Способ получения высокотермостойкого радиопрозрачного материала (изделия) на основе фосфатного связующего и кварцевой ткани

Изобретение относится к области получения высокотермостойких радиопрозрачных материалов. Технический результат изобретения заключается в защите стеклоткани от термодеструкции, обеспечении диэлектрических и прочностных характеристик материала в режимах одностороннего нагрева до 1200°C при скорости 100 град./с и выше и возможности получения сложнопрофильных изделий без разрушения армирующей сетки. Осуществляют аппретирование кварцевой ткани кремнийорганической смолой, пропитку смесью хромалюмофосфатной связки и тонкодисперсного корундового порошка, выкладку на жесткой оправке пакета с заданным количеством слоев кварцевой ткани. На поверхность набранного пакета наносят слой толщиной 0,5-5,0 мм из смеси хромалюмофосфатного связующего и водного шликера кварцевого стекла полидисперсного состава от 0,1 до 500 мкм, при этом количество твердой фазы в водном шликере кварцевого стекла равно процентному составу кварцевой ткани в пакете. Отверждают и прессуют одновременно с откачкой паров воды и летучих, термообрабатывают при температуре 350±5°C в течение 1-2 ч. Далее проводят пропитку смесью отстоя водного шликера кварцевого стекла с размером частиц не более 1,0 мкм и кремнезоля в пропорции 1:1, сушат и термообрабатывают при температуре 350±5°C в течение 1-2 ч. 1 з.п. ф-лы, 1 табл., 3 пр.

 

Изобретение относится к области получения высокотермостойких радиопрозрачных материалов - неорганических стеклопластиков, предназначенных для изготовления радиопрозрачных и теплозащитных изделий авиационной и ракетно-космической техники, работающих в режиме одностороннего нагрева (радиопрозрачные окна, антенные обтекатели высокоскоростных ракет и др.).

Известны способы получения радиопрозрачных высокотермостойких стеклопластиков и стеклотекстолитов, изделий из них с применением кварцевой или высококремнеземной ткани и неорганической фосфатной связки.

В патенте РФ №2076086, кл. C04B 35/80, от 27.03.1997 г. предложена композиция для изготовления высокотемпературного электроизоляционного стеклотекстолита, включающая стеклоткань с содержанием SiO2 не менее 98%, аппретированную 15% раствором кремнийорганической смолы КМ-9К, алюмофосфатное связующее с молярным соотношением P2O5/Al2O3 в пределах 3,0-3,2 и порошок оксида алюминия с содержанием α-Al2O3 не менее 98% с зернистостью М5-М20 в количестве 56 вес.ч. Для изготовления изделия проводили выкладку пакета на прессформе и прессование при давлении 10 кгс/см2 и температуре 270°C с выдержкой из расчета 10-12 мин на 1 мм толщины изделия. Недостатком композиции является снижение электросопротивления и ухудшение диэлектрических характеристик, начиная с температуры 500°C.

Наиболее близким к заявленному изобретению является способ получения радиотехнического материала по патенту РФ №2220930, кл. C04B 35/80, 28/34 от 10.01.2004 г. (прототип), где в качестве армирующего наполнителя выбрана кварцевая или кремнеземная стеклоткань, аппретированная 3-7% спиртовым раствором кремнийорганической смолы КМ-9К, а композицией для пропитки ткани служит смесь хромалюмофосфатной связки ХАФС-3 и электроплавленного корундового порошка в пропорции 1:1. Отверждение осуществляется под прессом при давлении 0,95-1,05 МПа и подъеме температуры до 270°C со скоростью 17-18 град./час.

Преимуществом прототипа перед аналогом является то, что в качестве фосфатного связующего взята хромалюмофосфатная связка ХАФС-3 со сравнительно низким мольным отношением Р2О5/(0,6Al2O3+0,4Cr2O3)=2,26, что делает ее менее агрессивной к разъеданию армирующего наполнителя. Положительным является и выбор менее концентрированного раствора кремнийорганической смолы КМ-9К при нанесении аппретирующего слоя, составляющего всего 3-7% (в аналоге 15%).

Однако прототип имеет ряд существенных недостатков.

При нагреве до температур выше 500-600°C органополимерный аппрет деструктирует с выделением углерода, который, оседая на пористой структуре материала, ухудшает его радиотехнические характеристики, а при высокоскоростном одностороннем нагреве до температур 1000-1300°C наружные слои стеклопакета и разрушаются и отслаиваются, что связано со взрывным характером пиролиза органополимера при свободном доступе кислорода.

Кроме того, одним из отрицательных факторов при получении материалов по предложенной в прототипе технологии является сохранение в структуре материала значительного количества паров воды из фосфатной связки и летучих из кремнийорганической смолы, аппретирующей кварцевое стекловолокно, что снижает влагостойкость и другие свойства материала.

Решение этой проблемы можно обеспечить своевременным отсосом паров из собранного пакета при нагреве в области температур 50-300°C.

Задачами, решаемыми настоящим изобретением, являются:

- обеспечение диэлектрических и прочностных характеристик неорганического стеклопластика на основе кварцевой ткани и фосфатного связующего в режимах одностороннего нагрева при температуре наружной поверхности 1200°C и скорости нагрева 100 град./с и выше;

- обеспечение возможности получения сложнопрофильных изделий с точными размерами по толщине и профилю за счет механической обработки без разрушения армирующей стеклоткани.

Поставленная задача достигается тем, что:

1. Способ получения высокотермостойкого радиопрозрачного композиционного материала (изделия) на основе фосфатного связующего и кварцевой ткани, включающий аппретирование кварцевой ткани кремнийорганической смолой, пропитку смесью хромалюмофосфатной связки и тонкодисперсного корундового порошка, прессование и отверждение, отличающийся тем, что после пропитки кварцевой ткани смесью хромалюмофосфатной связки и тонкодисперсного корундового порошка проводят выкладку на жесткой оправке пакета с заданным количеством слоев кварцевой ткани, наносят слой толщиной 0,5-5,0 мм из смеси хромалюмофосфатного связующего и водного шликера кварцевого стекла полидисперсного состава от 0,1 до 500 мкм, при этом количество твердой фазы в водном шликере кварцевого стекла равно процентному составу кварцевой ткани в пакете, отверждение и прессование проводят одновременно с откачкой паров воды и летучих, термообрабатывают при температуре 350±5°C в течение 1-2 часов, пропитывают смесью отстоя водного шликера кварцевого стекла с размером частиц не более 1 мкм и кремнезоля в пропорции 1:1, сушат и термообрабатывают при температуре 350±5°С в течение 1-2 часа.

2. Способ по п. 1, отличающийся тем, что водный шликер кварцевого стекла содержит измельченное кварцевое стекловолокно длиной до 500 мкм или полые стеклянные микросферы в количестве 5-10% по твердой фазе.

Основным преимуществом предложенного способа получения радиопрозрачного материала на основе фосфатного связующего и кварцевой ткани для изделий, работающих в режиме одностороннего нагрева, является нанесение на поверхность набранного пакета материала (изделия) керамического слоя толщиной 0,5-5,0 мм с низкой теплопроводностью (0,3-0,5 Вт/м2).

Слой выполняет несколько функций:

- защищает стеклоткань от термодеструкции кремнийорганического аппрета и тем самым сохраняет прочностные и диэлектрические характеристики материала;

- позволяет проводить механическую обработку изделий и таким образом получать с большой точностью профиль и толщину стенки заготовки до заданной, не повреждая армирующую ткань; обеспечивает возможность получения аэродинамически гладкой и ровной наружной поверхности изделия.

Вторым важным преимуществом способа получения материала (изделий) на основе фосфатного связующего и кварцевой ткани является снижение кислотности получаемого материала за счет пропитки его смесью отстоя водного шликера кварцевого стекла с размером частиц не более 1 мкм, рН которого составляет 4-6 единиц и щелочного кремнезоля, например, КЗ-ТМ-30 ТУ 2145-008-61801487-2010 с рН=10 единиц в пропорции 1:1 с последующей термообработкой. Материал имеет нейтральную реакцию и хорошо взаимодействует с металлами, органопластами и др. Кроме того, увеличение температурной области термообработки материала до 350±5°C (в прототипе и аналоге 270±5°C) приводит к полному переводу фосфатов в водостойкую форму и повышает влагоустойчивость материала (изделия).

Толщина керамического слоя 0,5-5,0 мм определялась требованиями по теплозащите органополимера на кварцевой ткани и допуском на мехобработку по толщине изделия.

Область температур 300-350°C выбрана исходя из сохранения свойств материала на основе хромалюмофосфатного связующего. При более высокой температуре идет деструкция аппрета и ухудшение диэлектрических свойств, более низкая температура (менее 300°C) не обеспечивает окончательную поликонденсацию алюмохромфосфатной связки и ее влагостойкость.

Водный шликер кварцевого стекла содержит измельченное кварцевое стекловолокно длиной до 500 мкм или полые стеклянные микросферы в количестве 5-10% по твердой фазе. Такая величина обеспечивает перемешивание суспензии и упрощает нанесение слоя.

Предлагаемый способ получения радиопрозрачного материала и изделий на его основе включает в себя следующие технологические этапы:

- аппретирование кварцевой ткани и стекловолокна кремнийорганической смолой;

- приготовление неорганического связующего на основе хромалюмофосфатной связки и тонкодисперсного корундового порошка;

- нанесение на аппретированную кварцевую ткань неорганического связующего и сборка пакета на жесткой оправке из заданного количества слоев ткани;

- приготовление керамической массы на основе того же неорганического связующего и водного шликера кварцевого стекла, нанесение ее на поверхность набранного пакета;

- отверждение и прессование материала (изделия) проводят одновременно с откачкой паров воды и летучих;

- термообработку материала (изделия) при температуре 350±5°C в течение 1-2 часов;

- пропитку материала (изделия) по всей поверхности смесью отстоя шликера кварцевого стекла и кремнезоля;

- сушку при комнатной температуре;

- термообработку при температуре 350±5°C в течение 1-2 часов.

В качестве волокнистого наполнителя выбрана кварцевая ткань ТС 8/3-К-ТО, ТУ 6-48-112-94, обладающая хорошими диэлектрическими характеристиками, высокой термостойкостью. Ткань аппретировалась путем окунания (ручной способ) или прогонкой через ванну со спиртовым раствором кремнийорганической смолы КМ-9К, ТУ 1-596-490-2012 концентрации 3-7% в течение 2-3 минут на пропиточной машине и сушки в сушильных шкафах при температуре 30-60°C. Контроль качества аппретирования производился по привесу после сушки - он должен составлять 5-10%.

В качестве неорганического связующего использовали хромалюмофосфатную связку ФОСКОН 351 ТУ 2149-150-10964029-01, которую тщательно перемешивали в шаровой мельнице с порошковым наполнителем из электрокорунда зернистостью 3-20 мкм ТУ 3988-075-00224450-99 в пропорции 1:1.

Нанесение связующего на стеклоткань осуществляли как при помощи пропиточной машины с валиками, так и ручным способом путем промазывания ткани с обеих сторон шпателем и выравнивания резиновым валиком. Для ускорения процесса при экспериментальной проработке способа на сложнопрофильных изделиях нанесение связующего осуществляли непосредственно на заготовки ткани при наборе стеклопакета на жесткой оправке. Выравнивание слоя связки после укладки каждого слоя кварцевой ткани осуществлялся при помощи устройства для нанесения покрытий по авторскому свидетельству СССР №1426661, кл. B05C 17/02 от 30.09.1988 г.

После набора пакета с заданным количеством слоев кварцевой ткани, пропитанной смесью хромалюмофосфатной связки и тонкодисперсного корундового порошка, наносят керамический слой толщиной 0,5-5,0 мм методом напыления (тонкий), кистью, шпателем и валиком (толстый). Смесь из хромалюмофосфатной связки и водного шликера кварцевого стекла представляет собой суспензию, полученную методом мокрого помола в шаровой мельнице до тонины 0,1-500 мкм. Такой зерновой состав водного шликера с содержаним мелких и более крупных частиц обеспечивает после термообработки целостность полученного керамического слоя. Водный шликер вводился в хромалюмофосфатное связующее в количестве по твердой фазе равном процентному количеству кварцевой ткани в пакете (20-30%) и перемешивался в шаровой мельнице в течение не менее 1-2 часа. Для регулирования и подбора формовочных свойств водного шликера и хромалюмофосфатной связки в суспензию может вводиться дистиллированная вода или сухой порошок кварцевого стекла того же зернового состава.

Дополнительно с целью снижения теплопроводности керамического слоя в кварцевый шликер можно вводить измельченное кварцевое стекловолокно длиной до 500 мкм или полые стеклянные микросферы, например, марки МС-8 в количестве 5-10% по твердой фазе. Смесь перемешивается в шаровой мельнице с небольшим количеством шаров (10%) в течение 1-2 ч.

Прессование и отверждение материала (изделий) осуществлялось одновременно с откачкой паров воды и летучих при медленном нагреве (Et=10 град./час) при температуре 50-300°C и давлении до 1 атм, затем производили термообработку при температуре 350±5°C в течение 1-2 часов.

С целью нейтрализации кислотности и одновременно дополнительного упрочнения заготовки материала (изделия) пропитывали смесью отстоя водного шликера кварцевого стекла с размером частиц не более 1 мкм и щелочного кремнезоля КЗ-ТМ-30 в пропорции 1:1 с последующей сушкой и термообработкой при температуре 350±5°C в течение 1-2 часов. Эту операцию можно выполнять или послойным (3 раза) нанесением раствора кистью или окунанием с последующей сушкой при комнатной температуре или в сушильном шкафу. Впитывание смеси осуществляется за счет пористости неорганического стеклопластика и полученного керамического слоя. Отстой получали длительной выдержкой (5-10 суток) водного шликера кварцевого стекла с плотностью 1,75-1,85 г/см3 в закрытой емкости и слива верхнего слоя.

В дальнейшем материал (изделие) обрабатывали на соответствующих станках (плоскошлифовальных, токарных) связанным абразивным инструментом до заданных толщин керамического слоя. На изделия можно наносить различные лакокрасочные покрытия, крепить к металлическим, органокомпозиционным или керамическим деталям.

Примеры конкретного выполнения изобретения.

Пример 1. На кварцевую ткань ТС 8/3-К-ТО, аппретированную 3-7% спирто-ацетоновым раствором кремнийорганической смолы КМ-9К, наносили смесь, состоящую из 65 мас. % связующего Фоскон-351 и 35 мас. % порошкового наполнителя из электрокорунда с зернистостью 3-20 мкм. Проводили сборку пакета с заданным количеством слоев на жесткой оправке, наносили смесь из хромалюмофосфатной связки и водного шликера кварцевого стекла полидисперсного состава от 0,1 до 500 мкм в количестве по твердой фазе, равном процентному количеству кварцевой ткани в пакете. Отверждали и прессовали одновременно с откачкой паров воды и летучих при температуре до 300°C, термообрабатывали при 350±5°C в течение 1-2 часов. Охлаждали до комнатной температуры, проводили пропитку материала (изделия) смесью отстоя водного шликера кварцевого стекла с размером частиц не более 1 мкм и кремнезоля КЗ-ТМ-30 в пропорции 1:1, подвергали сушке и термообработке при температуре 350±5°C в течение 1-2 часов.

Пример 2. Пример 2 осуществляли аналогично примеру 1, толщина слоя смеси хромалюмофосфатного связующего и водного шликера кварцевого стекла составляла 5,0 мм.

Пример 3. Пример 3 осуществляли аналогично примеру 1, толщина слоя смеси хромалюмофосфатного связующего и водного шликера составляла 2,5 мм, в кварцевый шликер вводили измельченное кварцевое стекловолокно длиной до 500 мкм в количестве 5-10% по твердой фазе, смесь перемешивали в шаровой мельнице с небольшим количеством шаров (10%) в течение 1-2 ч.

Полученные экспериментальные данные приведены в таблице.

Изготовленные по этому способу образцы материала и изделия в виде плоских панелей и конических оболочек прошли испытания на термоциклирование от -60°C до +300°C в количестве 15 теплосмен и по режимам одностороннего нагрева до температуры наружной поверхности 1200°C и скорости нагрева на отдельных участках до 100 град./с. Диэлектрические свойства материала после проведения тепловых испытаний остались на уровне допустимых. Диэлектрическая проницаемость и тангенс угла диэлектрических потерь на частоте 1010 Гц до испытаний 3,07 и 0,006, после испытаний 3,21 и 0,016. Прочность материала на основе хромалюмофосфатной связке после испытаний не изменилась.

1. Способ получения высокотермостойкого радиопрозрачного композиционного материала (изделия) на основе фосфатного связующего и кварцевой ткани, включающий аппретирование кварцевой ткани кремнийорганической смолой, пропитку смесью хромалюмофосфатной связки и тонкодисперсного корундового порошка, прессование и отверждение, отличающийся тем, что после пропитки кварцевой ткани смесью хромалюмофосфатной связки и тонкодисперсного корундового порошка проводят выкладку на жесткой оправке пакета с заданным количеством слоев кварцевой ткани, наносят слой толщиной 0,5-5,0 мм из смеси хромалюмофосфатного связующего и водного шликера кварцевого стекла полидисперсного состава от 0,1 до 500 мкм, при этом количество твердой фазы в водном шликере кварцевого стекла равно процентному составу кварцевой ткани в пакете, отверждение и прессование проводят одновременно с откачкой паров воды и летучих, термообрабатывают при температуре 350±5°C в течение 1-2 ч, пропитывают смесью отстоя водного шликера кварцевого стекла с размером частиц не более 1 мкм и кремнезоля в пропорции 1:1, сушат и термообрабатывают при температуре 350±5°C в течение 1-2 ч.

2. Способ по п. 1, отличающийся тем, что водный шликер кварцевого стекла содержит измельченное кварцевое стекловолокно длиной до 500 мкм или полые стеклянные микросферы в количестве 5-10% по твердой фазе.



 

Похожие патенты:

Изобретение относится к области высокотемпературных керамических материалов и может быть использовано при разработке конструкционных композитов с хрупкими компонентами.

Изобретение относится к медицине, а именно к ортопедической стоматологии, и предназначено для изготовления безметалловых зубных протезов. Выполняют послойное плазменное напыление на подложку материала, содержащего оксид алюминия.

Настоящее изобретение относится к биорастворимому керамическому волокну. Технический результат изобретения заключается в повышении биоразлагаемости, улучшении способности к волокнообразованию.

Изобретение относится к области конструкционных материалов, работающих в условиях высокого теплового нагружения и окислительной среды, и может быть использовано в химико-металлургической промышленности для создания изделий и элементов конструкций, подвергающихся воздействию агрессивных сред.

Группа изобретений относится к области керамических композиционных материалов, армированных дисперсными частицами тугоплавких соединений, а также теплонагруженных изделий из данных материалов, и может быть использована в энергетическом машиностроении и аэрокосмической технике, в частности для деталей горячего тракта газотурбинных двигателей (ГТД).

Изобретение относится к конструкциям, работающим в условиях теплового и механического нагружения в окислительной среде, и может быть использовано при создании ракетно-космической техники, где к изделиям предъявляется требование по герметичности.

Изобретения относятся к области композиционных материалов с карбидкремниевой матрицей, предназначенных для работы под избыточным давлением в условиях высокого теплового нагружения и окислительной среды, и могут быть использованы в химической, нефтяной и металлургической промышленности, а также в авиатехнике.
Изобретение относится к области композиционных материалов состава SiC/C-SiC-Si, предназначенных для работы в условиях окислительной среды и механического нагружения при высоких температурах.
Изобретение относится к области композиционных материалов состава SiC/C-SiC-Si, предназначенных для работы в условиях окислительной среды и механического нагружения при высоких температурах.

Изобретение относится к области композиционных материалов с керамической матрицей, предназначенных для работы в условиях окислительной среды и механического нагружения при высоких температурах.

Изобретение относится к технологии производства теплоизоляционных материалов и может быть использовано в авиакосмической технике, в приборостроении, машиностроении, строительстве и других областях техники. Микропористый теплоизоляционный материал состоит из аморфных сферических частиц диоксида кремния размером 100 мкм и плоских частиц диоксида кремния с размерами до 20 нм, кремнеземных волокон диаметром 2-3 мкм, и минерального порошкового наполнителя пластинчатой формы с размером частиц 2-7 мкм, в следующем соотношении компонентов, мас.%: аморфный диоксид кремния сферические частицы 37,4-43,6; кремнеземное волокно 4,5-8,4; аморфный диоксид кремния плоские частицы 19,3-24,8; диоксид титана 27,3-33,2. Изобретение позволяет уменьшить коэффициент теплопроводности микропористого теплоизоляционного материала без существенных ухудшений его прочностных характеристик. 1 табл., 3 пр.

Изобретение относится к радиопрозрачным композиционным материалам. Технический результат – повышение работоспособности аппретирующей пленки, уменьшение кислотности наносимой на стеклоткань суспензии. Высокотермостойкий радиопрозрачный неорганический стеклопластик выполнен на основе фосфатного связующего и аппретированного волокнистого наполнителя. Предварительно на стеклоткань наносили защитное покрытие. Защитное покрытие – неорганическое покрытие, нанесенное на ткань методом «золь-гель» технологии из насыщенных водных растворов солей алюминия и (или) хрома. В качестве связующего использована водная суспензия, состоящая из фосфатной связки с корундовым микропорошком 5-10%, водного шликера кварцевого стекла с полидисперсным зерновым составом твердой фазы 0,1-100 мкм в количестве 50-55% и щелочной кремнезоли в количестве 35-40%. После формования и отверждения при температуре 300-400°С материал дополнительно упрочняют разовой или многократной (3-5 раз) пропиткой насыщенным водным раствором солей алюминия и (или) хрома с последующей сушкой и термообработкой при температуре 500-700°С. 2 н.п. ф-лы, 1 табл.

Изобретение относится к области огнеупорных материалов и направлено на создание опорных плит (лещадок) для высокотемпературного обжига керамических изделий, таких как посуда, электроизоляторы и т.п. Для изготовления таких плит создан способ получения двухслойного кремний-углеродного композиционного материала с различным содержанием фазы карбида кремния в слоях. Способ получения опорных плит для обжига керамических изделий включает изготовление слоистой заготовки из углеродного войлока на ленте из углеграфитовой ткани и ее силицирование. Процесс силицирования осуществляют при протягивании полученной заготовки под капиллярным питателем, подающим расплав кремния, с последующей кристаллизацией расплава. Способ обеспечивает получение изделий большой площади и относительно малой толщины, которые могут использоваться как в восстановительных, так и в окислительных средах. Предел прочности изделий на изгиб при температуре 1250°С достигает 420 МПа. 1 пр., 3 ил.

Изобретение относится к области углерод-карбидокремниевых конструкционных материалов на основе объемно-армированных каркасов из углеродного волокна, работающих в условиях высокого теплового нагружения и окислительной среды, и может быть использовано в химической, нефтяной и металлургической промышленности, а также в авиакосмической технике. Углерод-карбидокремниевый композиционный материал имеет объемно-армированную структуру на основе многонаправленных стержневых каркасов (n=3, 4 …, где n - число направлений армирования) из углеродного волокна и комплексную углерод-карбидокремниевую матрицу, получаемую из углеводородов в процессе их карбонизации при атмосферном давлении или изостатически под давлением, насыщения заготовок пироуглеродом, высокотемпературной обработки, предварительного силицирования и последующего повторного силицирования после механической обработки. Силицирование (предварительное и повторное) углерод-углеродной заготовки может проводиться любым известным способом, в том числе смесью кремния и бора или смесью кремния с другими тугоплавкими компонентами, или соединениями на основе кремния при плотности заготовок под силицирование в пределах от 1,60 до 1,95 г/см3 в зависимости от конечного использования материала. Представленный углерод-карбидокремниевый композиционный материал обладает высокой термоэрозионной и окислительной стойкостью, а также достаточными физико-механическими характеристиками, которые повышаются с ростом температуры. 1 з.п. ф-лы, 8 пр., 2 табл., 2 ил.

Изобретение относится к способу обработки нитей из карбида кремния, применяемых для армирования композиционных материалов. Способ включает стадию химической обработки нитей водным раствором кислоты, содержащим фтористоводородную кислоту и азотную кислоту, при температуре 10-30°С для удаления диоксида кремния, который присутствует на поверхности нитей, и для образования слоя микропористого углерода. Указанный водный раствор содержит фтористоводородную кислоту в количестве 0,5-4 моль/л и азотную кислоту в количестве 0,5-5 моль/л, при этом молярное отношение HF/HNO3 составляет менее чем 1,5. Изобретение также относится к способу получения волокнистой заготовки, включающему образование волокнистой структуры, включающей обработанные нити из карбида кремния, и применения указанной заготовки для получения детали, изготовленной из композиционного материала. Технический результат изобретения – улучшение поверхности нитей для последующего связывания с пироуглеродом. 3 н. и 9 з.п. ф-лы, 2 ил., 6 пр.

Изобретение относится к производству теплоизоляционных огнеупорных изделий, содержащих муллитокремнеземистое волокно и предназначенных для изготовления изделий для футеровки высокотемпературных тепловых агрегатов. Техническим результатом является повышение прочности и максимальной температуры эксплуатации (до 1550°С) изделий на основе муллитокремнеземистого волокна. Теплоизоляционное изделие получают из смеси, включающей, мас.%: муллитокремнеземистое волокно 25,0-40,0, пористый фракционированный заполнитель корундового состава 40,0-60,0, огнеупорную глину 10,0-25,0, лигносульфонаты технические 2,0-5,0 на сухое вещество. Указанные материалы смешивают, формуют, сушат и обжигают при температуре 1450-1480°С. Для полученных изделий предел прочности при сжатии составляет 7-9 МПа. 2 табл.

Изобретение относится к способу изготовления изогнутой сотовой структуры (10). Способ включает в себя выполнение следующих операций:- создание растягиваемой волоконной структуры (100) путем многослойной прошивки множества слоев нитей основы и множества слоев нитей утка; создаваемая волоконная структура содержит несоединенные зоны, проходящие по всей глубине волоконной структуры, разделенные друг от друга соединяющими зонами, которые соединяют множество слоев нитей утка. Причем часть соединений смещена на одну или несколько нитей в направлении, параллельном направлению слоев нитей утка, между каждой серией данных плоскостей;- пропитку волоконной структуры (100) смолой, являющейся прекурсором требуемого материала;- растягивание волоконной структуры (100) на зажимном приспособлении (50) для формирования ячеек в волоконной структуре в каждой несвязанной зоне (110). При этом зажимное приспособление (50) имеет форму, соответствующую требуемой изогнутой форме производимой сотовой структуры (10); и осуществляют полимеризацию смолы волоконной структуры для создания изогнутой сотовой структуры с множеством ячеек. Технический результат, достигаемый при использовании способа по изобретению, заключается в том, чтобы создавать системы шумопоглощения, обладающие пониженным весом конструктивных элементах в сборных изделиях многослойных конструкций. 9 з.п. ф-лы, 36 ил.

Изобретение относится к способу изготовления изогнутой сотовой структуры (10). Способ включает в себя выполнение следующих операций:- создание растягиваемой волоконной структуры (100) путем многослойной прошивки множества слоев нитей основы и множества слоев нитей утка; создаваемая волоконная структура содержит несоединенные зоны, проходящие по всей глубине волоконной структуры, разделенные друг от друга соединяющими зонами, которые соединяют множество слоев нитей утка. Причем часть соединений смещена на одну или несколько нитей в направлении, параллельном направлению слоев нитей утка, между каждой серией данных плоскостей;- пропитку волоконной структуры (100) смолой, являющейся прекурсором требуемого материала;- растягивание волоконной структуры (100) на зажимном приспособлении (50) для формирования ячеек в волоконной структуре в каждой несвязанной зоне (110). При этом зажимное приспособление (50) имеет форму, соответствующую требуемой изогнутой форме производимой сотовой структуры (10); и осуществляют полимеризацию смолы волоконной структуры для создания изогнутой сотовой структуры с множеством ячеек. Технический результат, достигаемый при использовании способа по изобретению, заключается в том, чтобы создавать системы шумопоглощения, обладающие пониженным весом конструктивных элементах в сборных изделиях многослойных конструкций. 9 з.п. ф-лы, 36 ил.
Наверх