Датчик угловых ускорений с жидкостным ротором

Устройство относится к измерительной технике, а именно к датчикам угловых ускорений, принцип действия которых основан на законе электромагнитной индукции. Датчик угловых ускорений с жидкостным ротором содержит чувствительный элемент и тороидальный корпус, заполненный жидкостью. Чувствительный элемент 1 представляет собой цилиндр 3, выполненный из диэлектрического материала в виде сужающего устройства с конфузором и диффузором, в котором диаметрально противоположно установлены металлические электроды Э1, Э2. В плоскости, перпендикулярной плоскости электродов, установлены сверху и снизу обмотки возбуждения OB1, ОВ2, запитываемые двухполярным стабилизированным током. Тороидальный корпус присоединяется соосно к цилиндру 3. Образованная кольцевая полость заполняется рабочей жидкостью с определенной электропроводностью и вязкостью, например водой. Электрический сигнал, пропорциональный ускорению, снимается с электродов Э1 и Э2 и подается на измерительное устройство ИУ. С выхода измерительного устройства выдается сигнал, пропорциональный угловому ускорению. Технический результат заключается в повышении чувствительности датчика и расширении диапазона измерения угловых ускорений. 4 ил.

 

Изобретение относится к измерительной технике, а именно к датчикам угловых ускорений, принцип действия которых основан на законе электромагнитной индукции.

Чувствительный элемент 1 представляет собой цилиндр 3, выполненный из диэлектрического материала, в котором диаметрально противоположно установлены металлические электроды Э1, Э2. В плоскости, перпендикулярной плоскости электродов, установлены сверху и снизу обмотки возбуждения OB1, ОВ2, запитываемые двухполярным стабилизированным током. Тороидальный корпус 2 присоединяется соосно к цилиндру 3. Образованная кольцевая полость заполняется рабочей жидкостью с определенной электропроводностью и вязкостью, например водой.

Электрический сигнал, пропорциональный ускорению, снимается с электродов и подается на измерительное устройство, с выхода которого выдается сигнал, пропорциональный угловому ускорению. Изобретение позволяет упростить конструкцию при сохранении точностных характеристик и повысить надежность за счет отсутствия подвижных частей.

Изобретение относится к измерительной технике, а именно к датчикам угловых ускорений, принцип действия которых основан на законе электромагнитной индукции.

Для измерения угловых ускорений применяют устройства с электромеханическими датчиками, выполненными в виде монтируемых на валу парных зубчатых дисков. Относительное смещение их пропорционально контролируемой величине.

Известно бесконтактное устройство для непрерывного измерения угловых ускорений [а.с. СССР №163446, 1964 г.], в котором упругий элемент датчика выполнен в виде немагнитного диска со сквозными отверстиями по торцевой поверхности, скрепленного ферромагнитным инерционным кольцом с зубьями, взаимодействующими в магнитном потоке с зубьями ферромагнитного диска. Недостатками такого устройства являются малая чувствительность и сложность конструкции.

Известны различные конструкции датчиков угловых ускорений, в которых механические воздействия преобразуются в электрические в результате электрокинетических явлений, возникающих при движении жидкости на границе раздела с твердым телом, например электрокинетический датчик угловых ускорений, содержащий тороидальный (цилиндрический) корпус, заполненный полярной жидкостью, например ацетоном, внутри которого установлена по крайней мере одна пористая преобразующая перегородка с токосъемными электродами по сторонам [US 2644901 G01P 15/08, 1953 г.]. Недостатком известного датчика является низкая надежность, заключающаяся в нарушении герметичности в месте прохождения токовыводов через стенку корпуса под действием механических воздействий; возникновение пузырей при колебании электродов под действием перегрузок.

Электрокинетический датчик угловых ускорений (патент RU, №2018851, G01P 15/08, 1990 г.) содержит заполненный рабочей жидкостью корпус, пористую перегородку, электроды, держатель, объединенные в модульную конструкцию при использовании в конструкции датчика держателя. При механическом воздействии (вращении датчика вокруг своей оси) рабочая жидкость начинает циркулировать, например по часовой стрелке, через пористую перегородку. Протекание жидкости через пористую перегородку приведет в результате электрокинетических явлений к возникновению разности потенциалов на электродах. При изменении направления вращения датчика произойдет смена направления движения жидкости на противоположное, что соответственно изменит знак зарядов на электродах. Недостатком известного датчика является его низкая надежность, обусловленная сложностью технологии его изготовления и достаточно большим количеством комплектующих деталей.

Известна конструкция датчика угловых ускорений с жидкостным ротором (US 3520196 G01P 15/08, 1970 г.), в котором угловое ускорение преобразуется в электрический сигнал. Это устройство содержит тороидальный корпус, заполненный неэлектропроводной жидкостью, выполняющей функцию жидкостного ротора (инерционного элемента). В качестве чувствительного элемента (сенсора) используется электромеханическая система, состоящая из постоянного магнита, подвижной катушки индуктивности, механически связанной с заслонкой, один конец которой помещен в зазоре тороидального корпуса и реагирует на угловое перемещение жидкости в корпусе. Другой конец заслонки служит для преобразования углового перемещения в электрический сигнал, пропорциональный угловому ускорению. Недостатками такого устройства являются наличие подвижной катушки индуктивности, снижающей надежность работы устройства, а также сложность конструкции, обусловленная большим количеством прецизионных деталей, и, следовательно, высокая стоимость.

Наиболее близким к предлагаемому изобретению является датчик угловых ускорений с жидкокостным ротором (RU 2469337, G01P 15/08), содержащий чувствительный элемент и тороидальный корпус, заполненные электропроводной жидкостью, выполняющей функцию жидкого ротора (инерционного элемента). Чувствительный элемент представляет собой цилиндр, выполненный из диэлектрического материала, в котором диаметрально-противоположно расположены контактирующие с жидкостью металлические электроды. В плоскости, перпендикулярной электродам, на цилиндре установлены сверху и снизу обмотки возбуждения, запитываемые двухполярным стабилизированным током, тороидальный корпус присоединен соосно к цилиндру чувствительного элемента с образованием кольцевой полости, заполненной жидкостью, при наличии углового ускорения электрический сигнал, пропорциональный его значению, снимается с электродов чувствительного элемента и подается на измерительное устройство. Недостатком такого устройства является ограниченный диапазон измерения угловых ускорений и малая чувствительность на нижних диапазонах измерений.

Целью изобретения является повышение чувствительности датчика и расширение диапазона измерения угловых ускорений.

Сущность изобретения поясняется чертежами.

На фиг. 1 изображен предлагаемый датчик угловых ускорений, состоящий из чувствительного элемента 1 и тороидального корпуса 2; на фиг. 2 - датчик угловых ускорений, вид сверху, где ω - направление действия углового ускорения; на фиг. 3 изображена функциональная схема устройства, с помощью которого осуществляется измерение углового ускорения, на фиг. 4 изображена конструкция чувствительного элемента.

Чувствительный элемент (сенсор) 1 содержит цилиндр 3; Э1, Э2 - электроды; OB1, ОВ2 - обмотки возбуждения; V - скорость движения жидкости относительно цилиндра; ИУ - измерительное устройство; f - выходной сигнал, пропорциональный ускорению движения жидкости; Iзап - стабилизированный ток запитки (фиг. 3).

С целью расширения диапазона измерения угловых ускорений и повышения чувствительности цилиндр (фиг. 4) чувствительного элемента выполнен в виде сужающего устройства, переход от большего диаметра к меньшему осуществляется с помощью конфузора и диффузора, за счет чего происходит увеличение скорости протекания жидкости и, как следствие, повышение чувствительности датчика. На фиг. 4 электроды Э1, Э2 условно не показаны.

Датчик угловых ускорений работает следующим образом.

При механическом воздействии - наличии углового ускорения относительно измерительной оси Y (фиг. 2), происходит движение кольцевой полости относительно инерционного элемента (жидкости внутри кольцевой полости).

По закону электромагнитной индукции - в жидкости, движущейся в магнитном поле, наводится ЭДС:

где В - магнитная индукция;

ι - расстояние между электродами;

V - скорость движения жидкости.

Электрический сигнал, пропорциональный ускорению, снимается с электродов Э1 и Э2 и подается на измерительное устройство ИУ (фиг. 3). С выхода измерительного устройства выдается сигнал, пропорциональный угловому ускорению. При изменении направления углового ускорения ω (фиг. 2) произойдет изменение направления движения жидкости и, соответственно, на выходе измерительного устройства изменится полярность выходного сигнала.

Таким образом, при механическом воздействии (вращении датчика относительно измерительной оси) рабочая жидкость начнет циркулировать внутри кольцевой полости и по закону электромагнитной индукции в жидкости, движущейся в магнитном поле, наводится ЭДС, электрический сигнал, пропорциональный ускорению, снимается с электродов и подается на измерительное устройство, а с выхода измерительного устройства выдается сигнал, пропорциональный угловому ускорению.

Отличительными особенностями предлагаемого изобретения являются: отсутствие подвижных прецизионных частей, простота конструкции, низкая стоимость.

Датчик угловых ускорений с жидкостным ротором, содержащий чувствительный элемент и тороидальный корпус, заполненный жидкостью и выполняющий функцию жидкостного ротора, отличающийся тем, что чувствительный элемент, представляющий собой заполненный рабочей жидкостью цилиндр, выполнен в виде сужающего устройства с конфузором и диффузором, увеличивающими скорость протекания жидкости, выполненного из диэлектрического материала, в котором диаметрально-противоположно расположены контактирующие с жидкостью электроды, в плоскости, перпендикулярной плоскости электродов, сверху и снизу установлены обмотки возбуждения, запитываемые двухполярным стабилизированным током, тороидальный корпус присоединен соосно к цилиндру чувствительного элемента с образованием кольцевой полости, заполненной рабочей жидкостью, при наличии углового ускорения электрический сигнал, пропорциональный его значению, снимается с электродов чувствительного элемента и подается на измерительное устройство.



 

Похожие патенты:

Изобретение относится к измерительным устройствам и может быть использовано в МЭМС акселерометрах и гироскопах. Емкостный датчик перемещений содержит широтно-импульсный модулятор, подвижный электрод и выполненные на изоляционных обкладках неподвижные электроды, размещенные симметрично относительно подвижного электрода с одинаковыми зазорами, каждый неподвижный электрод разделен пополам, а одинаковые части, размещенные с разных сторон подвижного электрода на одинаковом расстоянии от оси качания, соединены между собой перекрестно и составляют два дифференциально включенных измерительных конденсатора, которые при равных зазорах имеют одинаковую емкость, при этом неподвижные электроды, находящиеся на одной изоляционной обкладке, разделены асимметрично относительно оси качания и перекрывают всю площадь подвижного электрода, а ответные неподвижные электроды выполнены симметрично относительно плоскости подвижного электрода.

Изобретение относится к навигационным устройствам, в частности может быть использовано для определения направления на географический север. Техническим результатом изобретения является повышение точности определения направления на географический север.

Изобретение относится к измерительной технике. Устройство содержит две дифференциальные измерительные емкости, источник опорного напряжения, пару ключей зарядки измерительных емкостей, генератор тактовых импульсов, инвертор напряжения, пару ключей для съема сигнала с измерительных емкостей и фильтр нижних частот.

Изобретение относится к измерительной технике и может применяться в навигационно-пилотажных системах летательных аппаратов. Сущность изобретения заключается в том, что чувствительный элемент микроэлектромеханического гироскопа выполнен из монокристаллического кремния, представляющий конструкцию «рамка в рамке».

Изобретение относится к измерительной технике. Микромеханический демпфер содержит демпфирующий узел, выполненный в виде сосредоточенной массы, соединенной с помощью упругих подвесов с демпфируемым узлом, с целью получения оптимального демпфирования, при этом в устройстве выполнено следующее соотношение между параметрами: Kд1 - абсолютный коэффициент демпфирования внешнего узла (демпфируемого); Kд2 - абсолютный коэффициент демпфирования внутреннего узла внешнего узла (демпфирующего); m1 - масса внешнего узла; m2 - масса внутреннего узла; G1 - жесткость подвеса внешнего узла; G2 - жесткость подвеса внутреннего узла; χ - коэффициент механической связи между внешним и внутренним узлами.

Изобретение относится к области испытания механических систем, у которых главными деталями являются вращающиеся тела, о сопротивлениях движению которых судят по замедлению при выбеге, и может быть использовано для определения отрицательных ускорений вращающихся частей.

Изобретение относится к области измерительной техники и касается линейного микроакселерометра с оптической системой. Микроакселерометр включает в себя корпус, две инерционные массы на упругих подвесах, два датчика положения, два компенсационных преобразователя.

Изобретение относится к измерительной технике. Устройство содержит положительный и отрицательный источники опорных напряжений, ключевую схему для переключения полярности источников опорных напряжений, генератор синхронизирующих импульсов, сумматор обратной связи, дифференциальные измерительные емкости, первый синхронный детектор.

Изобретение относится к измерительной технике и может быть использовано в системах ориентации и навигации. Линейный микроакселерометр содержит основание, крышку, рамку с инерционной массой, выполненной из кремния, установленную с возможностью линейного перемещения на упругих подвесах вдоль продольной оси, датчик положения и источник напряжения, при этом в устройство дополнительно введены два компаратора, два усилителя тока, ключ, электромагнитный силовой привод, состоящий из 2N катушек, размещенных на 2N магнитопроводящих сердечниках с явно выраженными полюсами, направленными к торцевым сторонам инерционной массы, при этом магнитопроводящие сердечники размещены на противоположных торцевых сторонах рамки по N с каждой стороны, а на поверхности инерционной массы в области каждого из торцов расположены магнитопроводы, замыкающие магнитные потоки катушек, причем входы катушек подключены к выходу ключа, входы которого через компараторы подключены к датчику положения, который выполнен оптическим, и состоит из излучателя и фотоприемников, при этом излучатель подключен к источнику напряжения, а между излучателем и фотоприемниками расположена оптическая щель.

Изобретение относится к области приборостроения и предназначено для измерения углового ускорения. Для измерения углового ускорения объекта производят измерение длительности интервалов времени между фронтами всех импульсов импульсным датчиком углового положения, определяют среднюю скорость на каждом интервале времени, создавая обращенное относительное движение частей импульсного датчика углового положения, различно связанных с контролируемым объектом, обеспечивая генерирование импульсным датчиком максимального количества импульсов на конечном участке торможения контролируемого объекта, и производят измерение значений углового ускорения при торможении.

Изобретение относится к области измерительной техники и микросистемной техники. Сущность изобретения заключается в том, что в устройство дополнительно введены четыре дополнительных неподвижных электрода емкостных преобразователей перемещений, выполненные в виде пластин с гребенчатыми структурами с одной стороны из полупроводникового материала и расположенные непосредственно на полупроводниковой подложке так, что они образуют конденсатор с подвижными электродами емкостных преобразователей перемещений в плоскости их пластин через боковые зазоры и взаимопроникающие друг в друга гребенки электродов, четыре дополнительных неподвижных электрода электростатических приводов, выполненные в виде пластин с гребенчатыми структурами с одной стороны из полупроводникового материала и расположенные непосредственно на полупроводниковой подложке так, что они образуют конденсаторы с подвижными электродами емкостных преобразователей перемещений в плоскости их пластин через боковые зазоры и взаимопроникающие друг в друга гребенки электродов, восемь дополнительных опор, выполненные из полупроводникового материала и расположенные непосредственно на полупроводниковой подложке, восемь дополнительных «П»-образных систем упругих балок, выполненных из полупроводникового материала и расположенных с зазором относительно полупроводниковой подложки, причем четыре подвижных электрода емкостных преобразователей перемещений выполнены в виде «Т»-образных пластин с перфорацией с гребенчатыми структурами с трех сторон, четыре неподвижных электрода емкостных преобразователей перемещений объединены в один, а инерционная масса выполнена с перфорацией. Технический результат - возможность измерения величин угловой скорости и линейного ускорения вдоль осей Z, направленной перпендикулярно плоскости подложки гироскопа-акселерометра, и X, Y, расположенных в плоскости подложки устройства. 2 ил.

Изобретение относится к области измерительной техники и микросистемной техники. Сущность изобретения заключается в том, что в устройство дополнительно введены четыре дополнительных подвижных электрода емкостных преобразователей перемещений, выполненные в виде пластин с перфорацией с гребенчатыми структурами с двух сторон из полупроводникового материала и расположенные с зазором относительно подложки, восемь дополнительных неподвижных электродов емкостных преобразователей перемещений, выполненные с гребенчатыми структурами с одной стороны и расположенные непосредственно на подложке так, что они образуют с дополнительными подвижными электродами емкостных преобразователей перемещений конденсаторы в плоскости их пластин через боковые зазоры и взаимопроникающие друг в друга гребенки электродов, четыре дополнительных подвижных электрода электростатических приводов, выполненные в виде пластин с перфорацией с гребенчатыми структурами с двух сторон из полупроводникового материала и расположенные с зазором относительно подложки, девять дополнительных неподвижных электродов электростатических приводов, выполненные с гребенчатыми структурами с одной стороны из полупроводникового материала и расположенные непосредственно на подложке так, что они образуют электростатическое взаимодействие с подвижными электродами электростатических приводов в плоскости их пластин через боковые зазоры и взаимопроникающие друг в друга гребенки электродов, шестнадцать «П»-образных систем упругих балок, выполненные в виде пластин из полупроводникового материала и расположенные с зазором относительно подложки, и двадцать одна дополнительная опора, выполненные из полупроводникового материала и расположенные непосредственно на подложке, причем две инерционные массы выполнены с перфорацией, а подложка и неподвижные электроды емкостных преобразователей перемещений выполнены из полупроводникового материала. Технический результат - возможность измерения величин угловой скорости вдоль осей Y, расположенной в плоскости подложки, и Z, направленной перпендикулярно плоскости подложки, и величин линейных ускорений вдоль осей Χ, Y, Z. 2 ил.

Изобретение относится к устройствам для навигации и ориентации в пространстве и может быть использовано для определения направления на географический север. Устройство для определения направления на географический север содержит молекулярно-электронный датчик угловых движений, установленный на платформе, способной вращаться с угловой скоростью, изменяющейся по знаку и абсолютной величине, при этом устройство содержит датчик, измеряющий угловую скорость вращения платформы относительно неподвижного основания, и контроллер, управляющий вращением платформы и выполняющий совместную обработку данных молекулярно-электронного датчика угловых движений и датчика, измеряющего угловую скорость вращения платформы относительно неподвижного основания. Технический результат – повышение точности определения направления на географический север, повышение точности измерений. 4 з.п. ф-лы, 4 ил.

Изобретение относится к датчику ускорения и способу изготовления такого датчика ускорения. Датчик ускорения содержит подложку с поверхностью подложки и пробную массу, которая выполнена с возможностью перемещения относительно подложки в направлении (x) отклонения, по существу параллельном поверхности подложки первом направлении (x). Пробная масса содержит гребенчатый электрод, выполненный с возможностью перемещения вместе с пробной массой и содержащий несколько зубьев, которые проходят в первом направлении (x). Датчик ускорения содержит, кроме того, противоположный электрод, неподвижно соединенный с подложкой и содержащий неподвижный гребенчатый электрод, а неподвижный гребенчатый электрод содержит несколько зубьев, которые проходят в направлении, противоположном первому направлению (x). Зубья подвижного гребенчатого электрода входят в зацепление с зубьями неподвижного гребенчатого электрода. Датчик ускорения содержит, кроме того, экранирующий электрод, неподвижно соединенный с подложкой и выполненный с возможностью увеличения демпфирования пробной массы во время движения отклонения пробной массы. Технический результат – увеличение демпфирования движения отклонения пробной массы. 2 н. и 7 з.п. ф-лы, 3 ил.

Изобретение может быть использовано в линейных и угловых акселерометрах и может найти применение в сейсмодатчиках, приборах для стабилизации движущихся объектов и инерциальной навигации. Предложена схема подключения к электронной плате молекулярно-электронного преобразователя, состоящего из четырех электродов, помещенных в замкнутый корпус, заполненный электролитом, при этом внутренние электроды служат катодами, а периферийные - анодами, в которой катоды подключены к двум соединенным с землей посредством резисторов R1 и R2 входам операционного усилителя, в обратной связи которого установлен резистор R3, причем величины всех резисторов удовлетворяют соотношению R2=R1/(1-R1/R3). Величины резисторов могут удовлетворять условиям R1/R3<<1 и R2/R3<<1. Изобретение обеспечивает преобразование разностного катодного тока в электрическое напряжение, сохраняющего неизменными потенциалы катодов, обеспечивая тем самым линейность преобразования, и, одновременно, обеспечивающего меньшее по сравнению с аналогичными решениями потребление тока. 1 з.п. ф-лы, 4 ил., 1 табл.

Изобретение относится к экспериментальной гидромеханике морских инженерных сооружений и касается методов испытания трансформации волн в опытовом бассейне на наклонном дне и оборудования для его проведения. Устройство включает бассейн, оборудованный волнопродуктором, волногасителем, волнографами и наклонным дном, к которому прикреплен блок датчиков для измерения нагрузок от ударов волн. В зоне разрушения волны установлена фотовидеоаппаратура для записи процесса разрушения. Показания с волнографов, датчиков и изображение с фотовидеоаппаратуры синхронизированы во времени и записываются на компьютер. Технический результат заключается в возможности регистрации и обработки получаемых значений в реальном времени. 1 ил.
Наверх