Установка для тепловых испытаний элементов конструкций летательных аппаратов

Изобретение относится к области испытательной техники, в частности к установкам для тепловых испытаний авиационных конструкций. Установка содержит вентиляторы, электрические воздухонагреватели, термокамеру, коллекторы газообразного теплоносителя, датчики температур, систему автоматического управления, систему эвакуации отработанного теплоносителя. Она снабжена двумя самостоятельными контурами подачи теплоносителя, расположенными со стороны верхней и нижней поверхности испытываемой конструкции, каждый из которых содержит клапаны, необходимые для регулирования подачи теплоносителя. Кожух выполнен в виде объемной панели, с одной стороны к ней подводится коллектор газообразного теплоносителя, другая, противоположная сторона выполнена в виде перфорированной пластины, что позволяет получить равномерное поле температур на конструкции, при этом на панели над отверстиями установлены задвижки, необходимые для регулирования расхода подаваемого газообразного теплоносителя, в их состав входят шиберы, штоки, направляющие с фиксаторами, ограничители перемещения штока. Технический результат заключается в расширении функциональных возможностей установки. 3 ил.

 

Изобретение относится в области испытательной техники, в частности к установкам для тепловых испытаний авиационных конструкций.

Известны камеры для климатических испытаний и установки для нагрева конструкции, содержащие вентиляторы, электрические воздухонагреватели, термокамеры, датчики температур, систему автоматического управления, устройства для эвакуации отработанного теплоносителя (патенты RU 1056143, RU 2183883).

Недостаток таких климатических камер и установок в том, что они имеют ограниченные функциональные возможности моделирования различных температурных полей при испытаниях летательных аппаратов.

Наиболее близким по технической сущности к предлагаемому изобретению и взятым за прототип является устройство для тепловых испытаний летательных аппаратов, содержащее коллектор подвода газообразного теплоносителя к теплообменной поверхности, кожух, выполненный в виде круглого цилиндра, вентилятор с подвижными лопатками, поворотные насадки (авторское свидетельство SU 1805311 А1).

Недостаток такого устройства - сложное конструктивное исполнение.

При создании изобретения была поставлена задача расширения функциональных возможностей установки.

Решение указанной задачи достигается тем, что установка для нагрева конструкции снабжена двумя самостоятельными контурами подачи газообразного теплоносителя, расположенными со стороны верхней и нижней поверхности испытываемой конструкции, каждый из которых содержит клапана, необходимые для регулирования подачи воздуха, объемные панели, с одной стороны к ним подводится коллектор газообразного теплоносителя, другая, противоположная сторона выполнена в виде перфорированной пластины, что позволяет получить равномерное поле температур на конструкции, при этом на объемной панели над отверстиями установлены задвижки, необходимые для регулирования расхода подаваемого газообразного теплоносителя, в их состав входят шиберы, штоки, направляющие с фиксаторами, ограничители перемещения штока.

Изобретение поясняется чертежами на которых изображено:

на фиг. 1 - схема установки для нагрева элементов конструкции;

на фиг. 2 - пластины с задвижками;

на фиг. 3 - вид А на фиг. 2.

Установка для нагрева конструкции содержит вентиляторы 1, электрические нагреватели 2, клапана 3, коллектор подачи газообразного теплоносителя 4, объемные панели 5 с перфорированными пластинами 6, задвижки 7, в состав которых входят шибер 8, шток 9, направляющие 10 с фиксатором 11, ограничители перемещения шибер 12, датчики температур 13, автоматическая система управления 14, испытываемую конструкцию 15, термокамеру 16, устройство эвакуации отработанного теплоносителя 17.

Установка для нагрева конструкции работает следующим образом. От вентиляторов 1 теплоноситель подается через электрические нагреватели 2, регулируемые клапаны 3 и коллектор подвода 4 в объемные панели 5. Проходя через отверстие в пластинах 6, теплоноситель нагревает конструкцию 15. Площадь отверстий в пластинах 6 регулируется задвижками 7 (фиг. 2). Шибер 8 закрывает частично или полностью открывает отверстия в пластинах, это позволяет регулировать расход теплоносителя, поступающего на конструкцию 15 (фиг. 3). На штоке 9 задвижки 7 имеются ограничители перемещения 12. На направляющих 10 установлен фиксатор 11, позволяющий фиксировать необходимое положение шибера 8. С помощью регулируемых клапанов 3 и задвижек 7 можно воспроизводить различные температурные поля на испытываемой конструкции. Датчики температур 13 необходимы для регистрации температурных полей. Они также являются обратной связью при выполнении заданной программы испытаний. Управление процессом нагрева осуществляется системой автоматического управления 4. Эвакуация отработанного теплоносителя осуществляется системой.

Установка для тепловых испытаний элементов конструкций летательных аппаратов, содержащая вентиляторы, электрические нагреватели, термокамеру, коллекторы газообразного теплоносителя, датчики температур, систему автоматического управления, систему эвакуации отработанного теплоносителя, отличающаяся тем, что она снабжена двумя самостоятельными контурами подачи газообразного теплоносителя, расположенными со стороны верхней и нижней поверхностей испытываемой конструкции, каждый из которых содержит клапаны, необходимые для регулирования подачи теплоносителя, объемные панели, с одной стороны к ним подводится коллектор газообразного теплоносителя, другая, противоположная сторона выполнена в виде перфорированной пластины, что позволяет получить равномерное поле температур на конструкции, при этом на объемной панели над отверстиями установлены задвижки, необходимые для регулирования расхода подаваемого газообразного теплоносителя, в их состав входят шиберы, штоки, направляющие с фиксаторами, ограничители перемещения штока.



 

Похожие патенты:

Изобретение относится к системам безопасности в чрезвычайных ситуациях и может быть использовано для взрывозащиты зданий, сооружений, а также технологического оборудования.

Изобретение относится к области испытательной техники, а именно к установкам для испытаний образцов и фрагментов пространственных коробчатых (сварных, клеесварных, клепанных или клееклепанных) конструкций.

Изобретение относится к системе и способу измерения усталости для механических деталей летательного аппарата, например самолета, а также к способу технического обслуживания летательного аппарата.

Изобретение относится к испытательной технике, в частности к установкам для ресурсных испытаний фюзеляжей летательных аппаратов нагрузками, создаваемыми внутренним избыточным давлением сжатого воздуха.

Изобретение относится к области строительства, а именно к способам испытания легких стальных опор на различные нагрузки. При реализации способа производят установку испытываемой конструкции в горизонтальное положение и закрепление на анкерной конструкции, установку блоков на испытываемой опоре и анкерной конструкции и соединение блоков тросом, одним концом закрепленным на анкерной конструкции, а другим - соединенным с силовым элементом.

Изобретение относится к испытательной технике, в частности к стендам для прочностных испытаний летательных аппаратов. Способ заключается в том, что для воспроизведения заданной программы знакопеременную нагрузку сжатия-растяжения прикладывают к одной из поверхностей испытываемой конструкции, например для консоли крыла - снизу.

Изобретение относится к испытательной технике и может быть использовано для испытаний авиационных конструкций. Гидросистема включает электрогидравлический усилитель, блокирующие клапана с злектроуправлением, распределительные клапана с электроуправлением, сливные клапана, обратные клапана, ограничитель нагрузки, силовозбудитель и систему автоматического управления.

Область использования: стендовые испытания на прочность конструкций летательных аппаратов (ЛА), например обтекателей на внешнее давление при неравномерном нагреве. Сущность: нагреватель для стенда испытаний на прочность при неравномерном нагреве содержит гибкие поверхностные нагревательные элементы (НЭ) переменного сечения из токопроводящего материала и теплоизолирующую оболочку.

Изделие относится к области испытательной техники, в частности к устройствам для прочностных испытаний фюзеляжей летательных аппаратов. Стенд содержит систему циклических нагрузок сжатым воздухом, состоящую из источника сжатого воздуха, основного трубопровода подачи сжатого воздуха в фюзеляж с расположенным на нем входным большерасходным регулирующим клапаном, байпасного трубопровода, трубопровода сброса воздуха из фюзеляжа с расположенным на нем клапаном сброса, средствами защиты фюзеляжа от перегрузки избыточным давлением сжатого воздуха и устройством шумоглушения, а также средств автоматического программного управления, включающих в свой состав регулятор давления в фюзеляже и первый датчик давления.

Изобретение относится к области авиации, в частности к системам контроля состояния летательных аппаратов в процессе эксплуатации. Система контроля технического состояния конструкций летательного аппарата содержит датчики технического состояния лопастей винта вертолета или консолей крыла самолета и блок-регистратор, размещенный на их борту.

Изобретение относится к испытательной технике, в частности, к установкам для ресурсных испытаний фюзеляжей летательных аппаратов нагрузками, создаваемыми внутренним избыточным давлением сжатого воздуха. В устройство, содержащее гидрозатвор, содержащий нижний и верхний баки, соединенные между собой трубопроводом, дополнительно введены клапан, камера, образованная крышкой клапана и гибкой мембраной, затвор клапана посредством штока соединен с гибкой мембраной, а внутренний объем камеры соединен с входами самого клапана и гидрозатвора. Технический результат заключается в снижении конструктивных размеров устройства защиты объектов испытаний от превышения заданной величины внутреннего избыточного давления газа, упрощении перенастройки устройства на разные величины давления. 1 ил.

Изобретение относится к области испытательной техники и предназначено для создания циклических трапециевидных программ нагружения избыточным давлением воздуха при прочностных испытаниях на ресурс фюзеляжей и других авиационных гермоотсеков. В ходе реализации способа устанавливают границы рабочего диапазона перемещений затвора малорасходного регулирующего клапана, обеспечивающего стабилизацию давления на горизонтальном участке программы нагружения, и в процессе стабилизации давления в фюзеляже положение затвора контролируют. В случае значительных изменений утечек воздуха из фюзеляжа в ходе ресурсных испытаний, вызывающих выход этого затвора за верхнюю или нижнюю заданную границу рабочего диапазона перемещений, дополнительно приоткрывают или прикрывают затвор большерасходного впускного клапана, чем автоматически возвращают затвор малорасходного клапана в его рабочий диапазон перемещений и обеспечивают тем необходимую высокую точность регулирования давления, создающего максимальное нагружающее воздействие на испытываемый объект. Технический результат заключается в повышении точности пневматического нагружения фюзеляжа самолета на горизонтальном участке программы испытаний. 3 ил.

Изобретение относится к области измерительной техники и может быть использовано для мониторинга напряженности механических конструкций при их эксплуатации или проведении сертификационных ресурсных испытаний. Предлагаемый способ заключается в том, что при любом методе схематизации характерного периода эксплуатации или проведения ресурсных испытаний корреляционную таблицу составляют в режиме реального времени последовательно ячейку за ячейкой, задав допуски на идентичность величин параметров нагружения. Технический результат заключается в сокращении времени и вычислительных ресурсов для определения нагруженности конструкций, а также повышении точности регистрации степени нагруженности конструкций. 1 табл.

Изобретение относится к испытательной технике и может быть использовано для создания циклических нагрузок внутренним избыточным давлением воздуха при испытаниях на ресурс фюзеляжей и других авиационных гермоотсеков. Устройство содержит источник сжатого воздуха со стабилизатором давления, испытываемый фюзеляж (гермоотсек), трубопроводы для подачи и сброса воздуха с большерасходными клапанами и трубопровод с малорасходным регулирующим клапаном для стабилизации давления в фюзеляже на горизонтальном участке циклических трапециевидных программ. В систему управления клапанами входят датчик давления в фюзеляже, датчик перемещения затвора малорасходного клапана, регулятор давления с задатчиками и переключателями, командоаппарат для управления последовательностью отработки циклов программ нагружения и схема самонастройки, обеспечивающая возврат затвора малорасходного клапана в рабочий диапазон перемещений путем организации автоматического дополнительного открытия и закрытия большерасходного клапана подачи воздуха при значительных изменениях утечек из фюзеляжа в процессе ресурсных испытаний. Технический результат заключается в повышении точности нагружения (наддува) фюзеляжа, повышение уровня автоматизации процесса ресурсных испытаний и универсальности применения для испытаний гермоотсеков, существенно различающихся как по объемам, так и по степени их негерметичности. 2 ил.

Изобретение относится к области испытательной техники. Устройство включает насосную станцию, гидрораспределители, гидроцилиндры, динамометры, рычажную систему, механизмы электрические прямоходовые, автоматическую систему управления. Механизмы электрические прямоходовые установлены в силовую цепочку каждого канала нагружения. Технический результат заключается в повышении надежности гидросистемы стенда для испытаний конструкций на прочность. 1 ил.

Изобретение относится к области ракетной техники, в частности к способам обеспечения непрерывного контроля состояния твердотопливных зарядов ракетных двигателей. Твердотопливный ракетный двигатель включает композитный корпус и защитный слой, состоящий из теплозащитного покрытия и защитно-крепящего слоя, выполнен раскрепленным для снижения уровня напряжений, возникающих при эксплуатации со стороны переднего и заднего торцов, при помощи манжет, а также снабжен системой контроля отслоений. Система контроля отслоений включает систему датчиков магнитного поля на основе эффекта Холла, детектируемую систему, в виде группы неодимовых магнитных элементов, а также электронно-вычислительную машину. Детектируемая группа неодимовых магнитных элементов размещена на защитно-крепящем слое в зонах вершин раскрепляющих манжет днищ корпуса двигателя, являющихся зонами перехода раскрепленной части заряда в скрепленную, а также в средней по длине части твердотопливного заряда. Изобретение позволяет обеспечить контроль отслоений на границах защитный слой-заряд и защитный слой-корпус, упростить систему контроля отслоений, а также сохранить конструктивную целостность двигателя при выявлении отслоений. 2 ил.

Изобретение относится к испытательной технике и может быть использовано для контроля и исследования прочности при сдвиге клеевых соединений оболочек типа тел вращения. Сущность: осуществляют определение величины разрушающей силы при статическом нагружении клеевого соединения образца типа «труба в трубе» сжимающими усилиями, вызывающими сдвиг внутренней трубы относительно внешней трубы в направлении оси образца. Размеры клеевого соединения модельного образца и сжимающее усилие, в результате которого в клеевом слое возникают деформации сдвига, подбираются с учетом соответствия напряженного состояния клеевого слоя в клеевом соединении керамического обтекателя и напряженного состояния клеевого соединения модельного образца с использованием конечно-элементных моделей. Соотношение между эквивалентными напряжениями в клеевом слое клеевого соединения керамического обтекателя, геометрическими параметрами клеевого слоя модельного образца и усилием, сдвигающим внутреннюю трубу модельного образца, определяется по формуле. Технический результат: повышение эффективности контроля прочности клеевого соединения керамических обтекателей в процессе производства и при проведении опытно-конструкторских работ за счет замены испытаний натурных изделий их моделями, воспроизводящими условия работы клеевого соединения. 2 ил.

Изобретение относится к области оперативного дистанционного мониторинга зданий и сооружений при исследовании их прочностных свойств в условиях вибрационного воздействия естественного и техногенного происхождения. Сущность технического решения заключается в способе мониторинга зданий и сооружений, включающем измерение посредством, по крайней мере, одним датчиком параметров вибрации объекта, синфазно измеряющим три ортогональные проекции вектора ускорения, и состоит в том, что предварительно устанавливают датчик на элемент строительной конструкции здания или сооружения, ориентируя три его ортогональные измерительные оси в направлении главных осей симметрии здания или сооружения, одна из которых вертикальная, регистрируют измеренные проекции линейного ускорения микроколебаний под воздействием микросейсмического фона естественного и техногенного происхождения на ортогональные измерительные оси датчика, центрируют измеренные проекции линейного ускорения, выделяя полезный сигнал вычитанием из измеренного сигнала проекций вектора силы тяжести g на три ортогональные измерительные оси датчика, вычисляют амплитудочастотные характеристики проекций линейного ускорения по трем ортогональным осям с использованием прямого преобразования Фурье для зарегистрированного сеанса измерений, производят сглаживание сплайновой моделью амплитудочастотных характеристик проекций линейного ускорения по трем ортогональным осям, определяют визуально точки перегиба реализаций сглаживающих функций, аппроксимирующих амплитудочастотные характеристики проекций линейного ускорения по трем ортогональным осям, и соответствующих им амплитуд и частот измеряемого сигнала, производят ранжирование полученных оценок частот сигнала в порядке убывания их амплитуд, при этом принимают, что частота, которой соответствует наибольшая амплитуда, является частотой основного тона собственных колебаний здания или сооружения, а остальные частоты являются обертонами сигнала, нумерацию которых осуществляют в порядке убывания соответствующих им амплитуд, находят среднеквадратические оценки определяемых частот по точкам пересечения прямой, параллельной горизонтальной оси отсчета частот измеряемого сигнала, проходящей через локальный максимум по амплитуде, соответствующей частоте анализируемого тона собственных колебаний здания или сооружения, со сглаживающей моделью, представляющей совокупность числовых оценок амплитуд, увеличенных на величину среднеквадратической ошибки их оценивания, с последующим проецированием данных точек на ось отсчета частот измеряемого сигнала. Технический результат заключается в повышении точности и оперативности экспериментального определения характеристик собственных колебаний эксплуатируемых зданий и сооружений при исследовании их прочности в процессе мониторинга. 4 ил.

Изобретения относятся к испытательной технике, а именно к средствам и методам испытания уплотнений, в частности, уплотнений тюбингов. Для решения задачи изобретения в одном аспекте предлагается приспособление для испытания уплотнений, в частности уплотнений тюбингов, по меньшей мере, с одной ножкой с анкерным креплением, причем а) приспособление (1) для испытания содержит, по меньшей мере, одну первую плиту (2) с содержащей первую выемку (3) первой поверхностью (4) и, по меньшей мере, одну вторую плиту (12) с содержащей вторую выемку (13) второй поверхностью (14), причем поверхности (4, 14) плит (2, 12) расположены относительно друг друга, по меньшей мере, частично своими выемками (3, 13) напротив друг друга, и b) в первой и второй выемках (3, 13) соответственно укреплены с возможностью отсоединения, по меньшей мере, два элемента (5, 7, 15, 17) плиты. При этом элементы (5, 7, 15, 17) плиты выполнены таким образом, что они соответственно образуют в выемках (3, 13) паз (8, 18), в который содержащее, по меньшей мере, одну ножку (10) с анкерным креплением уплотнение (9, 19) может быть вложено таким образом, что i) происходит закрепление уплотнения (9, 19) посредством геометрического замыкания между элементами (5, 7, 15, 17) плиты и по меньшей мере, одной ножкой (10) с анкерным креплением, или ii) между элементами (5, 7, 15, 17) плиты и, по меньшей мере, одной ножкой (10) с анкерным креплением образовано промежуточное пространство (20), в которое может быть введен отвердевающий или отверждаемый материал (21). После отверждения материала (21) уплотнение (9, 19) закреплено посредством геометрического замыкания между элементами (5, 7, 15, 17) плиты, отвердевшим материалом (21) и, по меньшей мере, одной ножкой (10) с анкерным креплением. Технический результат заключается в упрощении испытания уплотнений. 3 н. и 6 з.п. ф-лы, 4 ил.

Изобретение относится к области измерительной техники, в частности к мониторингу технического состояния конструкций, в частности туннелей. Описанный способ включает осуществление распределенного акустического зондирования на одном по меньшей мере оптическом волокне, размещенном так, чтобы осуществлять мониторинг конструкции. Акустическую реакцию на движение транспорта по сети вблизи упомянутой конструкции обнаруживают и подвергают анализу, чтобы определить акустическую реакцию конструкции. Затем акустическую реакцию конструкции подвергают анализу, чтобы определить любое изменение в состоянии. Упомянутый способ использует обычное движение транспорта по сети, например поездов по железнодорожной сети, для акустического возбуждения конструкции и обнаружения результирующей реакции. Технический результат заключается в возможности обеспечения непрерывного мониторинга состояния конструкций транспортной инфраструктуры. 5 н. и 17 з.п. ф-лы, 8 ил.
Наверх