размещен на нижней броне конусной дробилки, а также к конусной дробилке с таким вкладышем. Износостойкий вкладыш выполнен модульным и содержит множество износостойких плит, установленных на внутренней стороне нижней брони смежно друг с другом. Каждая плита содержит боковые, верхнюю и нижнюю кромки, при этом включает по меньшей мер, одно взаимодействующее образование, выполненное с возможностью взаимодействия с соседней плитой и/или взаимодействующим образованием соседней плиты, и по меньшей мере частичного блокирования соседних плит и замедления или предотвращения независимого смещения каждой плиты от вкладыша. Конусная дробилка содержит нижнюю броню и вышеуказанный износостойкий вкладыш. Выполнение вкладыша модульным предотвращает его попадание в зону измельчения. 2 н. и 13 з.п. ф-лы, 11 ил.

Группа изобретений относится к средствам для защиты загрузочного бункера дробилки, бункеру с такими средствами защит и дробилке с таким бункером. Кассета для защиты от износа загрузочного бункера содержит главный корпус, имеющий заднюю поверхность, опорную поверхность для установки по меньшей мере одного износостойкого вкладыша с обращением к внутренней области загрузочного бункера, установочный элемент для контакта и съемной установки кассеты в области загрузочного бункера. Комплект кассет для защиты от износа загрузочного бункера содержит кассеты, имеющие главный корпус, расположенный по меньшей мере у одной из кассет в соответствии с первой позиционной конфигурацией и по меньшей мере у одной из кассет - в соответствии со второй позиционной конфигурацией, при этом по меньшей мере одна кассета с первой позиционной конфигурацией является правосторонней кассетой, а по меньшей мере одна кассета со второй позиционной конфигурацией - левосторонней кассетой. Модульный загрузочный бункер содержит внутреннюю камеру бункера для подачи материала, при этом в загрузочном бункере в области по меньшей мере одной стенки, съемно установлена по меньшей мере одна вышеуказанная кассета. Дробилка содержит вышеуказанный загрузочный бункер и по меньшей мере одну вышеуказанную кассету. Группа изобретений обеспечивает высокую ремонтопригодность загрузочного бункера и дробилки с таким бункером. 4 н. и 11 з.п. ф-лы, 8 ил.

Группа изобретений относится к дробилкам, в частности к гирационным конусным дробилкам, имеющим систему разгрузки, и способам монтажа и демонтажа цилиндра системы разгрузки таких дробилок. Дробилка 20, предназначенная для дробления загружаемых материалов, содержит основную раму, вспомогательную раму, которая непосредственно примыкает к основной раме, дробильную камеру 44, предназначенную для приема загружаемых материалов, систему разгрузки для удаления случайных кусков железа, включающую цилиндр 32. При этом в процессе выполнения операций дробления цилиндр 32 предназначен для перемещения между втянутым положением и выдвинутым положением, а вспомогательная рама отводится от основной рамы, когда цилиндр 32 находится в выдвинутом положении. Цилиндр 32 разгрузки в основном непосредственно примыкает к вспомогательной раме дробилки для дробления материалов и предназначен для удержания вспомогательной рамы во втянутом положении относительно основной рамы при предварительно определенном усилии таким образом, чтобы при превышении предварительно определенного усилия цилиндром 32 обеспечивалось перемещение вспомогательной рамы в выдвинутое положение относительно основной рамы. Гирационная конусная дробилка 20, предназначенная для дробления загружаемых материалов, содержит нижнюю раму, имеющую фланец нижней рамы, верхнюю раму, имеющую фланец верхней рамы и расположенную таким образом, чтобы фланец нижней рамы и фланец верхней рамы образовывали между собой зазор, дробильную камеру 44, предназначенную для приема загружаемых материалов и систему разгрузки для удаления случайных кусков железа, включающую несколько перевернутых цилиндров разгрузки 32. При этом в процессе выполнения операций дробления в гирационной конусной дробилке 20 несколько перевернутых цилиндров разгрузки 32 предназначены для перемещения между втянутым положением и выдвинутым положением, а верхняя рама отводится от нижней рамы, когда один или несколько из нескольких перевернутых цилиндров разгрузки находятся в выдвинутом положении. Несколько цилиндров разгрузки 32 расположены в основном над фланцем нижней рамы дробилки 20 и предназначены для удержания верхней рамы во втянутом положении относительно нижней рамы при предварительно определенном усилии таким образом, чтобы при превышении предварительно определенного усилия цилиндром 32 обеспечивалось перемещение верхней рамы в выдвинутое положение относительно нижней рамы. Способ монтажа цилиндра разгрузки на вышеописанной дробилке, включающий монтаж дробилки 20, присоединение подъемного устройства к монтируемому цилиндру 32, расположенному на расстоянии от дробилки 20 для дробления материалов, подъем монтируемого цилиндра 32 с помощью подъемного устройства, присоединенного к монтируемому цилиндру 32, перемещение монтируемого цилиндра 32 на требуемый участок на дробилке 20 с помощью подъемного устройства, присоединенного к монтируемому цилиндру 32, и отсоединение подъемного устройства от смонтированного цилиндра 32 после установки цилиндра 32 на требуемый участок на дробилке 20. При этом подъемное устройство остается постоянно присоединенным к монтируемому цилиндру 32 с момента присоединения подъемного устройства к монтируемому цилиндру 32, расположенному на расстоянии от дробилки 20 для дробления материалов до момента отсоединения подъемного устройства от установленного цилиндра 32 на требуемом участке на дробилке 20. Способ демонтажа цилиндра с дробилки для дробления материалов осуществляют в обратном порядке. В дробилках упрощается монтаж и демонтаж цилиндров системы разгрузки. 4 н. и 17 з.п. ф-лы, 7 ил.
Наверх