Способ утилизации энергии геотермальных вод

Изобретение относится к энергетике. Способ утилизации энергии геотермальных вод включает геотермальную скважину, промежуточные теплообменники, детандер с компрессором на одном валу, сепаратор и газгольдер. Испарение и перегрев рабочего агента, поступающего на турбину геотермальной электростанции (ГеоЭС), осуществляется в испарителе за счет высокотемпературных выхлопных газов газотурбинной электростанции, в камеру сгорания которой поступает газ из газгольдера, извлеченный из термальной воды, а также газ из магистрального газопровода. Изобретение позволяет повысить эффективность использования геотермальных вод. 1 ил.

 

Изобретение относится к области геотермальной энергетики и может быть использовано для получения электроэнергии путем утилизации тепловой и сопутствующих видов энергий из геотермальных ресурсов.

Запасы большинства геотермальных месторождений имеют низкие и средние температуры и это не позволяет обеспечить их конкурентоспособность с традиционными энергоносителями. Скважины эксплуатируются на различные теплоэнергетические нужды в прерывистом режиме только в холодное время года, а с весны до осени скважины простаивают из-за снижения или отсутствия потребности в тепловой энергии. Эффективное освоение геотермальных ресурсов обеспечивается при постоянной эксплуатации геотермальных скважин с дебитами, близкими к эксплуатационным запасам, чего можно достичь при преобразовании тепловой энергии термальных вод в электроэнергию. Большая часть выявленных геотермальных ресурсов относятся к среднетемпературным (80-110°С), использование таких ресурсов для выработки электроэнергии становится малоэффективным.

Известен способ утилизации энергии геотермальных вод (Патент RU 2190812 С1, Бюл. №28. 2002).

При таком способе происходит утилизация тепловой энергии, избыточной потенциальной энергии и химической энергии растворенных газов. Утилизация тепловой энергии геотермальных вод происходит путем ее передачи через промежуточные теплообменники вторичному теплоносителю, химической энергии растворенных газов посредством использования первичного и вторичного сепараторов, газгольдера и газораспределительного пункта, а избыточной потенциальной энергии с использованием детандера и компрессора на одном валу.

Недостатком такого способа является сезонная эксплуатация геотермальных скважин, приводящая к снижению отбора геотермальных ресурсов и ухудшению экономических показателей эксплуатации геотермального месторождения.

Целью настоящего изобретения является постоянная эксплуатация среднетемпературных геотермальных скважин и повышение термодинамической эффективности утилизации тепловой энергии термальных вод путем ее преобразования в электроэнергию.

Для достижения поставленной цели тепло термальной воды через первичный теплообменник передается низкокипящему рабочему агенту, циркулирующему во вторичном контуре бинарной ГеоЭС, для его нагрева до температуры испарения при соответствующем давлении. Использование всей термальной воды для такого нагрева позволяет наиболее эффективно использовать ее тепло и снижать температуру отработанной воды до довольно низкого значения (20-45°С), превышающего температуру конденсации рабочего агента на величину температурного напора в теплообменнике. Дальнейшее испарение и перегрев рабочего агента происходит в испарителе ГеоЭС за счет выхлопных газов газотурбинной электростанции, в камеру сгорания которой поступает газ, извлеченный из термальной воды, и из магистрального газопровода.

На приведенном чертеже изображена технологическая схема предлагаемого способа. Термальная вода из геотермальной скважины 1 направляется в теплообменник 2 бинарной ГеоЭС, где происходит нагрев низкокипящего рабочего агента до температуры испарения при соответствующем давлении. Далее отработанная вода поступает в детандер 7 для утилизации избыточной потенциальной энергии. Из детандера термальная вода с низким давлением поступает в сепаратор 9. Жидкая фаза энергоносителя 8 из сепаратора направляется на сброс или на обратную закачку в материнский пласт, а отсепарированный газ поступает в компрессор 10, привод которого осуществляется детандером 7. Из компрессора газ с высокими значениями давления и температуры направляется в теплообменник 11, куда противотоком также подводится нагреваемая пресная вода 13, которая в дальнейшем используется на различные потребительские нужды. Из теплообменника 11 охлажденный и осушенный газ поступает в газгольдер 14, а конденсат 12 уходит в сток. Из газгольдера газ поступает на газотурбинную электростанцию 15, куда также подводится газ из газопровода 16. Высокотемпературные выхлопные газы газотурбинной электростанции поступают в испаритель 3 бинарной ГеоЭС, где осуществляется испарение и перегрев низкокипящего рабочего агента, поступающего из теплообменника 2. Перегретый пар из испарителя последовательно проходит турбину 4, конденсатор 5 и циркуляционный насос 6 и далее поступает в теплообменник 2, и на этом цикл Ренкина, реализуемый в бинарной ГеоЭС, замыкается. Отработанные выхлопные газы из испарителя 3 направляются на сброс.

Способ утилизации энергии геотермальных вод путем передачи через теплообменники тепловой энергии геотермальной воды вторичному теплоносителю и использования в качестве дополнительных источников энергии химической энергии растворенных газов с использованием сепаратора и газгольдера и избыточной потенциальной энергии посредством использования детандера и компрессора на одном валу, отличающийся тем, что тепловая энергия термальной воды передается через теплообменник низкокипящему рабочему агенту, циркулирующему в контуре бинарной ГеоЭС, для его нагрева до температуры испарения, дальнейшее испарение и перегрев рабочего агента осуществляется за счет выхлопных газов газотурбинной электростанции, в камеру сгорания которой поступает газ из газгольдера и магистрального газопровода.



 

Похожие патенты:

Изобретение относится к средствам извлечения геотермальной энергии из продукции нефтегазовых скважин и может использоваться в качестве альтернативных источников энергии.

Предлагается устройство, содержащее теплонасосное оборудование и систему сбора низкопотенциальной теплоты грунта, состоящую из двух и более зон, параллельно подключенных к теплонасосному оборудованию, каждая из которых, в свою очередь, включает один и более вертикальных герметичных грунтовых теплообменников коаксиального типа с внутренней трубой, покрытой теплоизолирующим слоем пористого материала с замкнутыми порами.

Изобретение относится к теплоэнергетике и может быть использовано в подземных аккумуляторах тепловой энергии. Подземный аккумулятор содержит колодец и по меньшей мере один туннель, соединенные друг с другом с обеспечением сообщения по текучей среде.

В одном варианте выполнения изобретения предложен способ подачи электроэнергии при помощи источника возобновляемой энергии, включающий: обеспечение первого источника возобновляемой энергии, причем первый источник возобновляемой энергии является непостоянным или не обеспечивает достаточного количества энергии; подачу энергии от первого источника возобновляемой энергии на электролизер с целью формирования энергоносителя посредством электролиза; избирательное реверсирование электролизера, позволяющее использовать его в качестве топливного элемента; и подачу энергоносителя на электролизер для выработки энергии, причем первый источник возобновляемой энергии, электролизер или энергоноситель получает дополнительное тепло от первого источника тепла; и первый источник тепла выбран из группы, состоящей из геотермального и солнечного источника тепла.

(57) Изобретение относится к теплоэнергетике и может быть использовано для создания системы низкотемпературной энергии в подземном контуре. Подземный контур используется, например, для передачи тепловой энергии, извлеченной из окружающей среды, к тепловому насосу или подобному устройству.

Изобретение относится к энергетике и может быть использовано для передачи тепла. Теплопроводный цилиндр, предназначенный для установки в накопителе тепла, снабжен множеством U-образных трубопроводов и выполнен так, что теплоизоляция находится между концом для впуска текучей среды и концом для выпуска текучей среды каждого из множества U-образных трубопроводов, причем две или более радиально размещенные секции U-образного трубопровода установлены внутри теплопроводного цилиндра, и отделены друг от друга, и имеют внутренние проходы, которые не сообщаются друг с другом внутри теплопроводного цилиндра.

Изобретение относится к трубопроводному транспорту. К наружной поверхности обогреваемого трубопровода плотно прилегает коллектор с теплоносителем.

Изобретение относится к трубопроводному транспорту и может быть использовано при транспортировке различных жидких и газообразных продуктов (пар, вода, углеводороды и др.) на предприятиях АПК, в коммунальном хозяйстве, нефтяной, химической и др.

Изобретение относится к технологиям добычи и применения глубокозалегающих подземных пластовых рассолов, обладающих, как правило, не только гидроминеральным потенциалом, в особенности промышленными концентрациями полезных компонентов для прямого использования или последующей переработки в товарные продукты, но и тепловым потенциалом, пригодным для использования по энергетическому назначению.

Изобретение относится к способам аккумулирования энергии в когенерационных системах, работающих в цикле тригенерации, в системах извлечения геотермальной энергии абсорбционным тепловым насосом, в системах использования низкопотенциальной тепловой энергии с помощью абсорбционного теплового насоса.

Изобретение относится к производству электроэнергии. Система содержит геотермальную систему, содержащую электростанцию (101), и насосную станцию (102), атомную электростанцию (103). Насосную станцию (102) применяют для нагнетания текучей среды из резервуара (104) через нагнетательную скважину (105) в подстилающей породе (106) (также называемой зоной горячей сухой породы HDR) и извлекают через второй ствол скважины (откачной скважины), обычно соединенной с электростанцией (101). В данном примере, однако, нагнетательная скважина связана с откачной скважиной (107). При нагнетании текучей среды в подстилающую породу происходит падение температуры за счет теплопередачи в текучую среду. Для устранения такого падения температуры применена атомная электростанция (103), при этом атомная электростанция (103) содержит распадающиеся компоненты (1091, 1092, 1093) реактора, расположенного в ряде стволов (1081, 1082, и 1083) скважин, в зоне HDR. Технический результат - повышение срока использования системы. 2 н. и 22 з.п. ф-лы, 2 ил.

Изобретение относится к коаксиальному геотермальному зонду и способу его монтажа под землей, а также к способу эксплуатации геотермального зонда. Коаксиальный геотермальный зонд содержит центральную колонковую трубу (11) и выполненную с возможностью расширения трубчатую оболочку, которая ограничивает кольцевой зазор (15), проходящий от колонковой трубы наружу, причем колонковая труба (11) и кольцевой зазор (15) выполнены с обеспечением протекания по ним текучей среды-теплоносителя. Трубчатая оболочка образована рукавной оболочкой (14), выполненной с возможностью расширения под действием повышенного внутреннего давления, которая охватывает колонковую трубу (11) в уложенном складками состоянии и после введения в скважину (1) под геотермальный зонд под действием подводимой с избыточным давлением текучей среды принимает стабильную окончательную форму и во встроенном состоянии зонда (10) непосредственно примыкает к стенкам (2) скважины (1) под геотермальный зонд. Изобретение направлено на повышение отбора тепловой энергии из окружающего грунта. 3 н. и 20 з.п. ф-лы, 5 ил.

Изобретение относится к области превращения геотермальной энергии в электрическую энергию, когда источником тепловой энергии являются постмагматические тепловые поля. Устройство включает скважину с обсадной трубой, нижняя часть которой закрыта крышкой и является паровым котлом, который входным и выходным трубопроводами, оснащенными обратными клапанами давления, соединен с паровой турбиной, которая кинематически связана с электромашинным генератором тока. Открытый торец выходного трубопровода осесимметричен обсадной трубе, через крышку парового котла опускается до дна котла, образуя одноконтурное внутреннее пространство, а регулятор подачи рабочей жидкости установлен на входном трубопроводе и обеспечивает подачу такого количества рабочей жидкости, чтобы в нижнюю часть парового котла рабочая жидкость не поступала и она служила как перегреватель пара. Изобретение позволяет осуществить превращение геотермальной энергии в электрическую энергию независимо от наличия подземных водных источников. 4 з.п. ф-лы, 2 ил.

Изобретение относится к способам совместного использования солнечной энергии для системы горячего водоснабжения, солнечной и петротермальной энергии с помощью абсорбционного теплового насоса и инверторного парокомпрессорного теплового насоса для систем кондиционирования воздуха в теплый период и отопления в холодный период. Способ комбинированного использования альтернативных источников энергии для отопления, кондиционирования воздуха и горячего водоснабжения помещений на основе гибридного солнечного коллектора, бивалентного водонагревателя, преобразователя электрической энергии, электрического аккумулятора, абсорбционного теплового насоса, инверторного парокомпрессорного теплового насоса с теплосъемными трубами и петротермальной скважины, при этом в петротермальной скважине на глубине ниже слоя годовых колебаний температуры методом гидравлического разрыва пласта создают трещины, в которые для создания аккумулятора тепла закачивают вещество с температурой фазового перехода 20-43°C; электрическая энергия, вырабатываемая гибридным солнечным коллектором, поступает в преобразователь электрической энергии и используется инверторным парокомпрессорным тепловым насосом для кондиционирования и отопления помещения, бивалентным водонагревателем для подогрева воды при недостаточной тепловой мощности гибридного теплового коллектора, избыточная электрическая энергия накапливается в электрическом аккумуляторе и используется для «дежурного» освещения; в теплое время теплохладоноситель инверторного парокомпрессорного теплового насоса подается в помещение для кондиционирования воздуха и обратно на инверторный парокомпрессорный тепловой насос, откуда полученное тепло посредством теплосъемных труб инверторного парокомпрессорного теплового насоса закачивается в аккумулятор тепла, в холодное время инверторный парокомпрессорный тепловой насос посредством теплохладоносителя теплосъемных труб подает тепло из аккумулятора тепла в помещение для отопления; тепло теплоносителя гибридного солнечного коллектора поступает в бивалентный водонагреватель для подогрева воды в системе горячего водоснабжения и в абсорбционный тепловой насос для выработки холода в системе кондиционирования воздуха в помещении, и после отдачи тепла теплоноситель из абсорбционного теплового насоса и бивалентного водонагревателя возвращается на нагрев в гибридный солнечный коллектор. Техническим результатом является высокая аккумулирующая способность системы и круглогодичное использование солнечной и петротермальной энергии: для системы горячего водоснабжения; для системы кондиционирования воздуха с помощью абсорбционного и инверторного парокомпрессорного тепловых насосов в теплый период; для системы отопления с помощью инверторного парокомпрессорного теплового насоса в холодный период; увеличение на 30-50% выработки электроэнергии за счет отвода тепла от коллектора. 1 ил., 1 табл.

Изобретение относится к области энергетики и направлено на энергосбережение путем рационального использования возобновляемых источников тепла и естественного перепада температуры в окружающей среде. Устройство для реализации адсорбционного цикла повышения температурного потенциала возобновляемого источника теплоты включает адсорбер, теплообменник, находящийся в контакте с гранулами адсорбента, вакуумный кран, емкость с жидким хладагентом и теплообменник, частично погруженный в жидкий хладагент. Емкость с жидким хладагентом и теплообменником является конденсатором и испарителем. В качестве адсорбента используют композитный адсорбент паров метанола, представляющий собой пористую матрицу, выбранную из ряда: силикагель, оксид алюминия, вермикулит, поры которой содержат галогенид или нитрат металлов из ряда: кальций, магний, литий, никель или кобальт в количестве не менее 17 мас.%, в качестве хладагента-адсорбтива используют спирты. Технический результат заключается в повышении температурного потенциала возобновляемого источника теплоты в замкнутом адсорбционном цикле. 3.з.п. ф-лы, 1 табл., 1 ил.

Группа изобретений относится к области биохимии. Предложен способ получения топлива из органического материала в подземном реакторе (варианты) и подземный реактор для применения в вышеуказанном способе (варианты). Подземный реактор включает первый трубопровод для нагнетания органического материала под землю и его преобразования в топливо, второй трубопровод для поднятия преобразованного органического материала и теплообменник для выделения тепла для снабжения энергией оборудования, где жидкий теплоноситель содержит пьезотепловые или пьезоэлектрические частицы. В другом варианте подземный реактор также содержит насос для удерживания зоны реакции при требуемой температуре. Способ включает отправление органического материала под землю через первый трубопровод, приложение к органическому материалу в зоне реакции давления и температуры для преобразования органического материала в топливо, подъем топлива через второй трубопровод и циркуляцию жидкого теплоносителя. В другом варианте способ также включает использование теплообменника для выделения тепла с целью применения для снабжения энергией оборудования. Изобретение обеспечивает получение топлива за счёт подземной температуры и давления. 4 н. и 91 з.п. ф-лы, 23 ил., 5 табл., 13 пр.

Изобретение относится к способам извлечения и использования геотермального тепла. Способ установки геотермальных теплообменников для извлечения низкопотенциального тепла включает бурение скважин с использованием буровой колонны. Бурение скважин для установки зондов осуществляют без переноса бурового станка с одного места и под углом 20-45 градусов к горизонту. В грунт устанавливают железобетонное кольцо диаметром 1,5 м, его верхний торец заглубляют на 0,3-0,4 м от поверхности. На этом же уровне устраивают кольцевую площадку шириной 0,5 м. Дно кольца заливают бетонной стяжкой. Сверху на железобетонное кольцо устанавливают колодезную опору бурового станка, определяют наклон оси бурения, монтируют буровой станок на колодезной опоре, в процессе бурения используют бетонное кольцо в качестве зумпфа, а после окончания бурения - в качестве кессонной камеры геотермального коллектора. При достижении заданной глубины бурения в колонну бурильных труб опускается на жестком тросе извлекатель съемного пилота. После извлечения пилота в колонну бурильных труб, выполняющих роль обсадной трубы, опускают подготовленный геотермальный зонд, колонну бурильных труб свинчивают с вращателем буровой установки и приподнимают на 0,5 м. Технический результат заключается в уменьшении количества операций, в частности подъема бурового снаряда, обсаживания ствола скважины обсадной трубой, выкапывания дополнительного приямка или зумпфа для циркуляции бурового раствора, переноса бурового станка на новое место бурения. 9 з.п. ф-лы, 3 ил.

Изобретение относится к сооружениям в области теплоэнергетики и может быть использовано в системах автономного комплексного энергоснабжения населенных пунктов, промышленных предприятий и иных объектов от возобновляемых источников энергии (ВИЭ). Мини-ТЭЦ, работающая на ВИЭ, оснащена однотипными либо гибридными первичными преобразовательными установками с энергоресурсом на выходе в виде нагретого и сжатого воздуха, сезонными грунтовыми аэродинамическими нагревателями - накопителями тепловой энергии, а также мощными вторичными тепломеханическими преобразователями с системой утилизации тепловых сбросов и без паросилового звена. Первичные преобразователи возобновляемой энергии в тепловую (например, солнечные коллекторы) и (или) в энергию сжатого воздуха (ветро- и гидроустановки с воздухонагнетателями) позволяют использовать простейшие по конструкции и энергоемкие теплоаккумуляторы с непосредственным теплообменом либо с аэродинамическим преобразованием энергии (как в известных аэродинамических сушильных камерах). Грунтовые аэродинамические нагреватели - накопители тепловой энергии обеспечивают длительную, вплоть до сезонных интервалов времени с недостаточным поступлением природной энергии, и бесперебойную работу мини-ТЭЦ. При этом стоимость сооружения таких теплоаккумуляторов минимальна, они практически не нуждаются в обслуживании, а на занимаемой ими территории могут быть размещены первичные преобразователи. Мощные тепломеханические преобразователи без паросилового звена обеспечивают работу мини-ТЭЦ в более широком диапазоне рабочих температур с максимальным отбором теплового ресурса, а это позволяет уменьшить габариты аккумулятора и потери тепла. Изобретение позволяет решить проблемы энергоснабжения многих объектов, сбережения энергоресурсов и защиты окружающей среды. 1 ил.

Изобретение относится к теплонасосным установкам, использующим низкотемпературное тепло грунта для автономного отопления и горячего водоснабжения помещений. Внешний грунтовый контур для теплонасосной установки содержит помещенный в грунт горизонтальный трубчатый теплообменник, соединенный трубопроводами с теплообменником-испарителем теплового насоса с циркулирующим в нем низкотемпературным теплоносителем-рассолом, а также аккумулятор тепловой энергии, предназначенный для подогрева грунта. Аккумулятор помещен в грунт в непосредственной близости от горизонтального трубчатого теплообменника и выполнен в виде двух емкостей, соединенных трубопроводами в единый контур, по которому циркулирует жидкий теплоноситель. В первой емкости происходит нагрев жидкого теплоносителя от помещенного в первую емкость нагревателя, а жидкий теплоноситель из первой емкости по подающим трубопроводам поступает во вторую емкость и снова возвращается по обратным трубопроводам в первую емкость. При этом происходит передача части тепловой энергии жидкого теплоносителя окружающему грунту через стенки подающих и обратных трубопроводов и через стенки первой и второй емкостей. Техническим результатом является обеспечение эффективности работы ТНУ компрессионного типа с горизонтальным грунтовым внешним контуром за счет восстановления теплового баланса грунта в зоне теплообменника внешнего грунтового контура. 13 з.п. ф-лы, 6 ил.

Изобретение относится к области энергосбережения, в частности к использованию низкопотенциальной тепловой энергии грунтового массива с помощью тепловых насосов. Способ работы системы грунтовых теплообменников, использующей с помощью теплового насоса тепловую энергию или хладоресурс грунтового массива. При этом в грунтовом массиве размещено несколько грунтовых теплообменников вертикального типа с применением в качестве низконотенциального теплоносителя «ледяной воды». Так, в качестве теплоносителя используется вода, содержащая ледяную шугу, что позволяет обеспечить адаптацию системы к изменяющимся условиям поступления низкопотенциальной теплоты из грунтового массива. Также представлено устройство для реализации способа. Изобретение позволяет обеспечить авторегулирование системы грунтовых теплообменников без использования специальной регулирующей аппаратуры. 2 н. 2 з.п. ф-лы, 1 ил.
Наверх