Способ определения массы силикатных отложений на единицу длины канала и устройство для его реализации

Изобретение относится к области измерительной техники. Способ определения массы силикатных отложений на единицу длины канала включает в себя этапы, на которых осуществляют облучение силикатных отложений нейтронами, регистрацию гамма-квантов, при этом облучение проводят быстрыми нейтронами, регистрацию гамма-квантов проводят после облучения, анализируют спектр гамма-квантов на наличие энергетического пика 1,78±0,18 МэВ от кремния, определяют массу силикатного отложения на единицу длины канала по количеству гамма-квантов указанной энергии в соответствии с градуировочной зависимостью. Технический результат - расширение области применения технического решения для определения массы силикатов. 1 ил.

 

Изобретение относится к области измерительной техники может быть использовано для определения степени засоренности трубопроводов.

Известен способ измерения толщины и плотности гололедных отложений [патент РФ №2542622, МПК G01B 17/02 (2006.01). Способ и устройство для измерения толщины и плотности гололедных отложений]. Способ основывается на возбуждении в конструкции волны звукового диапазона, ее регистрируют в точке измерения и проводят последующую обработку зарегистрированного сигнала. Волны звукового диапазона возбуждают дистанционно и через точные промежутки времени в одной точке конструкции генератором шума с пьезокерамическим вибратором, настроенным на среднюю резонансную частоту амплитудно-частотной характеристики конструкции. Регистрируют эту волну одновременно в нескольких точках конструкции, при этом массу слоя гололедных отложений определяют по смещению частот резонансных гармоник зарегистрированного сигнала. Толщину и плотность рассчитывают по массе и по величине снижения амплитуды спектральных максимумов, причем и толщину, и плотность определяют относительно состояния конструкции при отсутствии гололедных отложений.

Недостаткам данного способа является ограниченная применимость - только для определения отложений на внешней стороне конструкции.

Наиболее близким к предлагаемому техническому решению является способ элементного анализа сред [патент РФ №2478934, МПК G01N 23/222 (2006.01). Способ элементного анализа сред и реализующее его устройство]. В известном способе облучают исследуемый образец нейтронами промежуточных энергий. Регистрируют мгновенные гамма-кванты от радиационного захвата нейтронов ядрами веществ образца. Используют калибровочные отклики отдельных элементов, определяют элементный состав веществ образца. Через весовые коэффициенты откликов элементов по аппаратурным спектрам гамма-квантов определяют концентрацию элементов в веществе. Если известен химический состав соединений образца и масса образца, то можно определить концентрацию каждого соединения в образце.

Недостатком известного технического решения является его ограниченность применения для определения массы силикатных отложений в емкостях и исследовании образцов относительно большой толщины из-за того, что облучение осуществляют нейтронами с относительной малой энергией, которые при взаимодействии со стенкой емкости или при прохождении ими относительно толстого слоя образца замедлятся, что приведет к искажению временного распределения нейтронов по энергии, лежащего в основе рассмотренного способа, и спектр мгновенных гамма-квантов станет неразличимым для анализа.

Задача изобретения состоит в исключении указанного недостатка, а именно в обеспечении возможности определения массы силикатных отложений в емкостях.

Для исключения указанных недостатков в способе определения массы силикатных отложений на единицу длины канала, включающем облучение силикатных отложений нейтронами и регистрацию гамма-квантов, предлагается:

- облучение проводить быстрыми нейтронами;

- регистрацию гамма-квантов проводить после облучения;

- анализировать спектр гамма-квантов на наличие энергетического пика 1,78±0,18 МэВ от кремния;

- определять массу силикатного отложения на единицу длины канала по количеству гамма-квантов указанной энергии в соответствии с градуировочной зависимостью.

Сущность способа определения массы силикатных отложений на единицу длины канала заключается в следующем.

Облучают область канала 5 с силикатными отложениями 7 потоком быстрых нейтронов с помощью источника быстрых нейтронов 3. После облучения регистрируют гамма-кванты с помощью блока детектирования гамма-квантов 1.

Известные решения, основанные на измерении мгновенных гамма-квантов радиационного захвата во время облучения, были отброшены из-за возникающего большого фона от гамма-квантов из конкурирующих реакций.

Под действием быстрых нейтронов происходит активация ядер кремния в силикатном отложении 7. Рассматривается активация основного изотопа кремния - 28Si - 92,23% в природной смеси изотопов.

Эта реакция является пороговой - порог 3,86 МэВ, то есть энергия нейтронов должна быть больше этой величины, чтобы облучение быстрыми нейтронами приводило к активации кремния.

Образующиеся в результате активации ядра 28Al имеют период полураспада 2,26 мин. Именно благодаря активации возможно проводить измерения после облучения, добиваясь тем самым малого фона, измерения следует проводить не позднее трех периодов полураспада 28Al - 6,5 минут после окончания облучения.

Продукт распада 28Al это 28Si*, образующийся в возбужденном состоянии, которое с 100% вероятностью снимается гамма-квантами с энергией 1,78 МэВ.

Указанные гамма-кванты будут формировать в спектре пик с положением вершины 1,78±0,18 МэВ (при точности определения энергии гамма-квантов в 10%).

Используют комплекс анализа данных 6 для обнаружения в спектре гамма-квантов энергетического пика 1,78±0,18 МэВ от кремния. Определяют массу силикатного отложения на единицу длины канала 5 по количеству гамма-квантов указанной энергии в соответствии с градуировочной зависимостью.

Пример конкретного использования способа.

Длительность облучения составляла 1 минуту. Измерение спектра гамма-квантов проводилось в течение 2 минут после облучения. Таким образом, на одно измерение массы силикатного отложения (облучение + измерение) требуется 3 минуты. Облучение производилось быстрыми нейтронами с энергией 14 МэВ. Поток нейтронов составлял 108 нейтрон·секунду-1. При анализе в спектре был выделен пик с вершиной 1,79 МэВ. Определена площадь подпика - количество гамма-квантов этой энергии.

В роли участка канала 5 выступил заполненный водой участок трубы внутренним диаметром 165 мм, толщиной стенки 6 мм, с размещенным на дне отложением песка массой 100 г.

Масса отложения была определена с точностью 5%, что подтверждает применимость предложенного технического решения для определения массы силикатных отложений с на единицу длины канала в емкостях.

Один из вариантов исполнения устройства, на котором реализуется способ, представлен на фигуре, на которой приняты следующие позиционные обозначения: 1 - блок детектирования гамма-квантов, 2 - защита от нейтронов, 3 - источник быстрых нейтронов, 4 - источники электропитания, 5 - канал, 6 - комплекс анализа данных, 7 - отложения.

Технический результат - расширение области применения технического решения для определения массы силикатов за счет использования активации ядер кремния.

Способ определения массы силикатных отложений на единицу длины канала, включающий облучение силикатных отложений нейтронами, регистрацию гамма-квантов, отличающийся тем, что облучение проводят быстрыми нейтронами, регистрацию гамма-квантов проводят после облучения, анализируют спектр гамма-квантов на наличие энергетического пика 1,78±0,18 МэВ от кремния, определяют массу силикатного отложения на единицу длины канала по количеству гамма-квантов указанной энергии в соответствии с градуировочной зависимостью.



 

Похожие патенты:

Изобретение относится к области нейтронно-радиационного анализа материалов с использованием их облучения тепловыми нейтронами и преимущественно может быть использовано для обнаружения азотосодержащих взрывчатых веществ в контролируемых предметах без их вскрытия.

Изобретение относится к области определения состава скрытых опасных веществ, в том числе находящихся под водой. Устройство для обнаружения скрытых опасных веществ под водой содержит досмотровый модуль, в котором размещены источник меченых монохроматических нейтронов и сопутствующих им монохроматических α-частиц, детектор α-частиц, заключенные в вакуумную камеру, детектор γ-излучения и регистрирующую электронику, при этом устройство выполнено в виде автономного модуля с нулевой плавучестью, с возможностью его перемещения оператором; содержит снабженный дугообразной ручкой торпедообразный блок, выполняющий функции герметичного контейнера для подводных работ, в котором размещены источник меченых монохроматических нейтронов, расположенный таким образом, что ось центрального меченого пучка нейтронов совпадает с продольной осью торпедообразного блока, источник питания, регистрирующая электроника; к торпедообразному блоку в передней его части прикреплены два γ-детектора, расположенные симметрично относительно центральной оси меченого пучка нейтронов и на расстоянии от корпуса торпедообразного блока, достаточном для обеспечения защиты слоем воды сцинтилляционных кристаллов γ-детекторов от прямого потока нейтронов, испущенных нейтронным генератором в телесный угол 4π; монитор интерфейса оператора и пульт управления расположены снаружи торпедообразного блока, как правило, на самой ручке; на торпедообразном блоке снаружи установлена световая индикация наличия-отсутствия нейтронного излучения, генерируемого нейтронным генератором.

Изобретение относится к области исследования или анализа материалов, а именно к определению коэффициента вертикальной диффузии выбросов промышленных предприятий в приземном слое атмосферы с помощью нейтронно-активационного анализа.

Изобретение относится к области исследования или анализа материалов с помощью нейтронно-активационного анализа мхов-биомониторов. Способ заключается в том, что в заданном направлении от промышленного предприятия на разных расстояниях от 1 до 5 км отбирают не менее 5 образцов эпифитного мха Pylaisia polyantha (Hedw.) B.S.G.

Использование: для радиационных методов анализа материалов. Сущность изобретения заключается в том, что выполняют облучение исследуемого объекта потоком нейтронов, измерение энергетического спектра индуцированного гамма-излучения, одновременную регистрацию, как минимум, двух гамма-квантов одного ядерного каскада, используют, как минимум, два гамма-детектора, сигналы с которых снимаются при условии совпадения по времени, и осуществляют автоматизированный анализ полученного спектра с помощью ЭВМ, при этом сканируемый объект облучают направленным пучком нейтронов с энергией 14.1 МэВ, испускаемых генератором на основе T(d,n)4He реакции со встроенным детектором альфа-частиц, фиксируют момент времени и направление испускания нейтрона, регистрируют гамма-кванты от неупругих ядерных реакций в процессе прохождения быстрых нейтронов через исследуемый объект, анализируют пары гамма-квантов, совпадающие по времени с сигналом альфа-детектора с учетом времени пролета нейтрона, по измеренным энергиям пар гамма-квантов строят двумерный корреляционный спектр и на основе значений в области характеристических пиков интересующих химических элементов определяют их концентрацию в сканируемом объекте.

Использование: для обнаружения опасных скрытых веществ. Сущность изобретения заключается в том, что устройство для обнаружения опасных скрытых веществ выполнено в виде двух модулей - досмотрового и модуля управления, соединенных кабелями Ethernet-соединения и питания, при этом досмотровый модуль содержит несколько источников меченых монохроматических нейтронов и сопутствующих им монохроматических α-частиц с детекторами α-частиц и несколько детекторов γ-излучения, и выполнен в виде пункта для досмотра автомобилей, включающего площадку для размещения автомобиля и расположенную под ней досмотровую яму, где размещены источники меченых монохроматических нейтронов и сопутствующих им монохроматических α-частиц с детекторами α-частиц, заключенные в вакуумные камеры и выполненные с возможностью облучения определенной области автомобиля по всей его ширине за одно измерение, а также защита детекторов γ-излучения от потока монохроматических нейтронов; детекторы γ-излучения расположены с обеих сторон площадки с возможностью их перемещения как по вертикали относительно автомобиля, так и в горизонтальном направлении, приближая или удаляя их от автомобиля; досмотровый модуль снабжен устройством поддержания определенных диапазонов температур и влажности воздуха в досмотровой яме.

Использование: для обнаружения опасных скрытых веществ. Сущность изобретения заключается в том, что контейнер досмотрового модуля выполнен герметичным, снабжен устройством нагрева внутреннего объема, при этом канал передачи данных между досмотровым модулем и модулем управления обнаружителем опасных веществ выполнен беспроводным, модуль досмотра снабжен аккумулятором для питания нейтронного генератора, альфа и гамма-детекторов, регистрирующей электроники с использованием соответствующих блоков преобразования напряжения, регистрирующая электроника в корпусе досмотрового модуля снабжена защитой от прямого потока монохроматических нейтронов, испускаемых нейтронным генератором; досмотровый модуль снабжен световым индикатором, включенное состояние которого свидетельствует о наличии нейтронного излучения, создаваемого нейтронным генератором.

Изобретение относится к области исследования или анализа материалов радиационными методами с измерением вторичной эмиссии характерного ядерного гамма-излучения, возникающего под действием быстрых нейтронов, в частности, для обнаружения алмазов в породе - кимберлите.

Использование: для обнаружения присутствия химического элемента в объекте путем нейтронного облучения объекта. Сущность: заключается в том, что выполняют нейтронное облучение объекта, используя непрерывное испускание нейтронов из нейтронного генератора (G1) связанных частиц и испускание нейтронных импульсов, которые накладываются на указанное непрерывное испускание нейтронов, при этом нейтронные импульсы получают посредством импульсного генератора (G2) нейтронов, который генерирует нейтронные импульсы с длительностью импульса T2, при этом два последовательных нейтронных импульса разделены интервалом T4, при этом непрерывное и импульсное нейтронное облучение объекта вызывает захватное гамма-излучение и гамма-излучение неупругого взаимодействия.

Использование: для определения золотоносности горных пород. Сущность: заключается в том, что осуществляют нейтронно-активационный анализ образца золотоносных сульфидов, формируют пробу в виде его зерна размером от 30-70 мкм, которую последовательно запаивают в полиэтиленовую пленку, упаковывают в фильтровальную бумагу и алюминиевую фольгу, подготовленную таким образом пробу подвергают облучению на реакторе в течение 15-17 час в потоке 1×1013 н/cм2×cек с последующим измерением в образце наведенной активности золота и его сателлитов на 7-12 день после облучения, параллельно с диапазоном измеряемой энергии 100-1800 кэВ и 50-160 кэВ по линии соответственно 1332 кэВ и 121.8 кэВ, после чего анализируют интенсивность ν - линии золота при 412 кэВ и путем сравнения с интенсивностью этой же линии в эталонных образцах рассчитывают количество золота в зернах.

Изобретение относится к области исследования или анализа материалов радиационными методами с измерением вторичной эмиссии характерного ядерного гамма-излучения, возникающего под действием быстрых нейтронов, в частности, для обнаружения алмазов в породе - кимберлите. Установка для сухого обогащения кимберлитовой руды методом меченых нейтронов выполнена в виде соединенных между собой линиями связи и питания двух модулей - модуля оператора, включающего в себя систему приема и анализа данных с детекторов излучения, систему управления устройством, и досмотрового модуля-контейнера, в котором размещены устройство подачи кимберлитовой руды в область облучения ее потоком быстрых нейтронов, портативный нейтронный генератор со встроенным многоэлементным кремниевым альфа-детектором, система детекторов гамма-излучения и защита детекторов гамма-излучения, а также бункеры концентрата и пустой руды. Контейнер снабжен загрузочным бункером с дозатором, оборудование досмотрового модуля размещено на раме. Устройство подачи кимберлитовой руды в область облучения ее потоком быстрых нейтронов выполнено в виде привода с лотком с возможностью высыпания его содержимого в зависимости от результата облучения. Спектроскопический канал детекторов гамма-излучения снабжен системой термокоррекции. Защита детекторов гамма-излучения выполнена из материалов с атомным номером Z больше 70. Технический результат – повышение вероятности обнаружения алмазов, находящихся в кусках кимберлитовой руды. 2 з.п. ф-лы, 6 ил.

Изобретение относится к разделению или сортировке рудных материалов сухим способом, в частности к сухому обогащению алмазосодержащей руды с применением радиационных методов, а именно с измерением вторичной эмиссии характерного ядерного гамма-излучения, возникающего под действием быстрых меченых нейтронов. Достигаемый результат – повышение производительности сортировки за счет возможности обнаружения алмаза скрытого в куске руды до ее дробления, что позволяет предотвратить повреждение крупных алмазов. Сепаратор для сухого обогащения алмазосодержащей руды содержит систему подачи руды, предназначенную для подачи алмазосодержащей руды в нейтронный блок, Нейтронный блок снабжен нейтронным генератором, предназначенным для генерации потока меченых нейтронов и альфа-частиц, в который встроен многоэлементный альфа-детектор. Сепаратор также содержит две группы детекторов гамма-излучения. Детекторы первой группы расположены вокруг и вне потока меченых нейтронов и снабжены защитой от прямого попадания в них потока меченых нейтронов. Детекторы второй группы расположены в пределах потока меченых нейтронов, прошедшего через сосуд с алмазосодержащей рудой. Система подачи руды снабжена по меньшей мере одним сосудом, имеющим в сечении форму, соответствующую форме сечения потока меченых нейтронов, выполненным с возможностью содержания порции алмазосодержащей руды, подлежащей облучению в нейтронном блоке. Поток меченых нейтронов в нейтронном блоке имеет форму усеченной пирамиды и соответственно сосуд тоже имеет форму усеченной пирамиды. Система разделения выполнена с возможностью направлять облученную в сосуде порцию алмазосодержащей руды либо в концентрат, либо в хвосты по команде системы управления в зависимости от выявленного системой анализа данных наличия или отсутствия алмаза(ов) в упомянутой порции алмазосодержащей руды. 2 н. и 15 з.п. ф-лы, 8 ил.
Наверх