Способ релейной защиты энергообъекта

Использование: в области электроэнергетики. Технический результат - повышение быстродействия релейной защиты. Данный способ обнаруживает аварийные режимы объекта, отличающиеся друг от друга по времени распознавания. Делается это с привлечением имитационных моделей контролируемого объекта. Моделируются два типа взаимно противостоящих режимов: первый - короткие замыкания в защищаемой зоне; второй - все прочие режимы, когда срабатывание защиты запрещается. Имитационные модели подают на релейную защиту токи и напряжения в режимах обоих типов и тем самым проводят обучение релейной защиты. Электрические величины представляют в дискретной форме. Отсчеты величин режима короткого замыкания преобразуют в промежуточные текущие величины. Преобразование совершается в нарастающем окне наблюдения на каждом шаге увеличения окна. Из промежуточных величин формируют текущий замер. Обучение выполняют на каждом шаге, получая столько характеристик срабатывания, сколько шагов, начиная со второго, предусмотрено для обучения защиты. Для дистанционной защиты линий электропередачи промежуточными величинами являются комплексные сигналы, изменяющиеся с каждым шагом наблюдения. В рамках предлагаемого способа дана реализация фильтра ортогональных составляющих, формирующего текущие комплексные сигналы. Частным случаем этого фильтра, работающего на произвольном окне наблюдения, является широко применяемый фильтр Фурье, для которого окно наблюдения кратно полупериоду частоты сети. 1 з.п. ф-лы, 3 ил.

 

Изобретение относится к электроэнергетике, а именно к релейной защите и автоматике (РЗА) электрических систем.

В связи с переходом РЗА на микропроцессорную технику появились возможности значительного повышения интеллекта релейной защиты. Одно из направлений интеллектуализации связано с обучением релейной защиты. Известны способы релейной защиты, где обучение является существенным техническим признаком [1-5]. Обучение проводится с учителем, в роли которого выступает имитационная модель защищаемого объекта, воспроизводящая его режимы. Модель может модифицироваться применительно к типу режима. Принципиально различают два типа: контролируемые режимы (α-режимы), на которые защите надлежит реагировать, и альтернативные им режимы (β-режимы), при которых срабатывание защиты категорически запрещено. Например, в случае дистанционной защиты линии электропередачи к контролируемым режимам относятся короткие замыкания в зоне защиты, а к альтернативным - замыкания вне зоны, замыкания "за спиной", а также все неаварийные режимы.

В [1-5] представлена технология обучения релейной защиты. Различные подходы к обучению защиты обобщены в способе дистанционной защиты линии электропередачи [6]. В нем используются имитационные модели объекта в контролируемых и альтернативных режимах. Операции преобразования входных величин, поступающих от реального объекта при эксплуатации защиты или же от имитационных моделей при ее обучении, совпадают во всем, кроме одного - принятия решения. Защита с заданной характеристикой срабатывает, если замер отобразится в области, которая охвачена характеристикой. Обучаемая защита отображает замеры во всевозможных режимах и тем самым задает область срабатывания для работы на объекте.

Данный способ, как и его предшественники, нацелен на повышение чувствительности защиты при обеспечении селективности, т.е. гарантировании несрабатывания в альтернативных режимах. Задача повышения быстродействия (уменьшения времени срабатывания) защиты не ставилась. Между тем, эта задача становится все более злободневной по целому ряду причин. Сюда относится рост уровня токов короткого замыкания в электрических системах, что создает проблему для выключателей и приводит к быстрому насыщению трансформаторов тока, лишая релейную защиту достоверной информации.

Цель изобретения - повышение быстродействия способа релейной защиты, основанного на ее обучении с использованием имитационных моделей в контролируемых режимах короткого замыкания и иных режимах, альтернативных контролируемым. Как и прототип, предлагаемый способ ориентирован на применение цифровой обработки наблюдаемых величин, а именно на фиксацию их отсчетов с разграничением процессов до и после короткого замыкания. Аварийный режим наблюдается с начального, т.е. первого после замыкания, дискретного момента времени. Далее окно наблюдения режима короткого замыкания расширяется вплоть до времени ликвидации аварии. Совокупность отсчетов, взятых на окне наблюдения, преобразуют в замер релейной защиты. На стадии обучения обрабатывают отсчеты электрических величин, генерируемых имитационными моделями объекта. Формируемые при этом замеры отображаются на плоскости, если замеры представляют собой, как это имеет место в релейной защите, комплексные или двумерные вещественные сигналы. По отображению множества замеров определяют характеристику срабатывания защиты.

Для достижения поставленной цели известная последовательность операций дополнена новыми, реализующими идею непрерывного обучения релейной защиты. Обучение предлагается проводить на каждом шаге наблюдения режима короткого замыкания, начиная со второго, когда каждая величина аварийного режима представлена двумя отсчетами, и для каждого шага наблюдения определять собственные характеристики срабатывания защиты. Тот признак, что число отсчетов, с которого начинается обучение, равно двум, не случаен. Объясняется тем, что замеры релейной защиты в большинстве случаев удобно представлять в виде комплексных сигналов. Отсчеты электрических величин преобразуются в комплексные сигналы фильтрами ортогональных составляющих; фильтру минимального, а именно первого, порядка требуются для формирования выходного комплекса два отсчета выходной величины. Фильтру n-го порядка требуется (n+1) отсчет.

Для конкретной реализации предлагаемого способа непрерывного обучения релейной защиты подготовлен универсальный фильтр ортогональных составляющих, действующий на каждом шаге наблюдения. Оказалось, что именно такой фильтр отвечает требованию непрерывного пошагового действия.

На фиг. 1 приведена имитационная модель энергообъекта - линия электропередачи с двусторонним питанием. На фиг. 2 - структурная схема, реализующая предлагаемый способ. На фиг. 3 - пример семейства характеристик срабатывания защиты, обученной реагировать на текущий замер.

Моделируемая линия электропередачи 1 связывает системы 2 и 3. Модель линии разделена на 3 участка: защищаемую зону 4 протяженностью lз, участок 5 за пределами зоны протяженностью (l-lз) и участок 6 до начала зоны. Дистанционная защита наблюдает линию в начале зоны. В данной модели могут быть воспроизведены все типы режимов работы электропередачи. Индексом α отмечены замыкания в зоне; - координата места замыкания; - переходное сопротивление. Защита 7 предназначена для устранения α-режимов. Индексом β отмечены замыкания, на которые защите реагировать запрещено; β1 - замыкания за пределами зоны, β2 - до начала зоны («за спиной»). Координата x введена для линии, начиная от места установки защиты 7. Координата y - для участка 6. Регистрируют ток i(t) и напряжение u(t) в месте установки защиты. Отсчет времени t ведется от момента короткого замыкания вне зависимости от того, на каком из участков линии это произошло. Переходные сопротивления изображены пунктиром, так как замыкание предполагается на одном из участков.

В структурной реализации предлагаемого способа предусмотрены аналого-цифровые преобразователи 8 и 9, на входы которых подают аналоговые величины i(t), u(t), а на выходе получают дискретные величины i(k), u(k). Дискретизация представляет собой операцию определения целой части

где τ=Τ/Ν - интервал дискретизации, Т - период частоты сети, N - число отсчетов на периоде, Δt∈(0, τ) - расхождение во времени момента короткого замыкания t=0 и момента взятия первого после этого события отсчета k=0. Общее число отсчетов n определяется на окне наблюдения режима короткого замыкания, начиная от k=0. Таким образом, в окно наблюдения входят отсчеты при . Преобразователи 10, 11 фиксируют отсчеты величины i(k), u(k) на окне наблюдения и формируют из них промежуточные величины, например комплексы тока и напряжения I(n), U(n). Начиная со второго шага, т.е. с n=2, промежуточные величины играют роль текущих сигналов, из которых формирователь замера 12 создает текущий замер. Например, в случае дистанционной защиты это будет комплексное сопротивление Z(n)=U(n)/I(n). Иначе говоря, в данном случае преобразователь 12 реализует операцию пошагового деления текущих комплексных сигналов U(n) и I(n). Для каждого шага в данной структуре предусмотрен отдельный исполнительный блок 13-15. Всего указан (N-1) блок, так как окно наблюдения продолжительностью в период Τ в настоящее время является общепринятым.

У готовой, т.е. прошедшей обучение, релейной защиты каждый исполнительный блок 13-15 располагает собственной характеристикой срабатывания. Действие исполнительных блоков 13-15 объединено по схеме ИЛИ. Эту операцию выполняет оконечный модуль 16.

Операции обучения играют главную роль в рассматриваемом способе релейной защиты. На стадии обучения входные величины генерируются имитационной моделью (фиг. 1). Варьируемыми параметрами модели в разных режимах являются координаты мест замыкания или , или , переходные сопротивления или , или угол передачи δ, интервал времени Δt в операции дискретизации (1), а также параметры систем 2 и 3. Поступающие от модели непрерывные токи и напряжения i(t) и u(t) после прохождения через преобразователи 8, 9 принимают дискретную форму отсчетов i(k), u(k), а после прохождения через преобразователи 10, 11 - форму текущих сигналов I(n), U(n). Наконец, формирователь 12 совершает над сигналами I(n), U(n) операцию определения текущего замера Ζ(n). Замер отображается на плоскости, где должна быть построена характеристика срабатывания соответствующего исполнительного модуля. Замер Ζ(n) поступает в исполнительный модуль 14. Отображая множество α-режимов и множество β-режимов, определяют ту часть плоскости Ζ(n), где фиксируются одни только α-режимы. Обучение защиты на n-м шаге завершается определением характеристики срабатывания путем окаймления области исключительного отображения контролируемых режимов (α-режимы). Естественно, что с каждым очередным расширением окна наблюдения область срабатывания защиты будет расширяться (фиг. 3).

Релейная защита с заданными характеристиками срабатывания призвана контролировать тот объект, имитационная модель которого использовалась при обучении. Процедура контроля состоит в основном из тех же операций, что и процедура обучения. Принципиальное различие заключается в том, что в модели режимы воспроизводятся подряд один за другим в необходимом количестве и их отображения используют для задания характеристик срабатывания защиты. В процессе эксплуатации объекта аварийный режим встречается нечасто. Нормальный режим не приводит к запуску счета шагов (числа n), и на всех плоскостях замеры Ζ(n) отображаются в одном и том же месте за пределами области срабатывания. Резкий наброс нагрузки, т.е. переход от одного нормального режима к другому, более тяжелому, может запустить счет шагов. Однако новый нормальный режим при обучении защиты квалифицировался как альтернативный (β-режим), поэтому в таком режиме ни на каком шаге защита не сработает: замеры Ζ(n) отобразятся в разных местах для разных n, но везде за пределами зоны. То же произойдет и при коротких замыканиях за пределами защищаемой зоны (режимы β1) и "за спиной" (режимы β2). И лишь при коротком замыкании в защищаемой зоне (α-режим) на одном из шагов замер Ζ(n) может попасть в область срабатывания и защита сработает. Так произойдет при двух условиях. Во-первых, этот режим должен быть учтен среди множества обучающих α-режимов. Во-вторых, в процессе обучения защиты этот режим, воспроизводимый имитационной моделью, должен был отобразиться на некоторой плоскости Ζ(n0), и на всех прочих при n>n0, в тех областях, куда не попадают отображения β-режимов.

Преобразование отсчетов наблюдаемой величины υ(k), , в комплексный сигнал V(n) желательно иметь однотипным для всех значений n≥2, т.е. независимым от размера окна наблюдения. Если окно наблюдения занимает отрезок времени, кратный полупериоду частоты сети T/2, то простое и вместе с тем эффективное преобразование осуществляется фильтром Фурье

где V m - комплексная амплитуда, p=1, 2, …. - целое число, ρ 1(k)=ехр(jαk) - комплексный опорный сигнал, α=2π/Ν, - сопряженный опорный сигнал.

Способ пошагового обучения релейной защиты придает своеобразие выполняемым операциям. В частности, требуется фильтр ортогональных составляющих, способный функционировать на произвольном окне наблюдения, т.е. осуществляющий преобразование выборки отсчетов υ(k), , в комплексный сигнал V m(n). Фильтр, решающий поставленную задачу в рамках предлагаемого способа повышения быстродействия релейной защиты, выполняет следующую операцию

где H(n) - постоянная величина для каждого шага n, ρ 2 (k,n) - второй опорный сигнал:

γ(n)=2α+β(n),

β(n)=2π/n,

Благодаря операциям обучения с участием имитационных моделей контролируемого энергообъекта предлагаемый способ релейной защиты выполняет автоматическое ранжирование режимов короткого замыкания в защищаемой зоне по времени распознавания. Вне зависимости от вида замера и от типа энергообъекта происходит минимизация времени срабатывания защиты.

Источники информации

1. Патент РФ №2316871, МПК H02H 3/40, 2006.

2. Патент РФ №2316872, МПК H02H 3/40, 2006.

3. Патент РФ №2404499, МПК Н02Н 3/40, 2009.

4. Патент РФ №244829, МПК H02H 6/00, H02H 3/16, H02H 3/40, G01R 31/08, 2010.

5. Патент РФ №2450402, МПК H02H 3/40, 2010.

6. Патент РФ №2553448, МПК Н02Н 3/40, 2014.

1. Способ релейной защиты энергообъекта с использованием его имитационных моделей в контролируемых режимах короткого замыкания и в альтернативных режимах путем фиксации отсчетов электрических величин, преобразования отсчетов в промежуточную величину, преобразования промежуточных величин в замер, обучения релейной защиты замерами от имитационных моделей и определения характеристики срабатывания на плоскости замера, отличающийся тем, что с целью повышения быстродействия промежуточные величины формируют как текущие сигналы на каждом шаге наблюдения режима короткого замыкания, начиная с двух отсчетов каждой величины, текущие сигналы преобразуют в текущий замер релейной защиты, обучение защиты проводят текущими замерами на каждом шаге наблюдения и для каждого шага наблюдения определяют собственные характеристики срабатывания защиты.

2. Способ по п. 1, отличающийся тем, что текущий сигнал формируют в комплексной форме в соответствии с преобразованием
, n≠pN/2, n≥2,
, n=pN/2,
где - текущая комплексная амплитуда, υ(k) - отсчет тока или напряжения, k - дискретное время, n≥2 - номер шага наблюдения или, что то же, число отсчетов каждой величины υ(k), - комплексные опорные сигналы , , α=2π/N, β(n)=2π/n, р=1, 2, … - целое число, N - число отсчетов на периоде номинальной частоты, j - мнимая единица, - текущий коэффициент:

где γ(n)=2α+β(n).



 

Похожие патенты:

Использование: в области электротехники. Технический результат - повышение чувствительности дистанционной защиты.

Использование: в области электротехники. Технический результат - повышение точности определения ортогональных составляющих гармоники периодического сигнала при обработке электрической величины с высокой частотой дискретизации.

Использование: в области электротехники. Технический результат - повышение надежности защиты.

Использование: в области электротехники. Технический результат - повышение устойчивости функционирования дистанционной защиты.

Использование: в области электроэнергетики. Технический результат - повышение точности.

Изобретение из области электроэнергетики касается построения микропроцессорной релейной защиты, а именно этапов ее обучения, задания характеристики срабатывания и функционирования в рабочем режиме.

Изобретение относится к электротехнике, в частности к релейной защите магистральных и распределительных электрических сетей. .

Изобретение относится к электроэнергетике и электротехнике, а именно к релейной защите и автоматике электроэнергетических систем. .

Изобретение относится к электроэнергетике и электротехнике и может быть использовано во всех видах защит, преимущественно микропроцессорных. .

Изобретение относится к электротехнике, в частности к способам защиты линий электропередачи (ЛЭП), основанным на дистанционном принципе. .

Использование: в области электроэнергетики. Технический результат - расширение функциональных возможностей способа путем обеспечения защиты любых энергообъектов с моделями любого типа и с произвольным объемом наблюдения объекта. Согласно способу входы объекта соответствуют входам модели. Чтобы активировать модель, на ее входы необходимо подать одну из наблюдаемых на соответствующем входе объекта величин. Наблюдению подлежат все входы и выходы, но необязательно полностью. Полному наблюдению подлежит как минимум один вход. Таким образом, наблюдение осуществляется «с избытком». Все входы и выходы разделяются на три группы. В первую группу включаются полностью наблюдаемые входы и выходы. Во вторую - наблюдаемые только по напряжению, в третью - только по току. Модель объекта активируется путем воздействия на первые и вторые входы и выходы модели источниками наблюдаемых напряжений, на третьи - источниками наблюдаемых токов. Определяют реакцию активированной модели на приложенные воздействия, причем в качестве реакции выделяют только токи первых входов и выходов модели. Определяют разностные сигналы как разности между токами, наблюдаемыми на первых входах и выходах объекта и соответствующими реакциями модели. Характеристики срабатывания защиты задают на основе замеров, формируемых с участием разностных сигналов. 9 ил.

Использование: в области электроэнергетики. Технический результат - расширение функциональных возможностей способа. Согласно способу выделяют две подсистемы, соприкасающиеся в месте замыкания. Для первой подсистемы составляют преобразовательную модель, а для второй - имитационную. Входы преобразовательной модели соответствуют входам первой подсистемы, а выход - месту предполагаемого замыкания. Входы имитационной модели подразделены на основные, соответствующие входам второй подсистемы, и дополнительный, соответствующий месту предполагаемого замыкания. Роль преобразовательной модели заключается в формировании напряжений места предполагаемого замыкания из непрерывных напряжений и токов, полученных для входов первой подмодели. Имитационную модель активируют, воздействуя на ее основные входы непрерывными напряжениями входов второй подмодели. На дополнительный вход воздействуют выходными сигналами преобразовательной модели. Реакцию имитационной модели определяют только на основных входах. Это токи, созданные воздействиями на все входы модели. На заключительном этапе определяют разности между непрерывными токами на основных входах, полученными из наблюдаемых токов, и реакцией модели. Уровень разностных токов несет информацию о том, правильно ли сделано предположение о месте повреждения. Нулевой уровень свидетельствует о совпадении реального места с предполагаемым. 1 табл., 7 ил.

Использование: в области электроэнергетики. Технический результат - повышение распознающей способности защиты по отношению к короткому замыканию в защищаемой зоне. Согласно способу входные комплексные величины преобразуют и вторые группы токов и напряжений, которые далее в модели неповрежденной части линии преобразуют в третьи напряжения и третьи токи, из первых напряжений и вторых токов формируют первую трехфазную комплексную мощность, из третьих напряжений и токов - вторую подобную мощность, формируют универсальный замер защиты как отношение второй трехфазной мощности к первой и задают на плоскости данного замера характеристику срабатывания защиты и вызывают срабатывание исполнительного блока, если указанный комплексный замер находится в области, ограниченной заданной характеристикой срабатывания. При этом первые величины относятся к текущему режиму электропередачи. Вторые величины - это аварийные составляющие токов и напряжений. Третьи напряжения - это результат преобразования первых величин, а третьи токи – результат преобразования вторых величин. 12 ил., 1 табл.

Использование – в области электротехники. Технический результат - уменьшение металлоемкости устройства. Согласно изобретению устройство защиты для четырех параллельных линий содержит для каждой фазы линий датчик тока, в качестве которых использованы герконы (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12). Для четырех одноименных фаз А, В и С - соответственно первый (13), второй (14) и третий (15) блоки определения поврежденной линии, выполненные одинаково. К выходу пятого элемента ИЛИ (16) подключены инверсный вход первого элемента И (20) с инверсным входом, первый (21) и второй (22) элементы ИЛИ-НЕ. К выходу шестого элемента ИЛИ (17) подключены прямой вход первого элемента И (20) с инверсным входом, первый (21) и второй (22) элементы ИЛИ-НЕ. К выходу седьмого элемента ИЛИ (18) подключены второй элемент ИЛИ-НЕ (22) и шестой элемент И (23), другой вход которого подключен к выходу первого элемента ИЛИ-НЕ (21). К выходу восьмого элемента ИЛИ (19) подключен вход седьмого элемента И (24), другой вход которого подключен к второму элементу ИЛИ-НЕ (21). Выходы пятого элемента ИЛИ (16), первого элемента И (20) с инверсным входом, шестого (23) и седьмого (24) элементов И подключены соответственно к катушкам отключения выключателей первой, второй, третьей и четвертой линий. 2 ил.

Использование – в области электротехники. Технический результат – расширение функциональных возможностей обучаемой релейной защиты. Согласно способу релейной защиты энергообъекта в составе электрической сети путем преобразования информации об энергообъекте в двумерные сигналы, отображаемые каждый на соответствующей плоскости, обучения релейной защиты от первой имитационной модели сети, воспроизводящей контролируемые режимы энергообъекта, и от второй имитационной модели, воспроизводящей режимы сети, альтернативные контролируемым режимам энергообъекта, раздельного отображения множества контролируемых режимов и соответственно, множества альтернативных режимов, в виде первых и, соответственно, вторых областей на плоскостях двумерных сигналов, фиксации токов и напряжений в местах наблюдения энергообъекта в текущем режиме повреждения и в предшествующем режиме, наблюдаемые токи и напряжения текущего и, соответственно, предшествующего режимов преобразуют в первые и, соответственно, вторые напряжения, для чего обрабатывают наблюдаемые величины в передающей модели неповрежденного энергообъекта, из каждой пары первых и соответствующих вторых напряжений формируют двумерный сигнал и разрешают срабатывание защиты, если при наблюдении энергообъекта каждый двумерный сигнал отображается в соответствующей первой области, но при этом не каждый двумерный сигнал отображается в соответствующей второй области. 4 з.п. ф-лы, 10 ил.

Использование: в области электроэнергетики. Технический результат - повышение чувствительности и расширение функциональных возможностей способа дальнего резервирования. Согласно способу фиксируют токи и напряжения в начале линии, используют передающую модель линии со входом в месте наблюдения и выходами в ответвлениях, формируют двумерные сигналы, по одному для каждого ответвления, и задают на плоскости каждого двумерного сигнала области срабатывания защиты. Передающую модель выполняют с дополнительным выходом в конце линии и с основными выходами на шинах нагрузок ответвлений, двумерные сигналы формируют в виде комплексных замеров, определяют дополнительный замер для конца линии, а основные замеры - для нагрузок ответвлений, на плоскостях всех замеров задают области блокирования защиты. Блокируют защиту, если все замеры отображаются в соответствующих областях блокирования, в противном случае разрешают срабатывание защиты, если по меньшей мере один основной замер отображается в своей области срабатывания. 3 з.п. ф-лы, 9 ил.

Использование: в области электротехники. Технический результат - расширение функциональных возможностей и повышение достоверности способа локации повреждений. Способ заключается в фиксации отсчетов токов и напряжений, наблюдаемых в линии в текущем и в предшествующем режимах, преобразовании отсчетов в комплексы токов и напряжений текущего и предшествующего режимов, использовании передающей модели, преобразующей комплексы наблюдаемых токов и напряжений предшествующего и текущего режимов в комплексы напряжений и токов соответствующих режимов в месте предполагаемого повреждения, преобразовании комплексов напряжения и тока предшествующего и текущего режимов этого места в комплекс основного замера и определении с его использованием координаты места повреждения линии электропередачи. Согласно способу комплексы электрических величин в месте предполагаемого повреждения преобразуют еще и в комплекс дополнительного замера, используют имитационную модель линии электропередачи для обучения передающей модели интервальному определению места повреждения, для чего воспроизводят в имитационной модели режимы повреждения линии и определяют в этих режимах области отображения комплексов основного и дополнительного замеров на соответствующих плоскостях. При наблюдении линии электропередачи определяют для разных мест предполагаемого повреждения отображения комплексов основного и дополнительного замеров на соответствующих плоскостях, фиксируют те места линии, для которых отображения как основного замера, так и дополнительного попадают в соответствующие области, и объединяют указанные места в интервал повреждения линии электропередачи. 1 з.п. ф-лы, 17 ил.

Использование: в области электротехники и электроэнергетики. Технический результат заключается в расширении функциональных возможностей и в упрощении способа. Генератор наблюдают со стороны линейных и нулевых выводов. Фиксируют момент смены предшествующего режима текущим режимом. Алгоритмическую модель активируют источниками напряжений текущего режима. Определяют ее реакцию в виде первых токов обмотки статора. Если генератор не поврежден, то первые токи будут близки к наблюдаемым, так как модель в этом случае адекватна реальному объекту. В случае повреждения генератора адекватность нарушается, и тогда различие между первыми токами и наблюдаемыми величинами физически предопределена. Данное обстоятельство используют для распознавания аварийных ситуаций в генераторе, опираясь на вторые токи как разности между соответствующими наблюдаемыми и первыми токами. Согласно способу используется базис комплексных величин, в котором составляют отдельные автономные модули алгоритмической модели. Таких модулей три: предшествующего режима, прямой последовательности и обратной последовательности. Первые два активные - в их состав входит один и тот же источник напряжения. Третий модуль - пассивный. Поскольку генератор полагают неповрежденным, становится очевидной предложение проводить обучение релейной защиты только теми режимами, когда замыкание, если оно есть, происходит не в генераторе, а во внешней части сети. Результатами такого обучения становятся области блокирования защиты, тем более мелкие, чем более адекватна имитационная модель сети реальному объекту. Обучение проводят на плоскостях двумерных сигналов. В комплексной форме двумерный сигнал определяют в виде отношения вторых токов к соответствующим первым токам. 2 з.п. ф-лы, 12 ил.

Использование: в области электротехники. Технический результат – расширение функциональных возможностей и повышение чувствительности защиты. Согласно способу предполагается двухстороннее наблюдение электропередачи с обменом информации между двумя полукомплектами релейной защиты, установленными на разных сторонах. Используют передающие модели участков линии от мест наблюдения до ответвлений и участка линии между ответвлениями, преобразуют выходные сигналы передающих моделей в комплексные замеры, отображают замеры на комплексных плоскостях распознающих модулей. Обучают распознающие модули от имитационных моделей линии электропередачи. Для передающих моделей вводят эквивалентные ответвления числом не более двух, замеры формируют в виде комплексных параметров отдельно для основной защиты и для защиты дальнего резервирования. Для основной защиты формируют по два комплексных параметра ответвлений в каждой фазе, каждый замер подают на предназначенные для него блокирующий и разрешающий распознающие модули, обучают блокирующие модули обеих защит от первой имитационной модели, воспроизводящей режимы неповрежденной линии. Дополнительно обучают блокирующие модули основной защиты, а также обучают разрешающие модули защиты дальнего резервирования, от второй имитационной модели, воспроизводящей нуждающиеся в резервировании режимы короткого замыкания в ответвлениях. Обучают разрешающие модули основной защиты от третьей имитационной модели, воспроизводящей короткие замыкания в магистральной линии, задают области срабатывания распознающих модулей как отображения множества обучающих режимов соответствующих имитационных моделей. Блокируют основную защиту, если все замеры ее блокирующих модулей отображаются в их областях срабатывания, в противном случае разрешают срабатывание основной защиты, если хотя бы один замер отобразится в области срабатывания соответствующего разрешающего модуля. Блокируют защиту дальнего резервирования, если все замеры ее блокирующих модулей отображаются в их областях срабатывания, в противном случае разрешают срабатывание защиты дальнего резервирования, если хотя бы один замер отобразится в области срабатывания соответствующего разрешающего модуля. 3 з.п. ф-лы, 22 ил.

Использование: в области электроэнергетики. Технический результат - упрощение способа и повышение чувствительности защиты. Полукомплекты микропроцессорной защиты синхронно фиксируют токи и напряжения на обеих сторонах линии, а оптоволоконный канал связи передает информацию от одного комплекта к другому. Наблюдаемые отсчеты токов и напряжений преобразуют в комплексы и далее в замеры, которые воспринимаются распознающими модулями двух типов - блокирующего и разрешающего. Модули располагают комплексными плоскостями для отображения замеров как в ходе обучения, так и последующего функционирования релейной защиты на реальном объекте. Формирование замеров выполняется с участием передающей модели неповрежденной линии, такая модель представляет собой многополюсник в режиме обратной передачи. Входные величины передающей модели - токи и напряжения начала линии, выходные - модельные токи и напряжения, оценивающие соответствующие величины на втором конце предположительно неповрежденной линии. Реализован принцип многомерности релейной защиты. Основной замер токовый, дополнительный - напряженческий. Имитационная модель сети обучает блокирующие модули сигналами тех режимов, в которых линия не повреждена, а разрешающие модули, наоборот, режимов короткого замыкания в линии. Результатом обучения становятся области блокирования и срабатывания. 1 з.п. ф-лы, 7 ил.
Наверх