Источник рентгеновского излучения

Изобретение относится к рентгеновской технике, в частности к рентгеновским трубкам, и может быть использовано в радиационных технологиях, неразрушающем контроле, рентгеноструктурном анализе, медицине для диагностики и терапии, а также в других областях техники. Технический результат - повышение допустимых плотностей мощности электронного потока на мишень источника рентгеновского излучения, в частности на анод рентгеновских трубок. Источник рентгеновского излучения включает генератор электронного пучка и мишень для генерации рентгеновского излучения из области взаимодействия мишени с пучком электронов, размещенную на подложке для отвода выделяемого в мишени тепла, между которыми введена алмазная пластина толщиной больше минимального размера области взаимодействия электронов с поверхностью мишени в 1/е раз, где е - 2,71, имеющая тепловой контакт с мишенью и подложкой, при этом мишень и подложка электрически связаны между собой. 3 з.п. ф-лы, 3 ил.

 

Изобретение относится к рентгеновской технике, в частности к рентгеновским трубкам, и может быть использовано в радиационных технологиях, неразрушающем контроле, рентгеноструктурном анализе, медицине для диагностики и терапии, а также в других областях техники.

В известных конструкциях источника рентгеновского излучения мишень, генерирующая его под воздействием электронного пучка, выполнена из металла с большим атомным номером, при этом металл расположен на подложке, предназначенной для пространственной ориентации мишени и отвода выделяемого в ней тепла /патент РФ 2170472/.

Интенсивность рентгеновского излучения, а также выделяемое в мишени тепло пропорциональны плотности мощности электронного потока.

Общим недостатком, присущим источникам рентгеновского излучения, является ограничение по допустимым удельным нагрузкам на мишень, превышение которых приводит к ее тепловому разрушению.

Известен источник рентгеновского излучения, в котором мишень выполнена в виде вращающего анода, что обеспечивает неразрушающий температурный режим ее работы /патент РФ 2195739/.

Недостатками этого технического решения являются сложность конструкции и ненадежность в эксплуатации.

Ближайшим техническим решением является источник рентгеновского излучения, включающий генератор электронного пучка, мишень из материала с большим атомным номером, расположенную на углеродной подложке /патент РФ 2046558/. Это решение позволило увеличить вдвое среднюю плотность выделяемой в ней мощности, подняв ее до 50 Вт/см2.

Недостатком этого технического решения является сохраняющиеся ограничения по допустимой плотности мощности электронного потока на мишень источника.

Задачей изобретения является устранение указанного выше недостатка.

Техническим результатом предложенного технического решения является повышение допустимых плотностей мощности электронного потока на мишень источника рентгеновского излучения, в частности на анод рентгеновских трубок.

Указанная задача решается, а технический эффект достигается за счет того, что в источнике рентгеновского излучения, включающем генератор электронного пучка и мишень для генерации рентгеновского излучения из области взаимодействия мишени с пучком электронов, размещенную на подложке для отвода выделяемого в мишени тепла, между мишенью и подложкой дополнительно введена алмазная пластина толщиной больше минимального размера области взаимодействия пучка электронов с поверхностью мишени в 1/е раз, где е - 2,71 (экспонента), имеющая тепловой контакт с мишенью и подложкой, при этом мишень и подложка электрически связаны между собой.

Алмазная пластина выполнена из CVD-алмаза.

Подложка имеет систему принудительного охлаждения, в частности водяного.

На фиг. 1 приведены временные зависимости температуры поверхности мишени в области ее взаимодействия с электронным пучком для разных конструкций мишени и подложки при различных плотностях мощности потока.

На фиг. 2 схематично показана работа источника рентгеновского излучения в импульсном режиме.

На фиг. 3 схематично показаны мишень и подложка источника рентгеновского излучения, работающих в непрерывном режиме.

В ходе проведенных расчетов было установлено, что на мишени и массивной подложке, выполненных из молибдена, температура поверхности мишени 600°C в области взаимодействия электронов с поверхностью (полоска длиной 3 мм, шириной 0.3 мм) за 1 секунду достигается при плотности мощности q=17 кВт/см2 (фиг. 1, кривая «а»), а с подложкой, выполненной из меди, при q=26 кВт/см2 (фиг. 1, кривая «b»).

При введении алмазной пластины квадратной формы 10×10 мм и толщиной 1 мм между мишенью и медной подложкой такая же температура за то же время была достигнута при плотности мощности 60 кВт/см2 (фиг. 1, кривая «с»).

Таким образом, применение алмазной пластины в электроде рентгеновского излучения повышает допустимые удельные нагрузки в 2,5-4 раза при том же температурном режиме.

Расчеты также показали, что алмазная пластина начинает эффективно отводить тепло, когда ее толщина превышает минимальный размер области взаимодействия электронов с поверхностью мишени (ширину пучка электронов на поверхности мишени) в 1/е раз, где е - 2,71 - экспонента, а размер пластины в направлении ширины пучка превышает ее в несколько раз. Дальнейшее увеличение размера пластины слабо влияет на температурный режим.

Расчеты проводились на программе Ansys, теплофизические характеристики молибдена и меди брались согласно / Физические величины: Справочник / А.П. Бабичев, Н.А. Бабушкина, A.M. Братковский и др. / Под ред. И.С. Григорьева, Е.З. Мейлихова. - М.: Энергоатомиздат, 1991. - 1232 с./, а температурная зависимость теплопроводности алмаза брались согласно /Ивакин Е.В., Суходолов А.В., Ральченко В.Г. и др. Измерение теплопроводности поликристаллического CVD-алмаза методом импульсных динамических решеток. Квантовая электроника, 32, №4 (2002), с. 367-372/.

Полученное увеличение удельных тепловых нагрузок при использовании алмазной пластины объясняется высокой теплопроводностью алмаза, позволяющей распределить поток тепла на большую площадь подложки.

Работа источника рентгеновского излучения в импульсном режиме пояснена на фиг. 2.

Узкий высокоэнергетический пучок электронов 1, сформированный его генератором 2, например электронной пушкой, падает на поверхность электрода, полностью тормозясь в мишени 3, выполненный из тугоплавкого материала, например молибдена, толщиной в десять микрон, достаточной для поглощения электронов с энергией до 50 кэВ /Коваленко В.Ф. Теплофизические процессы и электровакуумные приборы. М.; Сов. Радио. 1975, 216 с./. Тормозясь в мишени, электроны возбуждают электроны внутренних оболочек атомов молибдена, вынуждая их излучать в рентгеновском диапазоне спектра. Часть энергии электронного потока преобразуется в тепло, нагревая мишень. Ввиду тонкости мишени, десять микрон, выделенное в локальной области мишени тепло сразу же передается алмазной пластине 4 и эффективно распространяется вдоль пластины вследствие высокой теплопроводности алмаза. В результате, в подложку 5, выполненную, например, из меди, тепло передается от всей алмазной пластины 4, т.е. тепловой поток проходит через большую площадь подложки 5, по сравнению с прототипом, что приводит к снижению удельных тепловых нагрузок. Это позволяет либо понизить температуру мишени при фиксированной тепловой нагрузке, либо повысить нагрузку при фиксированной температуре мишени. Мишень 3 и подложка 5 электрически связаны между собой через контакт 6.

Таким образом, введение алмазной пластины между мишенью и подложкой повышает допустимую плотность мощности электронного потока, не меняя температурного режима работы анода.

Использование алмазной пластины из CVD-алмаза расширит функциональные возможности изобретения, позволит, например, отводить тепло в источнике рентгеновского излучения, работающего с несколькими электронными пучками одновременно, так как размеры CVD-алмазных пластин составляют до 100×100 мм.

Конструкция мишени с подложкой и алмазной пластины между ними, работающих в непрерывном режиме, пояснена на фиг. 3.

Для работы источника рентгеновского излучения в непрерывном режиме подложку 5 дополняют системой принудительного охлаждения, например в ней делают каналы 7 для принудительной прокачки по ним воды.

Таким образом, предложенное техническое решение позволяет увеличить допустимые плотности мощности электронного потока, не меняя температурный режим работы мишени, что повышает интенсивность рентгеновского излучения и/или время работы источника рентгеновского излучения, в частности рентгеновской трубки в режиме ее генерации (время экспозиции).

Кроме того, дополнительное применение принудительного водяного охлаждения позволяет реализовать непрерывный режим генерации рентгеновского излучения.

1. Источник рентгеновского излучения, включающий генератор электронного пучка и мишень для генерации рентгеновского излучения из области взаимодействия мишени с пучком электронов, размещенную на подложке для отвода выделяемого в мишени тепла, отличающийся тем, что между мишенью и подложкой введена алмазная пластина толщиной больше минимального размера области взаимодействия электронов с поверхностью мишени в 1/е раз, где е - 2,71, имеющая тепловой контакт с мишенью и подложкой, при этом мишень и подложка электрически связаны между собой.

2. Источник рентгеновского излучения по п. 1, отличающийся тем, что алмазная пластина выполнена из CVD-алмаза.

3. Источник рентгеновского излучения по п. 1, отличающийся тем, что подложка имеет систему принудительного охлаждения.

4. Источник рентгеновского излучения по п. 3, отличающийся тем, что система принудительного охлаждения работает на воде.



 

Похожие патенты:

Изобретение относится к области рентгенотехники. Гентри для системы формирования изображения содержит вращающуюся раму (106), которая вращается около области исследования вокруг оси z; вторую раму (102, 104); опору (108), соединяющую с возможностью вращения вращающуюся раму (106) со второй рамой (102, 104), при этом одна из вращающейся рамы (106) или второй рамы (102, 104) подвижно соединена с опорой (108), а другая из вращающейся рамы (106) или второй рамы (102, 104) жестко соединена с опорой (108), и тормозящий компонент (112), который выборочно применяет тормоз к вращающейся раме (106).Тормозящий компонент (112) является частью бесконтактного подшипника с текучей средой, содержащего первую часть (1202), прикрепленную к вращающейся раме (106), и вторую часть (1206), прикрепленную ко второй раме (102), при этом вторая часть (1206) сцепляется с первой частью (1202) для торможения вращающейся рамы (106), при этом тормозящий компонент (112) управляется электрически управляемым клапаном (1218).

Изобретение относится к области рентгенотехники. Вращающийся анод для рентгеновской трубки содержит первый модуль, выполненный с возможностью соударения посредством первого электронного луча, по меньшей мере, второй модуль, выполненный с возможностью соударения, по меньшей мере, посредством второго электронного луча.

Изобретение относится к области рентгенотехники. Рентгеновская трубка (1) содержит катод (3), анод (5) и дополнительный электрод (7).

Ускорительная трубка относится к рентгеновской технике и может быть использована в импульсном рентгеновском ускорителе для получения коротких рентгеновских высокоинтенсивных вспышек для регистрации быстропротекающих процессов в оптически плотных средах.

Изобретение относится к электронным кассетам для получения рентгеновского изображения. .

Изобретение относится к медицинской технике, а именно к рентгеновским сканерам для обследований пациентов. .

Изобретение относится к неразрушающему контролю с использованием рентгеновского излучения и может быть применено для контроля материалов и изделий радиационным методом в авиакосмической промышленности и других отраслях машиностроения.

Изобретение относится к неразрушающему контролю с использованием рентгеновского излучения и может быть применено для контроля материалов и изделий в различных отраслях машиностроения.

Изобретение относится к рентгенотехнике, в частности к радиографическим сканирующим устройствам, и может быть использовано в сканирующей флюорографии, сканирующей маммографии и сканирующей таможенной интроскопии.

Источник рентгеновского излучения содержит ограничивающий корпус, первый валик, расположенный по меньшей мере частично внутри ограничивающего корпуса, второй валик, расположенный по меньшей мере частично внутри ограничивающего корпуса и находящийся в контакте качения с первым валиком, и приводной узел, функционально соединенный с первым и/или вторым валиком. Приводной узел вызывает вращение первого и второго валиков, причем участки первого и второго валиков входят в контакт и выходят из контакта внутри корпуса, когда первый и второй валики вращаются. Поверхность первого валика по меньшей мере частично выполнена из первого трибоэлектрического материала, а поверхность второго валика по меньшей мере частично выполнена из второго трибоэлектрического материала, так что первый трибоэлектрический материал имеет отрицательный трибоэлектрический потенциал относительно второго трибоэлектрического материала. Ограничивающий корпус выполнен с возможностью обеспечения внутри регулируемой атмосферной среды, причем первый трибоэлектрический материал, второй трибоэлектрический материал и регулируемая атмосферная среда выбраны такими, чтобы контакт качения между первым и вторым валиками генерировал рентгеновское излучение. Технический результат - повышение эффективности и накопления заряда. 2 н. и 26 з.п. ф-лы, 15 ил.

Изобретение относится к области генерации высокоэнергетического излучения. Генератор высокоэнергетического излучения использует трение скольжения в среде низкого давления для генерации высокоэнергетического излучения, например рентгеновских лучей. Трение скольжения может быть создано посредством проскальзывания одного материала по второму материалу, например при вращении поверхности ротора по мембране в присутствии электронной мишени, которая может представлять собой один из первого материала или второго материала или другой материал. Технический результат - упрощение генерирования высокоэнергетического излучения. 2 н. и 29 з.п. ф-лы, 15 ил.

Изобретение относится к области рентгенотехники. Рентгеновское устройство использует ленту материала для обмена электрическим зарядом посредством механизма трибозарядки внутри камеры, поддерживаемой при низком давлении текучей среды. Этот заряд используется для генерации рентгеновских лучей внутри корпуса, которые могут проходить через окно корпуса. В качестве элемента для процесса трибозарядки могут использоваться различные контактные стержни. Технический результат - упрощение генерирования рентгеновского излучения. 28 з.п. ф-лы, 16 ил.
Наверх