Датчик для акустического микросканирования мягких биологических тканей

Изобретение относится к медицинской технике. Датчик для акустического микросканирования мягких биологических тканей содержит расположенные в корпусе генератор (10) синусоидальных колебаний и зонд. Зонд представляет собой металлическую контактную пластину (1) с щупом (2). Щуп (2) выполнен выступающим из корпуса для контакта с исследуемой тканью. На поверхности пластины (1) симметрично относительно ее продольной оси (12) закреплены два пьезокерамических элемента - излучатель (4) и приемник (6). Излучатель (4) соединен с генератором (10) для обеспечения возбуждения механических колебаний пластины (1) зонда, а приемник (6) выполнен с возможностью подключения к приемнику сигнала возбуждения с пластины (1). Металлическая контактная пластина (1) с щупом (2) выполнена в виде единой протяженной детали, имеющей форму прямоугольника большей ширины, плавно переходящего в прямоугольник меньшей ширины. Достигается повышение точности измерения механических характеристик биотканей при микросканировании. 10 з.п. ф-лы, 3 ил.

 

Изобретение относится к медицине и может быть использовано для оценки механических характеристик мягких биологических тканей.

Неинвазивные методы исследования механических свойств биологических тканей имеют большое значение для решения ряда практических задач, например, для оценки свойств труднодоступных тканей глаза, мелкомасштабных патологий кожи и др. Во многих случаях необходимо исследование ткани на малой поверхности, например, вокруг области введения препарата, на патологических образованиях малой площади, при необходимости малой площади контакта в обследовании неплоских поверхностей (роговица и склера глаза).

При дальнейшем описании сущности изобретения использованы следующие термины:

1) мягкая биологическая ткань - (далее - ткань) наружная поверхность кожи и/или органов человека или другого млекопитающего,

2) акустическое микросканирование - распространение и получение механических колебаний в/от мягких биологических тканей,

3) датчик - устройство измерения, размещаемое на ткани для передачи на нее и/или получения и/или преобразования информации о ее свойствах,

4) металлическая контактная пластина - единая протяженная деталь, имеющая форму прямоугольника большей ширины, плавно переходящего в прямоугольник меньшей ширины,

5) зонд - металлическая контактная пластина и расположенные на ней один или два пьезокерамических элемента для преобразования механической или электрической энергии,

6) щуп - концевая часть металлической контактной пластины меньшей ширины для контакта с исследуемой тканью,

7) однощуповой зонд - зонд с одним щупом,

8) пьезокерамический элемент-излучатель - устройство, преобразующее электрическую энергию в механическую,

9) пьезокерамический элемент-приемник - устройство преобразующее механическую энергию в электрическую,

10) генератор синусоидальных колебаний - (далее - генератор) устройство для воздействия на пьезокерамический элемент-излучатель.

Известны датчики, позволяющие измерить сопротивление тканей (Шорохов В.В., Воронков В.Н., Клишко А.Н., Пашовкин Т.Н. Распространение поверхностных сдвиговых возмущений продольной поляризации в моделях мягких биологических тканей. Механика композиционных материалов. 1992. С. 669; Sarvazyan A.P. et. al., Method and device for acoustic testing of elasticity of biological tissues, United States patent, N4, 947851, 14.08.1990, Обрубов С.А, Воронков B.H., Сидоренко Е.И., Федорова В Н., Молотков А.П. Метод прижизненной оценки биомеханических свойств тканей глаза (экспериментальное исследование). Вестник офтальмологии. 1995, №4. С. 27-30). Все известные датчики реализованы в виде акустических анализаторов с двухпластинчатым зондом.

При этом рабочая площадь соприкосновения контакта составляет в среднем около 30 мм2, что затрудняет или делает невозможным проведение измерений в труднодоступных, искривленных или ограниченных по площади областях, не гарантирует требуемую точность измерений. Так, например, установка известных датчиков, обладающих большой площадью общего контакта, на роговицу, склеру нарушает условия возникновения истинно поверхностной волны вследствие анатомического искривления поверхности этих тканей, что снижает точность измерения.

Известен однощуповой датчик (Казаков В.В., Видов С.А., Санин А.Г. Разработка измерителя механического импеданса тонкого слоя биологической ткани // Сборник трудов VI Троицкой конференции «Медицинская физика и инновации в медицине», 2-6 июня 2014. С. 93-95 - прототип). Однако импедансный метод предполагает контроль электрического импеданса пьезоэлектрического элемента, являющегося генератором механического возбуждения, что влечет за собой следующие проблемы:

1) маленький динамический диапазон изменения импеданса при тарировке каждого зонда с переводом в механические характеристики имеет низкую точность (метод косвенного измерения требует тарировки по всей шкале измерений);

2) контролируются характеристики задающего генератора, а не исполнительного механизма;

3) практически исключается возможность использования резонансных характеристик биморфных пластин и требует на каждой рабочей частоте своего конструктивного исполнения.

Известный датчик не позволяет измерить скорость распространения поверхностной волны и предназначен для измерения свойств тонкого участка биологической ткани, расположенного на «жестком» основании. Такой способ не совсем пригоден применительно к коже, т.к. она чаще всего расположена над «мягким» основанием. Кроме того, конструкция датчика требует ручного прижатия контактирующей с тканью части прибора, что не обеспечивает одинаковых условий создания колебаний в ткани.

Таким образом, основными недостатками известных датчиков являются трудности при микросканировании (исследовании малых участков ткани) и влияние условий измерения на точность измерения.

Задачей, решаемой в разработанной конструкции датчика, является устранение недостатков известных аналогов.

Достигаемым техническим результатом является высокая точность измерения механических характеристик биотканей при микросканировании, что обеспечивается разработанной конструкцией с однопластинчатым зондом для акустического микросканирования мягких биологических тканей.

Достижение данного результата обусловлено нижеследующим:

1) в известном устройстве с однопластинчатым зондом оценивается скорость распространения акустической волны в ткани и комплексное сопротивление ткани за счет использования зонда, возбуждаемого генератором с изменяющимся импедансом и датчика отраженной волны. В разработанном датчике зонд один, а волновое сопротивление ткани оценивается по коэффициенту отраженной волны, что реализовано за счет контроля механических свойств стальной пластины, выполненного с помощью дополнительного пьезокерамического элемента, расположенного на металлической контактной пластине зонда вместе с пьезокерамическим элементом, возбуждающим механические колебания;

2) предложенное конструктивное решение позволяет изготавливать зонды с повышенной чувствительностью и расширенным диапазоном по мощности;

3) однопластинчатый зонд менее чувствителен к геометрии исследуемых материалов и не имеет краевого эффекта отражения, как в двухпластинчатом зонде;

4) однопластинчатый зонд позволяет проводить измерения с большей точностью по сравнению с измерениями двухпластинчатым зондом;

5) однопластинчатый зонд обеспечивает более однородное микросканирование, чем двухпластинчатый зонд;

6) измерение скорости во взаимно перпендикулярных направлениях позволяет количественно оценивать механическую анизотропию ткани.

Кроме того, преимуществом разработанного датчика является то, что при его использовании в контролируемой области исследуемой ткани, однопластинчатым зондом возбуждаются гармонические механические колебания сдвигового характера стабилизированной амплитуды с определенной малой площадью воздействия (площадь соприкосновения контакта от 0,2-10 мм2).

Генератор датчика при отсутствии воздействия зонда на ткань (условие возбуждения в ограниченном пространстве, за пределами которого отсутствует упругая среда) настраивается по частоте так, чтобы возникла стоячая волна, оценка которой, по амплитуде и фазе, обеспечивается пьезокерамическим элементом-приемником. Пьезокерамический элемент-приемник конструктивно выполнен так же, как пьезокерамический элемент-излучатель, и конструктивно закреплен симметрично ему относительно продольной оси симметрии металлической контактной пластины. В момент точной настройки стоячей волны, на нем полностью отсутствует сигнал возбуждения, т.к. он будет находиться в узле стоячей волны.

При воздействии однопластинчатого зонда на ткань (при микросканировании), возникает отраженная волна, коэффициент отражения которой полностью зависит от соотношения волновых сопротивлений (Z) однопластинчатого зонда и исследуемой ткани.

Волновое сопротивление твердой среды записывается как:

где Z - волновое сопротивление;

ρ - плотность среды; V - скорость распространения волн.

Отметим следующее:

- коэффициент отражения и коэффициент прохождения волн не зависит от формы волны;

- формула (1) справедлива для размеров ткани большей длины волны или имеющей большое затухание среды, как условие отсутствия отражений от границ среды;

- коэффициенты отражения и прохождения зависят не от самих волновых сопротивлений, а от их отношения;

- в пределах условно постоянной амплитуды возникшей бегущей волны, относительное волновое сопротивление пропорционально фазе бегущей волны по отношению к фазе генератора возбуждения

где £ = относительное волновое сопротивление;

K - коэффициент пропорциональности, который зависит от площади воздействия зонда на ткань и силы воздействия;

φб.в - фаза бегущей волны.

Можно записать:

Таким образом:

Необходимо ввести аппаратную ошибку сдвига фаз при измерении - φапп, тогда выражение (4) примет вид:

При условии незначительного изменения плотности можно оценивать скорость распространения волн:

Vткани=Kзонда/К(φб.в.апп)·fткани

Используемый в разработанном нами датчике способ измерения отличается тем, что:

- оценка характеристик эластичных тканей в медицинском применении проводится по комплексному акустическому сопротивлению (волновому сопротивлению);

- способ обеспечивает его техническую реализацию с помощью однопластинчатого зонда с одним щупом, что исключает влияние эффекта отражения волны от соседнего щупа при классическом контроле тканей по скорости распространения волн между двумя щупами.

На фиг. 1-3 представлены конструкция датчика и примеры результатов сканирования кожи лица человека.

На фиг. 1 обозначены:

1) металлическая контактная пластина,

2) щуп металлической контактной пластины,

3) торец щупа металлической контактной пластины,

4) пьезокерамический элемент-излучатель для механического возбуждения металлической контактной пластины,

5) гибкие проводники от пьезокерамического элемента-излучателя,

6) пьезокерамический элемент-приемник для приема сигналов возбуждения металлической контактной пластины,

7) гибкие проводники от пьезокерамического элемента-приемника,

8) печатная плата,

9) электрические печатные проводники,

10) генератор,

11) электрические гибкие проводники к внешним электрическим цепям,

12) ось симметрии металлической контактной пластины.

Разработанный датчик для акустического микросканирования мягких биологических тканей включает расположенные в корпусе генератор синусоидальных колебаний (генератор использован с изменяющимся импедансом) и зонд, представляющий собой металлическую контактную пластину с щупом, выполненным выступающим из корпуса для контакта с исследуемой тканью, при этом на поверхности пластины, симметрично относительно ее продольной оси, закреплены два пьезокерамических элемента, один из которых - пьезокерамический излучатель - соединен с генератором для обеспечения возбуждения механических колебаний пластины зонда, а второй - пьезокерамический приемник - выполнен с возможностью подключения к приемнику сигнала возбуждения с пластины. Металлическая контактная пластина с щупом выполнена в виде единой протяженной детали, имеющей форму прямоугольника большей ширины, плавно переходящего в прямоугольник меньшей ширины. Зонд выступает из корпуса на расстояние от 1 мм и более, предпочтительно на 3 мм. Зонд с пьезокерамическими элементами выполнен с возможностью создания и измерения скорости распространения механических колебаний акустической волны во взаимно перпендикулярных направлениях. Металлическая контактная пластина выполнена с возможностью возбуждения гармонических механических колебаний сдвигового характера, при которых микроколебания металлической контактной пластины, вызывающие механические деформации исследуемой ткани, лежат с ней в одной плоскости. Кроме того, металлическая контактная пластина выполнена с возможностью возбуждения гармонических механических колебаний стабилизированной амплитуды. Площадь контактной поверхности щупа находится в диапазоне от 0,2-10 мм2.

Генератор выполнен с возможностью настройки частоты для возникновения стоячей волны в металлической контактной пластине при отсутствии воздействия зонда на исследуемую ткань.

Металлическая контактная пластина выполнена из легированной упругой стали.

Металлическая контактная пластина выполнена толщиной, которая требуется для исследования конкретной группы образцов (по результатам лабораторных экспериментальных данных).

Пластина с щупом выполнена в виде единой протяженной детали, имеющей форму прямоугольника большей ширины, плавно переходящего в прямоугольник меньшей ширины.

Торцевая часть щупа металлической контактной пластины в поперечном сечении имеет форму квадрата. В торцевой части щупа металлической контактной пластины выполнены скосы (фаски) для придания поверхности касания щупа квадратной или круглой формы.

Детализированное описание разработанного датчика представлено ниже.

Датчик (фиг. 1) выполнен в виде зонда - металлической контактной пластины 1 из легированной упругой стали определенной формы в виде единой протяженной детали, имеющей форму прямоугольника большей ширины, плавно переходящего в прямоугольник меньшей ширины. Концевая часть пластины меньшей ширины выполняет функции щупа 2 и в поперечном сечении имеет форму квадрата, причем на торцевой части 3 щупа 2 выполнены скосы (фаски) для придания поверхности касания щупа квадратной или круглой формы. На части металлической контактной пластины с большей шириной закреплены симметрично относительно продольной оси 12 металлической контактной пластины два пьезокерамических элемента 4, 5, один из которых выполняет функцию излучателя 4, а другой - функцию приемника 6 механических колебаний металлической контактной пластины 1.

Датчик закреплен на печатной плате 8 с генератором 10 и помещен в корпус (не показан), из которого с одной стороны выступает щуп 2 датчика, а с другой - кабель с электрическими гибкими проводниками 11 к внешним электрическим цепям.

Пьезокерамический элемент-излучатель 4 соединен с генератором 10 электрически с помощью гибких проводников 5 и электрических печатных проводников 9.

Пьезокерамический элемент-приемник 6 соединен с электрическими гибкими проводниками к внешним электрическим цепям 11 при помощи гибких проводников 7 и электрических печатных проводников 9.

Оценка волнового сопротивления исследуемой среды проводится по изменению сдвига фазы механического зонда по отношению к фазе генератора возбуждения при воздействии щупа зонда на исследуемую ткань.

Ниже приведены примеры результатов сканирования кожи лица с мелкой угревой сыпью до и после применения обезжиривающего крема.

На фиг. 2, 3 показаны результаты сканирования кожи лба в пяти точках: до применения крема, после первого применения через 30 мин (1), после двухнедельного применения (2).

На фиг. 2. изображен положительный эффект от применения крема: во всех точках сканирования значения скорости возросли по сравнению с исходными значениями.

На фиг. 3 изображено отсутствие удовлетворительного эффекта от применения крема: во всех точках сканирования значения сканирования скорости почти не изменились по сравнению с исходными.

На фиг. 2, 3 приведены примеры результатов сканирования кожи с мелкой угревой сыпью до и после применения обезжиривающего крема. Измерения скорости проводились во взаимно перпендикулярных направлениях: вдоль естественной вертикальной оси тела (ось Y) и перпендикулярно ей (ось X). При угревой сыпи на коже (особенно на лбу) имеются «очажки» воспаления. Прибором с однопластинчатым зондом с малой площадью касания легко провести однородное сканирование в микроучастках кожи между «очажками» воспаления. Прибором с двухпластинчатым зондом, у которого большая площадь касания, это сделать трудно, либо невозможно: в область касания обязательно попадет «очажок» воспаления; кроме того, в этом случае трудно установить строго перпендикулярно датчик, а это непременное условия для правильной работы прибора.

Из приведенных зависимостей видно, что после первого применения (1) через 30 мин значения скорости изменяются не существенно и не однозначно.

На фиг. 2 показан удовлетворительный эффект от двухнедельного применения крема на кожу лба: во всех точках микросканирования по обоим направлениям значения скорости достоверно существенно возросли. Эффект подтвержден клинически (визуально и пальпаторно) и инструментально по упругости кожи, измеренной с помощью системы объективной оценки функциональных и морфологических параметров кожи SOFT PLUS TOP.

На фиг. 3 показано отсутствие удовлетворительного эффекта от двухнедельного применения крема на кожу лба: во всех точках микросканирования по обоим направлениям значения скорости почти не изменились. Отсутствие эффекта подтверждено клинически и инструментально.

1. Датчик для акустического микросканирования мягких биологических тканей, включающий расположенные в корпусе генератор синусоидальных колебаний и зонд, представляющий собой металлическую контактную пластину с щупом, выполненным выступающим из корпуса для контакта с исследуемой тканью, при этом на поверхности пластины симметрично относительно ее продольной оси закреплены два пьезокерамических элемента, один из которых - пьезокерамический излучатель - соединен с генератором для обеспечения возбуждения механических колебаний пластины зонда, а второй - пьезокерамический приемник - выполнен с возможностью подключения к приемнику сигнала возбуждения с пластины, причем металлическая контактная пластина с щупом выполнена в виде единой протяженной детали, имеющей форму прямоугольника большей ширины, плавно переходящего в прямоугольник меньшей ширины.

2. Устройство по п. 1, характеризующееся тем, что генератор использован с изменяющимся импедансом.

3. Устройство по п. 1, характеризующееся тем, что зонд выступает из корпуса на расстояние от 1 мм и более, предпочтительно на 3 мм.

4. Устройство по п. 1, характеризующееся тем, что зонд с пьезокерамическими элементами выполнен с возможностью создания и измерения скорости распространения механических колебаний пластины во взаимно перпендикулярных направлениях.

5. Устройство по п. 1, характеризующееся тем, что металлическая контактная пластина выполнена с возможностью возбуждения гармонических механических колебаний сдвигового характера, при которых микроколебания металлической контактной пластины, вызывающие механические деформации исследуемой ткани, лежат с ней в одной плоскости.

6. Устройство по п. 1, характеризующееся тем, что металлическая контактная пластина выполнена с возможностью возбуждения гармонических механических колебаний стабилизированной амплитуды.

7. Устройство по п. 1, характеризующееся тем, что площадь контактной поверхности щупа находится в диапазоне 0,2-10 мм2.

8. Устройство по п. 1, характеризующееся тем, что генератор выполнен с возможностью настройки частоты для возникновения стоячей волны в металлической контактной пластине при отсутствии воздействия зонда на исследуемую ткань.

9. Устройство по п. 1, характеризующееся тем, что металлическая контактная пластина выполнена из легированной упругой стали.

10. Устройство по п. 1, характеризующееся тем, что торцевая часть щупа металлической контактной пластины в поперечном сечении имеет форму квадрата.

11. Устройство по п. 1, характеризующееся тем, что на торцевой части щупа металлической контактной пластины выполнены скосы (фаски) для придания поверхности касания щупа квадратной или круглой формы.



 

Похожие патенты:

Группа изобретений относится к медицинской технике, а именно к средствам визуализации хирургических процедур. Система для детектирования медицинского устройства содержит систему наведения, выполненную с возможностью доставки хирургического устройства в организм субъекта, детектор размещения хирургического устройства, выполненный с возможностью взаимодействия с системой наведения и детектирования размещения хирургического устройства в организме субъекта и модуль координации для приема входного сигнала доставки хирургического устройства для координации множества входных сигналов с целью определения и регистрации одного или более из места и времени каждого размещения.

Изобретение относится к медицинской технике, а именно к диагностическим ультразвуковым системам. Система для оценки потока регургитации включает ультразвуковой зонд, содержащий матрицу преобразователей, для передачи и приема из этого положения ультразвуковых сигналов, процессор обработки изображений для формирования ультразвукового изображения положения потока регургитации, допплеровский процессор для формирования результатов допплеровских ультразвуковых измерений скорости кровотока вблизи положения потока регургитации, процессор количественной оценки потока, причем результаты измерений скорости кровотока получаются из множества перекрывающихся зон, пространственно распределенных вдоль границы ткани в теле, и дисплей ультразвуковых изображений.

Изобретение относится к медицине, а именно к медицинской диагностике, и может быть использовано для ранней диагностики туберкулеза лимфатических узлов. Осуществляют ультразвуковую визуализацию лимфатических узлов.

Изобретение относится к медицинской технике, а именно к средствам для уменьшения помех при применениях ультразвука. Устройство содержит устройство абляции, ультразвуковое устройство, ультразвуковой преобразователь.

Изобретение относится к медицине, в частности к хирургии, и может быть использовано при диагностике острого аппендицита. Учитывают наличие положительных симптомов Кохера, Щеткина-Блюмберга в правой подвздошной области, Бартомье-Михельсона, наличие тошноты и/или рвоты, количества лейкоцитов в общем анализе крови - 10*109/л и более, соноскопического выявления несжимаемого аппендикса диаметром 7 мм и более, наличие ультразвуковых признаков неаппендикулярной острой патологии органов брюшной полости и/или соноскопическое выявление сжимаемого аппендикса, диаметром менее 7 мм.

Изобретение относится к медицине, а именно к уронефрологии, может быть использовано в дифференциальной диагностике морфофункционального состояния и сохранности функциональных резервов почек при двухсторонней обструкции мочеточников у детей.

Изобретение относится к медицине, а именно к ультразвуковой ангиологии, и может быть использовано для диагностики тромбоэмболии мелких ветвей легочных артерий. Устанавливают контрольный объем допплера выше проксимальной границы тромба на один сантиметр по всей ширине просвета вены.

Изобретение относится к медицине, а именно функциональной диагностике в кардиологии, и может быть использовано для оценки однородности структуры атеросклеротической бляшки в сонной или другой артерии крупного и среднего калибра у больных с наличием атеросклеротического поражения артерий.

Изобретение относится к медицине, в частности к онкологии, и может быть использовано для ранней диагностики перитонеального рецидива рака яичников после оптимальных циторедуктивных операций.

Изобретение относится к области ветеринарной медицины, а именно к ветеринарному акушерству, и может быть использовано для прогнозирования нарушений эмбрионального развития у коров.

Изобретение относится к средствам обнаружения объекта. Устройство содержит ультразвуковой блок, сконфигурированный для ультразвукового обнаружения объекта, блок подачи электроэнергии на объект, экранирующий ультразвуковой блок элемент электрического экранирования, который электрически соединен с блоком подачи электроэнергии и выполнен из электропроводного материала. Считываемый компьютером носитель, хранящий компьютерную программу обнаружения объекта, содержит средство программного кода для побуждения устройства обнаружения к выполнению этапов ультразвукового обнаружения объекта и подачи электроэнергии на объект. Использование изобретения позволяет повысить качество обнаружения. 2 н. и 11 з.п. ф-лы, 7 ил.

Группа изобретений относится к медицинской технике, а именно к средствам позиционирования допплеровского ультразвукового преобразователя. Способ содержит этапы, на которых обнаруживают сигнал колебания давления от надутой манжеты, расположенной на артерии пациента, ультразвуковой пульсовый сигнал от доплеровского ультразвукового преобразователя, расположенного вдоль артерии, извлекают первый сигнал из сигнала колебания давления и ультразвукового пульсового сигнала, причем первый сигнал указывает на степень синхронизации между сигналом колебания давления и ультразвуковым пульсовым сигналом, и выводят сигнал индикации для того, чтобы указывать на то, что доплеровский ультразвуковой преобразователь находится в требуемом положении, когда первый сигнал отвечает предварительно определенному условию. Способ осуществляется посредством устройства, содержащего первый детектор для обнаружения сигнала колебания давления от надутой манжеты, второй детектор для обнаружения ультразвукового пульсового сигнала от доплеровского ультразвукового преобразователя, расположенного вдоль артерии, процессор и интерфейс. Система измерения потока крови содержит манжету, доплеровский ультразвуковой преобразователь, расположенный вдоль артерии, и устройство позиционирования доплеровского ультразвукового преобразователя. Использование изобретений позволяет повышать точность позиционирования. 3 н. и 12 з.п. ф-лы, 4 ил.

Группа изобретений относится к медицинской технике, а именно к средствам фильтрации ультразвукового сигнала при абляционной процедуре. Фильтрующее устройство ультразвукового сигнала, в котором ультразвуковой сигнал подвергается воздействию электрического модуля и содержит первую часть (А), содержащую информацию об объекте, от которого был принят ультразвуковой сигнал, и вторую часть (В), не содержащую информацию об объекте, содержит модуль определения корректирующего сигнала, указывающего влияние электрического модуля на ультразвуковой сигнал, из второй части (В) ультразвукового сигнала и корректирующий модуль, выполненный с возможностью коррекции первой части (А) ультразвукового сигнала на основе определенного корректирующего сигнала, чтобы отфильтровать влияние электрического модуля из ультразвукового сигнала. Ультразвуковое считывающее устройство содержит катетер, включающий ультразвуковой модуль генерации ультразвукового сигнала, зависящего от ультразвуковых волн, принятых от объекта, дополнительный модуль, являющийся электрическим модулем, выполненные с возможностью одновременной работы, и фильтрующее устройство. Способ фильтрации ультразвукового сигнала состоит в использовании фильтрующего устройства и машиночитаемого носителя информации, хранящего компьютерную программу фильтрации ультразвукового сигнала. Способ ультразвукового считывания объекта обеспечивается машиночитаемым носителем информации, хранящим компьютерную программу ультразвукового считывания объекта, и содержит этапы генерации ультразвукового сигнала посредством ультразвукового модуля, причем ультразвуковой и дополнительный модули включены в состав катетера и работают одновременно. Использование группы изобретений позволяет снизить влияние радиочастотного модуля. 6 н. и 9 з.п. ф-лы, 11 ил.

Изобретение относится к медицинской технике, а именно к ультразвуковым системам визуализации. Система содержит ультразвуковой зонд с двумерным массивом передатчиков, выполненный с возможностью направления пучков ультразвука в объёмную область места операции, формирователь пучка, выполненный с возможностью приёма эхо-сигнала, многоплоскостной переформатировщик, для формирования в реальном времени изображений последовательности пространственно смежных плоскостей изображения, и дисплей ультразвукового изображения. Пространственно смежные плоскости изображения перекрываются так, что некоторые двумерные изображения в реальном времени включают общую информацию изображения, соответствующего инвазивному устройству. Использование изобретения позволяет облегчить освоение системы лицами, незнакомыми с трёхмерной ультразвуковой визуализацией. 15 з.п. ф-лы, 6 ил.

Изобретение относится к медицине, а именно к оториноларингологии и пульмонологии, и может быть использовано для определения изменений голосовой функции человека. С помощью компьютерной программы Specta PLUS осуществляется акустический анализ голоса пациентов. При этом проводят определение характеристик частоты основного тона, максимального времени фонации и участков голосового шума. Определение проводят последовательно в динамике. При увеличении на 10-й день лечения частоты основного тона до 142,6±15,2, максимального времени фонации до 20,5±2,9, участков голосового шума до "+" определяют улучшение голосовой функции человека. Способ позволяет доступно, достоверно и быстро проводить объективное определение изменений голосовой функции человека при ХОБЛ, провести динамическое наблюдение, определить объем необходимых диагностических и реабилитационных мероприятий, оценить эффективность лечебных мероприятий за счет использования. компьютерной программы Specta PLUS и оценки наиболее значимых показателей. 2 ил., 1 табл., 1 пр.

Группа изобретений относится к медицинской технике, а именно к средствам для получения оценки минеральной плотности кости. Способ оценивания минеральной плотности первой кости пациента, причем первая кость соответствует головке бедренной кости, шейке бедренной кости или поясничному сегменту позвоночника, включает этапы, на которых посредством эхоимпульсного метода определяют первый параметр, который связан с изменением свойств ультразвукового измерительного сигнала, определяют набор вторых параметров, в который входят возраст и масса пациента, и используя первый параметр и набор вторых параметров, получают оценку минеральной плотности первой кости пациента. Устройство для оценивания минеральной плотности первой кости пациента для выполнения способа содержит ультразвуковой передатчик и ультразвуковой приемник. Процессор для оценивания минеральной плотности кости пациента запрограммирован посредством компьютерного программного продукта для выполнения этапов способа. Изобретения позволяют повысить качество прогнозирования минеральной плотности костей и минимизировать дозу радиации. 3 н. и 12 з.п. ф-лы, 3 ил., 2 табл.
Изобретение относится к медицине, а именно к сердечно-сосудистой хирургии. Выполняют артериотомию общей бедренной артерии с одной стороны и пунктируют общую бедренную артерию с другой. Через пункционный доступ устанавливают диагностический катетер типа "pigtail" в дугу аорты для введения контрастного вещества. Выбирают оптимальную проекцию для визуализации и выполняют аортографию для определения проксимальной фенестрации, размеров диссекции и ее распространение на боковые ветви. Затем через артериотомический доступ проводят доставляющую систему со стент-графтом. Стент-графт проводят в зону проксимальной фенестрации с перекрытием места начала диссекции аорты и выполняют аортографию для определения соотношения проксимального края стент-графта, места начала диссекции стенки и отхождения левой подключичной артерии и других ветвей. Производят раскрытие первых двух покрытых корон стент-графта. Выполняют контрольную аортографию, на которой оценивается соотношение боковых ветвей, зоны диссекции аорты и покрытой части стент-графта. Стент-графт раскрывают полностью и выполняют аортографию для оценки его положения и наличия подтеканий. Затем дополнительно заменяют катетер типа "pigtail" на внутрисосудистый ультразвуковой датчик и исследуют торакоабдоминальный отдел аорты. При этом выявляют размеры истинного и ложного просветов, участки фенестраций и тромбозов, места отхождений висцеральных артерий. Затем в грудной и брюшной отделы аорты дистальнее стент-графта проводят и устанавливают металлические баллонорасширяемые стенты с перекрытием всей зоны диссекции. При этом применяют баллонную постдилатацию в стентах и стент-графте после установки для достижения полного расправления стентов, восстановления просвета аорты и сопоставления расслоенных стенок аорты. В завершение выполняют контрольную аортографию, внутрисосудистое ультразвуковое исследование аорты для оценки окончательного результата имплантации стент-графта и металлических стентов. Способ позволяет предотвратить необходимость повторных вмешательств, снизить риск развития осложнений, таких как разрыв аорты, восстановить окклюзированные боковые ветви за счет интраоперационного внутрисосудистого ультразвукового исследования аорты, баллонной ангиопластики в зонах с недостаточным пережатием диссекции стентом. 3 з.п. ф-лы, 1 пр.

Изобретение относится к медицине, а именно к хирургии и онкологии, и может быть использовано для оценки распространения опухолевого процесса при раке почки. Через рот проводят ультразвуковой гастроскоп и оценивают распространенность тромботического процесса на почечные вены из следующих позиций: при локализации новообразования в левой почке 1-я позиция - через желудок, 2-я - через нисходящую часть двенадцатиперстной кишки и 3-я - через горизонтальную часть двенадцатиперстной кишки. При локализации новообразования в правой почке 1-я позиция - через луковицу двенадцатиперстной кишки, 2-я - через нисходящую часть двенадцатиперстной кишки и 3-я - через горизонтальную часть двенадцатиперстной кишки. Оценивают распространенность тромботического процесса на подпеченочную часть нижней полой вены из трех позиций: 1-я - из горизонтальной части двенадцатиперстной кишки, 2-я - из нисходящей части двенадцатиперстной кишки и 3-я - из луковицы двенадцатиперстной кишки. Оценивают распространенность тромботического процесса на внутрипеченочные сосуды из трех позиций: 1-я - из луковицы двенадцатиперстной кишки, 2-я - из антрального отдела желудка и 3-я - из нижней трети тела желудка по малой кривизне. Оценивают распространенность тромботического процесса на надпеченочную часть нижней полой вены из двух позиций: 1-я - по малой кривизне желудка в средней трети, 2-я - по малой кривизне желудка в верхней трети. Оценивают внутриперикардиальную или внутрипредсердную распространенность тромботического процесса из трех позиций: 1-я - верхняя треть желудка, 2-я - кардиальный жом и 3-я - нижняя треть пищевода. Способ позволяет получить качественное изображение опухоли и оценить тромбогенную распространенность процесса в сосудах за счет расположения датчика в позициях, позволяющих минимизировать расстояние между датчиком и новообразованием или сосудом. 6 ил., 2 пр.

Изобретения относятся к медицине. Способ неинвазивного измерения коэффициента пропускания вибрации грудиной осуществляют посредством системы неинвазивного измерения коэффициента пропускания грудинной вибрации. Система содержит процессор и память, включающую в себя компьютерный программный код для создания вибрации. При этом создают вибрацию со спектральным содержанием с изменяющейся частотой. Передают вибрацию на первую половину грудины через кожу и мягкие ткани посредством передатчика в виде электромагнитного привода. Получают данные реакции грудины со второй половины грудины через кожу и мягкие ткани посредством акселерометра. Первая и вторая половины грудины находятся по разные стороны от средней линии грудины. Между передатчиком и акселерометром имеется рукоятка для обеспечения постоянного расстояния между передатчиком и акселерометром во время измерения. Обрабатывают упомянутые данные реакции для определения интегрированного коэффициента пропускания вибрации грудиной посредством вычислительного устройства. Достигается повышение точности измерения коэффициента пропускания вибрации грудиной. 5 н. и 18 з.п. ф-лы, 5 ил.

Изобретение относится к медицине, а именно к хирургии, и может быть использовано для оценки тяжести течения острого панкреатита и оптимизации тактики лечения больного. Измеряют внутрибрюшное давление (ВБД). Определяют гемодинамические показатели методом цветовой ультразвуковой допплерографии - линейную скорость кровотока в непарных притоках воротной вены: селезеночной и верхней брыжеечной венах и в непарных ветвях аорты: чревном стволе, общей печеночной, селезеночной, верхней брыжеечной артериях. При ВБД 10-15 мм рт.ст. - 1 степень внутрибрюшной гипертензии, сниженных скоростных показателях венозного кровотока и увеличенных скоростных показателях артериального кровотока в среднем на 9% вмешательство выполняют в течение первых суток от госпитализации. Объем операции: ревизия, санация и дренирование брюшной полости. При ВБД 15-25 мм рт.ст. - II степень внутрибрюшной гипертензии, сниженных скоростных показателях венозного кровотока в среднем на 27% и увеличенных скоростных показателях артериального кровотока в среднем на 25% вмешательство выполняют не позднее 12 часов от момента госпитализации. Объем операции: ревизия, санация и дренирование брюшной полости, сальниковой сумки и затеков по фланкам. При ВБД 25-35 мм рт.ст. - III степень внутрибрюшной гипертензии, сниженных скоростных показателях венозного кровотока в среднем на 44% и увеличенных скоростных показателях артериального кровотока в среднем на 36% вмешательство выполняют через 3-6 часов после предоперационной подготовки. Объем операции: ревизия, санация, дренирование сальниковой сумки и брюшной полости, затеков по фланкам, подпеченочного пространства и малого таза. При ВБД более 35 мм рт.ст. - IV степень внутрибрюшной гипертензии, сниженных скоростных показателях венозного кровотока в среднем на 54% и увеличенных скоростных показателях артериального кровотока в среднем на 45% вмешательство выполняют после краткосрочной предоперационной подготовки. Объем операции: ревизия, санация, дренирование брюшной полости и сальниковой сумки, при наличии признаков желчной гипертензии - лапароскопическая холецистостомия. Способ обеспечивает повышение степени достоверности оценки тяжести состояния больных, повышение эффективности хирургического лечения и снижение количества послеоперационных осложнений за счет объективизации полученных показателей. 1 пр.
Наверх