Способ управления процессом селективного лазерного спекания объемного изделия из порошков и устройство для его осуществления

Изобретение относится к способу и устройству управления процессом селективного лазерного спекания объемного изделия из порошков. Способ состоит в регистрации температуры поверхности и ее распределения в области воздействия концентрированного потока энергии в нескольких спектральных интервалах вблизи рабочей длины волны оптической системы сканнера и регистрации изображения поверхности в свете излучения источника внешней подсветки поверхности. В процессе спекания поддерживают на заданном уровне максимальную температуру поверхности в области воздействия и размеры зоны плавления, а также регистрируют изображения спеченных сечений или их фрагментов, сравнивают размеры спеченных сечений объемного изделия или их фрагментов с программно заданными, определяют наличие дефектов в спеченном слое и корректируют параметры воздействия и ход технологического процесса. Устройство по первому варианту содержит сканнер с объективом, оптический пирометр с объективом, видеокамеру с объективом и источник подсветки поверхности, а также 2D сканнер изображений, размещенный на каретке нанесения и укладки порошка и модуль управления, включающий два регулятора управления. Устройство по второму варианту содержит 3D сканнер изображений, размещенный в рабочей камере и модуль управления, включающий два регулятора управления. В результате достигается получение полной информации о процессе селективного спекания объемного изделия и возможность управления технологическим процессом в режиме реального времени. 3 н.п. ф-лы, 3 ил.

 

Изобретение относится к области измерительной техники и может быть использовано при мониторинге и контроле процессов получения объемных изделий из порошков.

Известен способ оптического мониторинга и контроля процесса селективного лазерного спекания объемного изделия из порошка [1], состоящий в регистрации средней температуры поверхности в области спекания и ее поддержания на заданном уровне в процессе спекания.

Недостаток данного способа состоит в отсутствии контроля размеров области нагрева до температуры спекания и отсутствии контроля размеров спеченной области, что не позволяет измерять усадку и корректировать ход процесса. Кроме того, температура усредняется по неизвестной площадке, размеры которой меняются вследствие аббераций оптической системы, так как используется широкий диапазон длин волн.

Наиболее близким к заявляемому способу является способ оптического мониторинга и контроля процесса селективного лазерного спекания объемного изделия из порошка [2], состоящий в регистрации характера и уровня сигнала свечения поверхности в области плавления, размеров области плавления, сравнения их с программно заданным и поддержания уровня сигнала на заданном уровне путем управления параметрами лазерного излучения. Недостаток данного способа состоит в регистрации уровня усредненного по площади сигнала свечения поверхности, а не уровня физической величины - температуры поверхности и ее распределения в зоне обработки. Кроме того, отсутствует контроль геометрических размеров и качества спеченных сечений, что не позволяет учесть усадку и наличие дефектов в слое и откорректировать ход технологического процесса.

Задачей заявляемого изобретения является разработка способа управления процессом селективного лазерного спекания объемного изделия из порошка и устройства для его осуществления, позволяющих получать полную и точную информацию о процессе селективного спекания объемного изделия и осуществлять управление технологическим процессом в режиме реального времени.

Способ управления процессом селективного лазерного спекания объемного изделия из порошка включает оптический мониторинг температуры поверхности и ее распределения в области воздействия лазерного излучения с их регистрацией и размера области спекания по тепловому излучению поверхности в нескольких спектральных интервалах вблизи рабочей длины волны оптической системы сканнера и по изображению поверхности в свете излучения источника внешней подсветки поверхности с его регистрацией.

Новизна состоит в том, что в процессе спекания поддерживают на заданном уровне максимальную температуру поверхности в области воздействия и размеры зоны спекания, а также регистрируют изображения спеченных сечений или их фрагментов, сравнивают размеры спеченных сечений объемного изделия или их фрагментов с программно заданными, определяют наличие дефектов в спеченном слое и корректируют параметры воздействия и ход технологического процесса при спекании следующего слоя. Измерения температуры и размеров области спекания проводят в спектральном интервале вблизи рабочей длины волны оптической системы сканера [3, 4] во избежание аббераций. Измерения максимальной температуры проводят с помощью многоканального пирометра в пятне диаметром 10 мкм, значительно меньшим размеров области плавления, что позволяет определить максимальную термодинамическую температуру и, имея распределение яркостной температуры с видеокамеры, получить распределение термодинамической температуры и, как следствие, получить точные размеры области плавления или спекания.

Контроль процесса изготовления объемного изделия осуществляется посредством поддержания на программно заданном уровне мощности воздействующего лазерного излучения, размера области спекания, скорости сканирования и геометрических параметров области сканирования в каждом сечении объемного изделия. Схема построения системы управления приведена на Фиг. 1. Система включает в себя: компьютер 21, модуль управления 32 в составе регулятора управления 33 сканером 3 и регулятора управления 34, лазер 1, пирометр 10 и видеокамеру с анализатором изображения 13, оптически связанные через оптические системы 19 и 20 с областью изготовления сечения объемного изделия на поверхности порошковой насыпки 35. Регуляторы 33 и 34, построенные на принципах PID-контроллеров, поддерживают на заданном уровне мощность лазера, размер пятна воздействия и скорость сканирования пятна по поверхности порошковой насыпки с помощью соответствующих обратных связей. По окончании изготовления сечения изделия с помощью 2Д или 3Д сканера изображений сканируют всю площадь порошковой насыпки и полученное с высоким пространственным разрешением, 1 мкм для 2Д сканера и 5-10 мкм для 3Д сканера, изображение вводят в компьютер и сравнивают с программно заданным. По результатам сравнения корректируют программу управления сканером и параметры воздействия лазерного излучения. Такая полная система управления позволяет изготовить изделие с микронной точностью, в то время как без такого контроля геометрическая точность не лучше 1,5-2% размера изделия и в абсолютных единицах не лучше 50-100 мкм. Известно устройство для оптического мониторинга и контроля процесса селективного лазерного спекания объемных изделий из порошков [1], содержащее гальваносканер с объективом, пирометр с объективом и устройство поддержания уровня средней температуры в пятне воздействия лазера.

Недостаток этого устройства состоит в отсутствии контроля размеров области спекания и контроля размеров спеченных сечений.

Известно устройство для оптического мониторинга и контроля процесса селективного спекания объемных изделий из порошков [2], содержащее гальваносканер с объективом, фотодиод с объективом, видеокамеру с объективом и PID контроллеры поддержания уровня сигнала с фотодиода и размеров области плавления.

Недостатком данного устройства является невозможность определения физических параметров процесса спекания - температуры и ее распределения в области спекания, а также невозможность контролировать размеры спеченных областей в сечениях объемного изделия в процессе его спекания и тем самым корректировать программу обхода сечения сканером.

Для получения полной информации о процессе селективного спекания объемного изделия и управления технологическим процессом в режиме реального времени предложены новые устройства.

Устройство для управления процессом селективного лазерного спекания объемных изделий из порошков содержит сканер лазерного излучения с объективом, оптически связанные оптический пирометр с объективом, видеокамеру с анализатором изображения и объективом, источник подсветки поверхности и компьютер. Новизна состоит в том, что устройство дополнительно содержит 2D сканер изображений спеченного сечения, размещенный на каретке нанесения и укладки порошка установки селективного лазерного спекания, и модуль управления, включающий регулятор управления сканером лазерного излучения и регулятор управления мощностью лазера, выполненные с возможностью поддержания на заданном уровне мощности лазера, размера пятна воздействия лазерного излучения и скорости сканирования пятна по поверхности порошковой насыпки.

Новизна состоит в том, что устройство дополнительно содержит 3D сканер изображений спеченного сечения, размещенный в рабочей камере установки селективного спекания, и модуль управления, включающий регулятор управления сканером лазерного излучения и регулятор управления мощностью лазера, выполненные с возможностью поддержания на заданном уровне мощности лазера, размера пятна воздействия лазерного излучения и скорости сканирования пятна по поверхности порошковой насыпки.

Схемы устройств представлены на Фиг. 2, Фиг. 3.

Устройство содержит градиентное зеркало 2, сканер 3 с объективом 6, оптическую систему, состоящую из делительных и поворотных зеркал 7, 14, волоконного кабеля 9, оптического пирометра 10 с объективом 4, видеокамеры с анализатором изображения 13 с объективом 12 и фильтрами 11, источника подсветки поверхности 16 с телескопом 17 и поворотным зеркалом 18, каретки насыпки и укладки порошка 24, 2Д сканера изображений 23, размещенного на каретке, либо 3Д сканера изображений, размещенного в верхней части рабочей камеры 27. Элементы устройства 2-18 размещены в изолированном боксе 25. Излучение лазера 1 установки селективного спекания, состоящей из рабочей камеры 27 с оптическим окном 26, рабочего бункера 29 с поршнем 22 и устройством его перемещения 30, вводится на сканер 3 и фокусируется на поверхность порошковой насыпки 5.

Устройство работает следующим образом. Каретка заполняется порошком, и при ее движении слои порошка наносятся периодически на поршень 22 при его вертикальном перемещении. При сканировании лазерным лучом по поверхности порошковой насыпки 5 программно заданные области сплавляются. При этом в процессе сканирования пирометром 10 измеряется максимальная термодинамическая температура в центре пятна облучения. Программно заданная температура поддерживается путем введения значения температуры через цепь обратной связи на регулятор 34 и далее по сигналу рассогласования изменяется мощность лазера 1. Аналогично размеры области плавления, регистрируемые видеокамерой с анализатором изображений 13, как по тепловому излучению с определением температурного поля, так и по изображению в свете излучения источника подсветки вводятся на регулятор управления 33, и сигналом рассогласования изменяются параметры сканирования - размер пятна фокусировки и скорость сканирования. По окончании спекания сечения 3Д объекта при нанесении следующего слоя при движении каретки 24 сканером изображений 23 снимается изображение спеченного сечения с разрешением 1 мкм. Альтернативно с помощью 3Д сканера 28 получают изображение спеченного сечения. Изображение вводится в компьютер 21, сравнивается с программно заданным, и движение сканера лазерного излучения 3 корректируется при спекании следующего слоя.

Таким образом, заявляемое устройство и способ управления позволяют обеспечивать заданный технологический режим спекания и обеспечить микронную точность изготовления объемного изделия.

Литература

[1] Shen J. et al. // US Patent №6600129. (2003).

[2] Kruth J-P., P. Mercelis // US Patent Application №2009/020606 (2009).

[3] Чивель Ю/А/ // Патент РФ №2460992. (2010).

[4] Chivel Yu. On-line temperature monitoring of the selective laser melting // Physics Procedia, v. 41, pp. 897-903, 2013.

1. Способ управления процессом селективного лазерного спекания объемного изделия из порошка, включающий оптический мониторинг температуры поверхности и ее распределения в области воздействия лазерного излучения с их регистрацией и размера области спекания по тепловому излучению поверхности в нескольких спектральных интервалах вблизи рабочей длины волны оптической системы сканера и по изображению поверхности в свете излучения источника внешней подсветки поверхности с его регистрацией, отличающийся тем, что в процессе спекания поддерживают на заданном уровне максимальную температуру поверхности в области воздействия, по регистрируемым размерам области спекания изменяют параметры сканирования и мощность лазерного излучения, при этом регистрируют изображения спеченных сечений или их фрагментов, сравнивают размеры спеченных сечений объемного изделия или их фрагментов с программно заданными, определяют наличие дефектов в спеченном слое и корректируют параметры воздействия при выполнении следующего слоя.

2. Устройство для управления процессом селективного лазерного спекания объемного изделия из порошка, содержащее сканер лазерного излучения с объективом, оптически связанные оптический пирометр с объективом, видеокамеру с анализатором изображения и объективом, источник подсветки поверхности и компьютер, отличающееся тем, что оно дополнительно содержит 2D сканер изображений спеченного сечения, размещенный на каретке нанесения и укладки порошка установки селективного лазерного спекания, и модуль управления, включающий регулятор управления сканером лазерного излучения и регулятор управления мощностью лазера, выполненные с возможностью поддержания на заданном уровне мощности лазера, размера пятна воздействия лазерного излучения и скорости сканирования пятна по поверхности порошковой насыпки.

3. Устройство для управления процессом селективного лазерного спекания объемного изделия из порошка, содержащее сканер лазерного излучения с объективом, оптически связанные оптический пирометр с объективом, видеокамеру с анализатором изображения и объективом, источник подсветки поверхности и компьютер, отличающееся тем, что оно дополнительно содержит 3D сканер изображений спеченного сечения, размещенный в рабочей камере установки селективного спекания, и модуль управления, включающий регулятор управления сканером лазерного излучения и регулятор управления мощностью лазера, выполненные с возможностью поддержания на заданном уровне мощности лазера, размера пятна воздействия лазерного излучения и скорости сканирования пятна по поверхности порошковой насыпки



 

Похожие патенты:

Изобретение относится к изготовлению или получению изделий из стекла или стеклокерамики. Изобретение основано на том, чтобы обеспечить получение изделий из стекла или стеклокерамики, имеющих точно охарактеризованные термомеханические свойства.

Блок держателя для нанокалориметрического сенсора предназначен для размещения на X-Y столике оптического микроскопа и проведения in-situ исследования морфологии и теплофизических свойств материалов различного типа.

Блок держателя нанокалориметрического сенсора, предназначенный для размещения в дифрактометре на X-Y-Z движителе (столике), дает возможность проведения экспериментов с одновременным использованием данных методов, что позволяет проводить in-situ исследования структуры и теплофизических свойств материалов различного типа.

Изобретение относится к области исследования материалов и может быть использовано для исследования вязкостно-температурных свойств жидкости и количественной оценки интенсивности и динамики структурных превращений в процессе подбора состава смазочных композиций моторных масел на стадии их разработки.

Изобретение относится к области металлографии и может быть использовано в описании процессов диффузии, превращений, образования зародышей и роста новой фазы в металлах.

Изобретение относится к термическому анализу веществ и может быть использовано для определения содержания металлических веществ в полупроводниковых материалах.

Изобретение относится к термическому и дилатометрическому анализу и может быть использовано для определения критических точек фазовых превращений в металлических материалах при непрерывном нагреве.

Изобретение относится к пограничной области между физикой, химией и биологией и может быть использовано в научных и промышленных лабораториях для определения параметров фазового перехода в воде и влияния на них условий (давление, температура), добавок веществ и полей.

Изобретение относится к области инновационных технологий и может быть использовано для повышения эффективности определения функциональных параметров полимерных композиционных материалов, определяющих эффективность перспективных технических систем.

Изобретение относится к измерительной технике. Способ основан на экспериментальном определении температуры лавинообразного распада охлаждающей жидкости на горячей поверхности, в статических условиях, без потока жидкости.

Изобретение относится к области исследования материалов с помощью тепловых средств и описывает способ и устройство для количественного определения содержания восков и воскоподобных веществ в рафинированных растительных маслах. Способ характеризуется тем, что пробу растительного масла охлаждают до полного застывания, облучают оптическим излучением на двух длинах волн и на основе калибровочной кривой определяют количественное содержание восков и воскоподобных веществ в пробе масла. Устройство для осуществления способа содержит устройство охлаждения-нагрева, устройство управления-регистрации, термоизолированную кювету, в стенки которой герметично вмонтированы волоконно-оптические световоды, оптические оси которых находятся на одном уровне в одном поперечном сечении кюветы, оптическая ось третьего световода расположена нормально к оптической оси первого и второго световодов, выходы устройства управления-регистрации соединены с управляющими входами излучателей и устройства охлаждения-нагрева, а к соответствующим входам устройства управления-регистрации подключены выходы термодатчиков и выходы пропорциональных фотоприемников. Изобретение может быть использовано для анализа растительных масел оптическими методами. 2 н.п. ф-лы, 3 ил., 3 табл.

Изобретение относится к области металловедения и физико-химическому анализу веществ, в частности, к способу определения протекания фазовых переходов в металлах и сплавах. Заявлен способ регистрации фазового перехода в материале при воздействии на него давления и температуры, в котором давление на материал создают воздействием газообразной среды, а регистрацию фазового перехода осуществляют по отклонению давления газообразной среды, вызванному изменением объема материала. При этом используют газообразную среду, инертную по отношению к исследуемому материалу. Техническим результатом является повышение точности и чувствительности регистрации фазового перехода, простоты и компактности оборудования, а также возможность определять фазовые переходы при воздействии высоких давлений и температур и достичь малой инерционности системы измерений. 1 з.п. ф-лы, 4 ил.

Изобретение относится к технологии оценки качества жидких смазочных материалов. Предложен способ определения термоокислительной стабильности смазочных материалов, при котором испытывают пробы смазочного материала постоянного объема в присутствии воздуха с перемешиванием при оптимальных, как минимум трех, температурах ниже критической, выбранных в зависимости от базовой основы, назначения смазочного материала и группы эксплуатационных свойств в течение времени, характеризующего одинаковую степень окисления. Через равные промежутки времени отбирают пробу окисленного смазочного материала, фотометрируют, определяют кинематическую вязкость исходного и окисленного смазочного материала, определяют показатель термоокислительной стабильности, строят графические зависимости указанного показателя от параметров фотометрирования для выбранных температур и проводят оценку процесса окисления. Новым является то, что при фотометрировании определяют оптическую плотность, кинематическую вязкость определяют при температурах 40°С и 100°С. При этом дополнительно определяют индекс вязкости и показатель относительного индекса вязкости как отношение индексов вязкости окисленного смазочного материала к товарному, а показатель термоокислительной стабильности определяют как отношение оптической плотности к показателю относительного индекса вязкости. Причем по графическим зависимостям показателя термоокислительной стабильности от оптической плотности, построенным по результатам, полученным при выбранных температурах испытания, определяют влияние температуры и продуктов окисления на вязкостно-температурную характеристику испытуемого смазочного материала и выявляют наименьшую скорость изменения показателя термоокислительной стабильности при увеличении температуры окисления. Технический результат - повышение информативности способа определения термоокислительной стабильности смазочных материалов путем учета влияния температуры и продуктов окисления на вязкостно-температурные характеристики смазочных материалов. 3 ил., 2 табл.

Изобретение относится к способам определения термобарических параметров (температуры и давления) образования гидратов в многокомпонентной смеси типа нефтяных или природных газов. Оно может быть использовано в нефтяной, газовой и химической промышленности для предотвращения образования техногенных гидратов или для их получения. Предлагаемый способ определения термобарических параметров образования гидратов в многокомпонентной смеси включает определение компонентного состава и температуры смеси, а давления образования в ней гидратов по расчетным формулам, связывающим эти параметры, с использованием в них коэффициентов, определяемых опытным путем. Причем дополнительно определяют гидратообразующие компоненты, входящие в смесь, а затем определяют один из двух температурных диапазонов, в который попадает величина температуры смеси, первый диапазон - от 80 до 273,15 К, второй - от 273,15 (включительно) до 320 К. Для каждого такого компонента определяют давление начала образования его гидрата при температуре смеси в первом диапазоне - по степенной зависимости или при величине температуры смеси, а во втором диапазоне - по экспоненциальной зависимости. Далее определяют давление образования гидратов в многокомпонентной смеси в первом температурном диапазоне или во втором температурном диапазоне. Технический результат – повышение точности и достоверности определения гидратообразующих компонентов. 1 з.п. ф-лы, 3 табл.

Изобретение относится к области исследования свойств и контроля качества полимеров в отраслях промышленности, производящих и использующих полимерные материалы, в частности для определения границ фазовых и релаксационных переходов в полимерных материалах. Сущность предлагаемого способа заключается в том, что исследуемый образец помещают между двумя электродами конденсатора, нагревают исследуемый образец с постоянной скоростью контактным способом, измеряют температуру и диэлектрические параметры исследуемого образца. На исследуемый образец периодически воздействуют проникающим высокочастотным электрическим полем при отключенном нагреве и одновременно регистрируют изменяющийся анодный ток работы высокочастотного оборудования, а также непрерывно фиксируют линейное тепловое расширение исследуемого образца. По полученным данным устанавливают зависимость анодного тока от температуры и зависимость линейного теплового расширения исследуемого образца от температуры и по их экстремумам определяют границы фазовых и релаксационных переходов. Причем периодическое воздействие на исследуемый образец высокочастотным электрическим полем производят кратковременно (1 секунда) после каждого повышения температуры исследуемого образца на 5°C. Технический результат – повышение точности и достоверности определения фазовых и релаксационных переходов в полимерных материалах. 2 з.п. ф-лы, 2 ил.

Изобретение относится к области контрольно-измерительной техники, касающейся исследования, измерения и прогнозирования свойств полимерных материалов, включая композиционные материалы на полимерной основе. Заявляется термоаналитический способ определения энергии активации термодеструкции Е полимерного материала, который заключается в нагревании ряда идентичных образцов полимерного материала с разной скоростью нагрева, определении температуры, связанной с потерей массы каждого образца при нагревании, по полученным данным определяют энергию активации E1. Одновременно регистрируют тепловой поток для каждого образца полимерного материала, обусловленный процессами термодеструкции, по полученным данным определяют энергию активации Е2. За энергию активации термодеструкции полимерного материала принимают среднюю величину полученных энергий активации Е=(Е1+Е2)/2. Технический результат - повышение точности определения значения энергии активации в целях прогнозирования сроков хранения полимерных материалов; экспрессность анализа; незначительная трудоемкость. 7 ил., 1табл.

Изобретение относится к измерительной технике, в частности для определения качества нефтепродуктов, и может быть применено для контроля температурной стойкости и термоокислительной стабильности смазочных материалов. Заявлен способ определения термоокислительной стойкости смазочных материалов, включающий нагревание пробы испытуемого смазочного материала постоянной массы в присутствии воздуха, перемешивание, фотометрирование, определение массы испарившейся пробы при испытании, построение графических зависимостей, по которым определяют параметры процесса окисления. Согласно изобретению испытания проводят в двух циклах изменения температуры. Одну пробу испытывают при ступенчатом увеличении температуры на 10°C от минимального до максимального значения, зависимого от назначения смазочного материала, а другую пробу испытывают при ступенчатом уменьшении температуры на 10°C от принятой максимальной величины до минимальной. Причем через равные промежутки времени испытания для каждой температуры окисленную пробу взвешивают, определяют массу испарившегося смазочного материала и коэффициент испаряемости как отношение массы испарившегося смазочного материала к массе пробы до испытания. Отбирают часть окисленной пробы для определения оптической плотности и по полученным данным определяют показатель термоокислительной стойкости как сумму оптической плотности и коэффициента испаряемости. Строят графические зависимости показателя термоокислительной стойкости, оптической плотности и испаряемости от циклов повышения и понижения температуры испытания, определяют регрессионные уравнения данных зависимостей, которые используют для определения параметров термоокислительной стойкости. По уравнениям зависимостей показателя термоокислительной стойкости определяют температуру начала процессов преобразования в испытуемом смазочном материале в цикле повышения температуры испытания и критическую температуру в цикле понижения температуры испытания, а по координате абсциссы пересечения данных зависимостей определяют предельную температуру работоспособности. При этом значения этих параметров используют в качестве параметров термоокислительной стойкости. Технический результат - повышение информативности контроля качества смазочных материалов за счет определения предельно допустимой температуры работоспособности. 1 з.п. ф-лы, 2 табл., 3 ил.

Изобретение относится к области дилатометрического анализа, а именно к способам дилатометрических исследований фазовых превращений при нагреве и/или охлаждении сплавов железа, и может быть использовано для оценки многостадийных фазовых превращений в сплавах железа. Способ включает определение критических точек фазовых превращений с использованием закалочного дилатометра, в котором нагревают образец с постоянной скоростью, при этом автоматически регистрируют время от начала измерения, температуру и удлинение исследуемого образца в процессе нагрева. Затем строят зависимости удлинения образца от температуры и первой производной дилатограммы от температуры образца, проводят качественную оценку фазовых превращений с определением стадийности в интервале температур фазового превращения по наличию пиков. Новым является то, что проводят разложение первой производной дилатограммы на составляющие пики производной с использованием кривых Гаусса с асимметрией, при этом выявляют температурные границы фазового превращения на каждой стадии, определяют температурные интервалы наложения нескольких стадий фазового превращения. Затем проводят количественную оценку, определяя объемную долю фазового превращения на каждой стадии от общего объема фазового превращения при нагреве и/или охлаждении образца. По полученным данным уточняют режим термической обработки в соответствии с задаваемой или необходимой последовательностью фазовых превращений в исследуемом материале для получения заданной структуры и свойств в изделиях. Технический результат - повышение качества оценки и информативности дилатометрических исследований о стадиях фазовых превращений, происходящих в сплавах железа при нагреве и/или охлаждении с использованием одинарного закалочного дилатометра «Linseis» R.I.T.A. L.78, расширение функциональных возможностей закалочного дилатометра. 4 ил.
Наверх